JPS62217968A - Production of base material for artificial blood vessel - Google Patents

Production of base material for artificial blood vessel

Info

Publication number
JPS62217968A
JPS62217968A JP61052353A JP5235386A JPS62217968A JP S62217968 A JPS62217968 A JP S62217968A JP 61052353 A JP61052353 A JP 61052353A JP 5235386 A JP5235386 A JP 5235386A JP S62217968 A JPS62217968 A JP S62217968A
Authority
JP
Japan
Prior art keywords
base material
artificial blood
tubular
blood vessel
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61052353A
Other languages
Japanese (ja)
Other versions
JPH074420B2 (en
Inventor
岡田 正夫
阪井 和彦
治男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Nippon Medical Supply Corp
Ube Exsymo Co Ltd
Original Assignee
Research Development Corp of Japan
Ube Nitto Kasei Co Ltd
Nippon Medical Supply Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Ube Nitto Kasei Co Ltd, Nippon Medical Supply Corp filed Critical Research Development Corp of Japan
Priority to JP61052353A priority Critical patent/JPH074420B2/en
Publication of JPS62217968A publication Critical patent/JPS62217968A/en
Publication of JPH074420B2 publication Critical patent/JPH074420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、人工血管用基材の製造方法に関し、とりわり
小口径の人工血管用基材に適したポリウレタン系の人工
血管用基材の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing a base material for an artificial blood vessel, and in particular to a method for producing a base material for an artificial blood vessel made of polyurethane, which is suitable for a base material for an artificial blood vessel with a small diameter. Regarding the manufacturing method.

(従来技術その問題点) 人工血管用基材としては、ダクロンなどの繊維を管状に
編組したものや、テフロン系、例えばボアテックスの多
孔性物質によるものが公知である。
(Problems with Prior Art) Known base materials for artificial blood vessels include those made of fibers such as Dacron braided into a tubular shape, and those made of porous materials such as Teflon, such as Votex.

この種の基材を人工血管として生体中に使用するときに
は、中空管状の基材の内壁に予め血栓を形成し、その内
面上に偽内膜を形成させて、その内側を血液が流れるよ
うな態様で使用されており、この点から管径を小さくす
ると、血栓そのもので、人工血管用基材を閉塞に到らし
める慣れがある。
When this type of base material is used as an artificial blood vessel in a living body, a thrombus is formed on the inner wall of the hollow tubular base material in advance, and a pseudointima is formed on the inner surface of the base material to allow blood to flow inside. If the tube diameter is made small from this point of view, the blood clot itself tends to cause occlusion of the artificial blood vessel substrate.

このため、従来より汎用されているこれらの人工血管用
基材は、内径5M程度以下の微小口径の血管の代替とし
ては適さないとされている。
For this reason, these base materials for artificial blood vessels, which have been widely used in the past, are not suitable as a substitute for blood vessels with minute diameters of about 5M or less.

一方、人工血管用基材の内壁に親水性のポリマーなどを
グラフトすることによって内壁への血栓の生成を防止す
る方法が提案されており、この方法によれば小口径の人
工血管も可能となるが、基材自体には当然ながら、生体
適合性、屈曲に対する耐性、可撓性、吻合適合性などが
要求され、これらの性能が満足される基材は未だ開発さ
れていない。
On the other hand, a method has been proposed to prevent the formation of blood clots on the inner wall of the base material for artificial blood vessels by grafting a hydrophilic polymer onto the inner wall, and this method makes it possible to create small-diameter artificial blood vessels. However, the base material itself is naturally required to have biocompatibility, resistance to bending, flexibility, anastomosis compatibility, etc., and a base material that satisfies these properties has not yet been developed.

特に、人工血管用基材は湾曲させて使用されることが多
いので、ある程度曲げた状態で基材が閉塞されることが
ない性質、すなわち耐屈曲性を有することが必要となる
In particular, since the base material for artificial blood vessels is often used in a curved state, it is necessary that the base material has the property of not being occluded even when bent to a certain extent, that is, has bending resistance.

