JPS62217600A