管の肉厚を増すことによってこの性質は改善されるが、
単純に肉厚を増しただけでは断面積が大きくなりすぎて
血圧の変化による管径の変化が宿主血管のそれとの差が
大きくなり、宿主血管にスj・レスを与え、動脈瘤や吻
合部の同突などの結果を引き起すおそれがある。このた
めには実質断面積を増加することなく見掛は断面積を大
きくする多孔質化が有効な手段となる。
This property can be improved by increasing the wall thickness of the tube, but
If the wall thickness is simply increased, the cross-sectional area will become too large, and changes in tube diameter due to changes in blood pressure will have a large difference from that of the host blood vessel, causing damage to the host blood vessel and causing aneurysms and anastomoses. There is a risk that this could lead to a collision between two vehicles. For this purpose, an effective means is to make the material porous, which increases the apparent cross-sectional area without increasing the actual cross-sectional area.

多孔質化により良好な耐屈曲性を発現させるには、管の
外層から内層迄気孔が連なった連続気孔が望ましく、発
泡剤を添加した独立性気泡構造は好ましくない。
In order to develop good bending resistance by making the tube porous, it is preferable that the tube has continuous pores from the outer layer to the inner layer, and a closed cell structure in which a blowing agent is added is not preferable.

また、人工血管用基材として血液をよどむことなく流通
させ、且つその漏洩を防ぐためには、内面に極く薄い平
滑膜を形成することが望ましい。
Furthermore, in order to allow blood to flow without stagnation and prevent leakage as a base material for an artificial blood vessel, it is desirable to form an extremely thin smooth membrane on the inner surface.

ところで、生体適合性に優れたエラストマー材料として
ポリエーテル−ポリウレタンによる人工血管用基材が特
開昭57−150954号公報に開示されている。この
公報に示されている人工血管用基材の製造方法は、塩粒
子を含まないスラリーと含むスラリーをマンドレル(心
棒)上にディッピング、コーティング、ドクタリングな
どによって複数のゾーンを形成し、しかる後このマンド
レル上のコーティングを乾燥して溶媒を除去し、次いで
水浴中で塩または炭酸水素ナトリウム粒子を除去して多
孔質の管状物を得る方法である。
By the way, as an elastomer material with excellent biocompatibility, an artificial blood vessel base material made of polyether-polyurethane is disclosed in Japanese Patent Laid-Open No. 150954/1983. The method for producing the base material for artificial blood vessels described in this publication involves forming multiple zones on a mandrel by dipping, coating, doctoring, etc. a slurry that does not contain salt particles and a slurry that contains salt particles, and then The coating on the mandrel is dried to remove the solvent and then the salt or sodium bicarbonate particles are removed in a water bath to obtain a porous tube.

しかし、この方法では、スラリー状のものをマンドレル
上にコーティングするため、ゾーン毎に均一の厚さにす
るには、薄いコーティングを複数回に分けて行なうこと
になるので、周方向、@方向の双方に均一にコーティン
グすることが難しく、かなりの工数を必要とし、生産性
、均一性の点で問題がある。
However, in this method, a slurry-like material is coated on the mandrel, so thin coatings must be applied multiple times in order to achieve a uniform thickness in each zone. It is difficult to uniformly coat both surfaces, requiring a considerable number of man-hours, and there are problems in terms of productivity and uniformity.

一方、単に多孔性のエラストマーによる管状材を得るに
は、特開昭59−225053号に示されているごとく
、弾性体ポリマーを溶媒に溶解し、さらに貧溶媒を添加
して、これをノズルから管状に押出し水などの凝固液に
よって内外層から同時に凝固させる方法があるが、この
場合は気孔は微細となり、また液面に直接する側には、
スキン層と呼ばれる非常に微細な孔径を持った層が生じ
、内部にいくに従って孔径が大きくなることや、耐屈曲
性の点で問題がある。
On the other hand, in order to simply obtain a tubular material made of a porous elastomer, as shown in JP-A No. 59-225053, an elastic polymer is dissolved in a solvent, a poor solvent is added, and this is passed through a nozzle. There is a method in which the inner and outer layers are coagulated simultaneously using a coagulating liquid such as extruded water in a tubular shape, but in this case, the pores are fine, and the side facing directly to the liquid surface has
A layer with very fine pores called a skin layer is formed, and there are problems in that the pores become larger as they go deeper into the layer and in terms of bending resistance.

本発明は叙上の問題点に鑑みてなされたものであって、
エラストマーによって平滑な内層と連続気孔を有する外
層とからなる人工血管用基材の新規な製造方法を提供す
ることを目的とする。
The present invention has been made in view of the above problems, and
The object of the present invention is to provide a novel method for producing a base material for an artificial blood vessel, which is made of an elastomer and has a smooth inner layer and an outer layer having continuous pores.

(発明の構成) 上記の目的を達成するための本発明の構成は、エラスト
マー材料を溶媒に溶解して、これに無機塩類を添加混合
し粘度を適宜調整した後、これを押出機に供給して所定
形状のダイより環状に押出した後所定長に切断する管状
物の製造工程と:この掛に前記管状物の溶媒を除去して
乾燥固化した後、その内面にエラストマー材料の溶液を
層状にコーティングした後に溶媒を除去して平滑な表面
を有する内層の形成工程と; さらにこの後に酸で前記無機塩類を溶出して前記管状物
に連続気孔を有する外層を形成する気孔形成工程とから
なることを特徴とする。
(Structure of the Invention) The structure of the present invention to achieve the above object is to dissolve an elastomer material in a solvent, add and mix inorganic salts thereto, adjust the viscosity as appropriate, and then supply this to an extruder. A manufacturing process of a tubular product in which the tubular product is extruded into a ring shape through a die of a predetermined shape and then cut into a predetermined length: In this process, the solvent of the tubular product is removed and the tubular product is dried and solidified, and then a solution of an elastomer material is layered on the inner surface of the tubular product. After coating, the method comprises a step of removing the solvent to form an inner layer having a smooth surface; and a pore forming step of eluting the inorganic salts with an acid to form an outer layer having continuous pores in the tubular article. It is characterized by

本発明の管状物製造工程と内層の成形工程で使用される
エラストマー材料としては、ポリウレタン、ポリウレタ
ンウレアあるいはこれらとシリコーンポリマーとのブレ
ンド物、シリコーンポリマーなどがあげられ、ポリウレ
タンあるいはポリウレタンウレアは生体内での耐久性の
面からポリエーテル型のものが、さらに好ましくはポリ
エーテルセグメント化ポリウレタンあるいはポリエーテ
ルセグメント化ポリウレタンウレアなどが挙げられる。
The elastomer materials used in the tubular product manufacturing process and the inner layer molding process of the present invention include polyurethane, polyurethaneurea, blends of these with silicone polymers, and silicone polymers. From the viewpoint of durability, polyether type materials are more preferred, and polyether segmented polyurethane and polyether segmented polyurethane urea are more preferred.

また、本発明に使用できる溶媒は、エラストマー材料が
ポリエーテルセグメント化ポリウレタンもしくはポリエ
ーテルセグメント化ポリウレタンウレアに対しては、テ
トラヒドロフラン、ジメチルホルムアミドなどが挙げら
れる。
Further, solvents that can be used in the present invention include tetrahydrofuran, dimethylformamide, etc. when the elastomer material is polyether segmented polyurethane or polyether segmented polyurethane urea.

添加混合される無1fffju類としては、炭酸カルシ
ウム、酸化マグネシウム、水酸化マグネシウムなどがあ
げられ、事後において塩酸、硫酸、硝酸などの酸によっ
て溶出可能なものであればよく、添加量は連続気孔を形
成させる点からエラストマー100重世部に対して50
0重量部以上が望ましい。
Examples of the non-1ffjus to be added and mixed include calcium carbonate, magnesium oxide, magnesium hydroxide, etc., as long as they can be eluted with acids such as hydrochloric acid, sulfuric acid, nitric acid, etc., and the amount added is such that continuous pores are maintained. From the point of formation, 50 to 100 parts of elastomer
0 parts by weight or more is desirable.

本発明に用いる押出様は、最終製品の形状に相応した環
状のダイを有するスクリュ一式の押出機、あるいはラム
式押出機などが好適であり、これらの押出機による押出
成形に適した粘度となるように供給する材料の粘度を、
溶媒を揮発させるなどの方法で調整する。また内層の形
成工程は、エラストマー溶液を管状物の内部へコーティ
ングすることにより行なうが、内管部が内径5M程度以
下であり、溶液も比較的粘稠であるような時は、管状物
の下端を溶液に浸し上端を吸引して溶液を下から上に吸
上げる方式や、ある程度の液圧で管状物中に溶液を満た
す方法などが、均一な塗膜を作る上から好ましい。
As for the extrusion mode used in the present invention, a screw set extruder having an annular die corresponding to the shape of the final product or a ram type extruder are suitable, and the viscosity is suitable for extrusion molding with these extruders. The viscosity of the material to be supplied as,
Adjust by evaporating the solvent, etc. In addition, the process of forming the inner layer is performed by coating the inside of the tubular object with an elastomer solution, but if the inner tube has an inner diameter of approximately 5M or less and the solution is relatively viscous, the lower end of the tubular object may be coated with the elastomer solution. From the standpoint of creating a uniform coating, it is preferable to immerse the tube in a solution and suck up the solution from the bottom to the top by suctioning the upper end, or to fill the solution into a tubular object with a certain amount of hydraulic pressure.

(実施例) 以下に本発明の好適な実施例について説明する。(Example) Preferred embodiments of the present invention will be described below.

まず、ポリエーテルセグメント化ポリウレタン100重
邑部をテトラヒドロフラン600重量部に溶解し、粘稠
なポリマー溶液を得る。次にこれに平均粒径1.7μの
軽質炭酸カルシウム450重社部と、平均粒径2μの酸
化マグネシウム90重量部とを加えて混練し、テトラヒ
ドロフランの一部を揮散させて、後述する測定法による
流出量が1.251/10分程度の粘度のペースト状物
となし、これをスクリュ一式の押出11i1に供給して
内径3 try %外径4mの環状のダイ2より押出し
て、これを引取機3により引取りつつ、約50〜60c
rrrの長さに切断した管状物Aを製造する。そして管
状物Aを、第2図に示すように水槽4に浸漬して脱溶媒
して固化し、さらにこれを充分乾燥させた。
First, 100 parts by weight of polyether segmented polyurethane is dissolved in 600 parts by weight of tetrahydrofuran to obtain a viscous polymer solution. Next, 450 parts by weight of light calcium carbonate with an average particle size of 1.7 μm and 90 parts by weight of magnesium oxide with an average particle size of 2 μm are added and kneaded, and a part of the tetrahydrofuran is volatilized. A paste-like material with a viscosity of about 1.251/10 minutes is formed, and this is fed to an extruder 11i1 with a set of screws, extruded through an annular die 2 with an inner diameter of 3% and an outer diameter of 4m, and collected. Approximately 50~60c while being picked up by machine 3
A tubular article A cut to a length of rrr is manufactured. Then, the tubular material A was immersed in a water tank 4 to remove the solvent and solidify as shown in FIG. 2, and was then thoroughly dried.

第3図は管状物Aの内面に内層7を形成する工程を示し
ており、この工程では管状物へ両端を切除した後、ポリ
エーテルセグメント化ポリウレタンをテトラヒドロフラ
ンに溶解した濃度5%の溶液5を収納した槽6中に、一
端を浸漬して立設状態に保持した後、他端を吸引するこ
とによって、下方から溶液5を上界させる操作を3回繰
返して、厚みが約50μの内層7を形成した。
FIG. 3 shows the process of forming an inner layer 7 on the inner surface of the tubular body A, in which, after cutting both ends of the tubular body, a solution 5 of polyether segmented polyurethane dissolved in tetrahydrofuran at a concentration of 5% is applied. The inner layer 7 with a thickness of approximately 50 μm was prepared by repeating the operation of immersing one end in the stored tank 6 and holding it in an upright state, and then sucking the other end to cause the solution 5 to flow upward from below three times. was formed.

しかる後、この管状物Aの一端を水流アスピレータに約
5分間接続して内層7を乾燥した。次いでこの管状物A
を外周を密閉して塩酸を満たした容器に浸漬し、減圧下
で無機塩(炭酸カルシウム及び酸化マグネシウム)と塩
酸との反応による水素の発生が見られなくなる迄処理し
無機塩を溶出させた。この後希塩酸で数回すすぎ、さら
に水洗して塩酸や無機物を洗滌除去した後、その多孔質
形状を保つために真空凍結乾燥法によって頁空度2 t
nm Hg以下で12時間乾燥した。
Thereafter, one end of the tube A was connected to a water aspirator for about 5 minutes to dry the inner layer 7. Then this tubular object A
The sample was immersed in a container filled with hydrochloric acid with its outer periphery sealed, and treated under reduced pressure until hydrogen was no longer generated due to the reaction between the inorganic salts (calcium carbonate and magnesium oxide) and the hydrochloric acid, and the inorganic salts were eluted. After this, it was rinsed several times with diluted hydrochloric acid, and then washed with water to remove hydrochloric acid and inorganic substances, and then vacuum freeze-dried to maintain its porous shape with a page vacancy of 2 tons.
Dry for 12 hours below nm Hg.

このようにして得た多孔質状の人工血管用基材は内径的
3#、外径的3.861II+で内径側には厚み約50
μの実質的に無孔の内層7と、平均孔径が6〜10μで
気孔率が80%の外層8とから構成されていた。
The porous artificial blood vessel base material thus obtained has an inner diameter of 3#, an outer diameter of 3.861II+, and a thickness of approximately 50mm on the inner diameter side.
It consisted of a substantially non-porous inner layer 7 of μ and an outer layer 8 with an average pore size of 6 to 10 μ and a porosity of 80%.

なお、押出機1に投入する前のペースト状原料の粘度は
、比較的粘度が高く、回転式粘度計などによっては測定
が困難であるので通常プラスチックの溶融指数の測定に
使用されるメルト・インディフサ−を用い、常温下で測
定した。シリンダー径9.55M1オリフィス径2.0
96m、オリフィス長さ8.00mのものを用い、荷重
2160g、8550gで測定した場合、感覚的に(イ
)やわらかい(ロ)少しやわらかい(ハ)硬いの3通り
の粘度の異なるサンプルについて第1表の結果が得られ
た。
Note that the viscosity of the paste raw material before being fed into the extruder 1 is relatively high and difficult to measure using a rotational viscometer, so a melt indiffsaner, which is usually used to measure the melting index of plastics, is used. - was measured at room temperature. Cylinder diameter 9.55M1 Orifice diameter 2.0
Table 1 shows samples with three different viscosities: (a) soft, (b) slightly soft, and (c) hard, when measured at loads of 2,160 g and 8,550 g using a sample with an orifice length of 96 m and an orifice length of 8.00 m. The results were obtained.

この結果よりダイ2より押出して管状物Aを1qるには
、2160gの荷重で2.0g/10分程度から885
0g荷重で2.0g/10分程度が望ましい。
From this result, in order to extrude 1q of tubular material A from die 2, it takes 885 to 2.0g/10 minutes at a load of 2160g.
Approximately 2.0 g/10 minutes at 0 g load is desirable.

上記の実施例で1与られた人工血管用基材の耐屈曲性は
、折り曲げによって管の内部が閉塞する曲げ直径が40
mmで実用上要求される値を満足するものであった。
The bending resistance of the artificial blood vessel base material given in Example 1 above is such that the bending diameter at which the inside of the tube is occluded by bending is 40 mm.
mm, which satisfied the practically required value.

(発明の作用、効果) 以上詳細に説明したように本発明による多孔質人工血管
用基材の製造方法は、■ラストマー材料に溶媒および所
定量の無機粒子を添加してこれを押出成形する方法によ
るので、内径、外径の精度が良好なものが得られ、これ
に所要の厚みの平滑層を形成させるごとくエラストマー
溶液をコーティングさせるので、比較的容易に血液の漏
洩を防ぐ作用をなす内層が形成でき、しかる後無機粒子
を酸により溶出して外層の多孔質層を形成するので、気
孔は外層から内層側へ連続したものとなり、この人工血
管用基材を折り曲げても、圧縮側あるいは引張側への応
力が気孔部で分散するためか閉塞が起こりにくくなって
耐屈曲性の向上した基材が得られる。
(Operations and Effects of the Invention) As explained above in detail, the method for manufacturing the porous artificial blood vessel base material according to the present invention is: (1) A method of adding a solvent and a predetermined amount of inorganic particles to a lastomer material and extrusion molding the same. As a result, a product with good accuracy in inner and outer diameters can be obtained, and since it is coated with an elastomer solution to form a smooth layer of the required thickness, it is relatively easy to form an inner layer that prevents blood leakage. After that, the inorganic particles are eluted with acid to form the outer porous layer, so the pores are continuous from the outer layer to the inner layer. Possibly because the stress on the sides is dispersed in the pores, blockage is less likely to occur, resulting in a base material with improved bending resistance.

また、押出成形にあたっては、特に熱を使用しないので
、エラストマー基材の変質もなく、また、押出装置の費
用あるいはエネルギーコストの削減もできる。
Furthermore, since no heat is used during extrusion molding, there is no deterioration of the elastomer base material, and the cost of extrusion equipment or energy cost can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図は本発明による人工血管用基材の製造
工程の一例を順に示す概略図、第4図は同製造方法によ
って得られた基材の部分断面模式1・・・押出機   
   2・・・ダ イ3・・・引取機      4・
・・水 槽7・・・内 層      8・・・外 層
A・・・管状物 第 1 図  f、剥*りP4F 第3図 第2図 第4図
Figures 1 to 3 are schematic diagrams sequentially showing an example of the manufacturing process of the base material for artificial blood vessels according to the present invention, and Figure 4 is a partial cross-sectional schematic diagram of the base material obtained by the same manufacturing method 1...Extruder
2...Die 3...Collection machine 4.
...Water tank 7...Inner layer 8...Outer layer A...Tubular material Fig. 1 f, peeling P4F Fig. 3 Fig. 2 Fig. 4

Claims (1)

【特許請求の範囲】 エラストマー材料を溶媒に溶解して、これに無機塩類を
添加混合し粘度を適宜調整した後、これを押出機に供給
して所定形状のダイより環状に押出した後所定長に切断
する管状物の製造工程と;この後に前記管状物の溶媒を
除去して乾燥固化した後、その内面にエラストマー材料
の溶液を層状にコーティングした後に溶媒を除去して平
滑な表面を有する内層の形成工程と; さらにこの後に酸で前記無機塩類を溶出して前記管状物
に連続気孔を有する外層を形成する気孔形成工程とから
なることを特徴とする人工血管用基材の製造方法。
[Claims] The elastomer material is dissolved in a solvent, inorganic salts are added and mixed to suitably adjust the viscosity, and then the solution is fed to an extruder and extruded into a circular shape through a die of a predetermined shape to a predetermined length. After that, the solvent of the tubular material is removed, the tubular material is dried and solidified, and the inner surface of the tubular material is coated with a layer of a solution of the elastomer material, and the solvent is removed to form an inner layer with a smooth surface. A method for producing a base material for an artificial blood vessel, comprising: a forming step; and a pore forming step of eluting the inorganic salts with an acid to form an outer layer having continuous pores in the tubular article.
JP61052353A 1986-03-12 1986-03-12 Method for manufacturing base material for artificial blood vessel Expired - Lifetime JPH074420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61052353A JPH074420B2 (en) 1986-03-12 1986-03-12 Method for manufacturing base material for artificial blood vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61052353A JPH074420B2 (en) 1986-03-12 1986-03-12 Method for manufacturing base material for artificial blood vessel

Publications (2)

Publication Number Publication Date
JPS62217968A true JPS62217968A (en) 1987-09-25
JPH074420B2 JPH074420B2 (en) 1995-01-25

Family

ID=12912444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61052353A Expired - Lifetime JPH074420B2 (en) 1986-03-12 1986-03-12 Method for manufacturing base material for artificial blood vessel

Country Status (1)

Country Link
JP (1) JPH074420B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005080927A (en) * 2003-09-09 2005-03-31 Jms Co Ltd Production method of medical porous body
JP2006521907A (en) * 2002-10-23 2006-09-28 ザ バイオメリックス コーポレーション Aneurysm treatment device and method
JP2007268239A (en) * 2006-03-07 2007-10-18 National Cardiovascular Center Artificial blood vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521907A (en) * 2002-10-23 2006-09-28 ザ バイオメリックス コーポレーション Aneurysm treatment device and method
JP2005080927A (en) * 2003-09-09 2005-03-31 Jms Co Ltd Production method of medical porous body
JP2007268239A (en) * 2006-03-07 2007-10-18 National Cardiovascular Center Artificial blood vessel

Also Published As

Publication number Publication date
JPH074420B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US4941870A (en) Method for manufacturing a synthetic vascular prosthesis
EP0011437B1 (en) A process for setting a product comprising electrostatically spun fibres, and products prepared according to this process
EP0256748A2 (en) Porous highly expanded fluoropolymers and a process for preparing them
SE423863B (en) VASCULES PROTES AND PROCEDURES FOR PRODUCING THEREOF
JPH02136229A (en) Microporous peek film and manufacture thereof
JPS61503008A (en) Method for manufacturing bioartificial conduit
JPH0763594B2 (en) Porous polysulfone medium suitable for filtration and process for its production
CN112743850B (en) Preparation method of low-temperature biological 3D printing composite stent
JPS62217968A (en) Production of base material for artificial blood vessel
JP2932611B2 (en) Polytetrafluoroethylene resin porous tube
US4822352A (en) Medical tubes with porous textured walls
GB2166977A (en) Medical material and process for its production
JPH09132667A (en) Production of porous film, and porous film
JP3588237B2 (en) Method for producing polyvinyl alcohol gel
JPH05261838A (en) Elongated article having hollow center core and its production
EP0899290B1 (en) Porous cellulose sheet and method for manufacturing the same
JP2553522B2 (en) Medical tube and method of manufacturing the same
US3817809A (en) Bare wire process for making retention catheters
GB2197658A (en) Vascular prosthesis
KR20210144131A (en) Composition of Polyphenylene sulfide porous hollow fiber membrane having sponge like structure, PPS porous hollow fiber membrane containing the same and Manufacturing method thereof
KR20210113780A (en) Spinning solution for flexible PPS porous hollow fiber having hydrophilicity, flexible PPS porous hollow fiber membrane having hydrophilicity and Manufacturing method thereof
JPS63158051A (en) Base material for artificial blood vessel and its production
JPS6316261B2 (en)
GB2102821A (en) Production of cellular polyurethane
JPS6157328A (en) Manufacture of polytetrafluoroethylene porous material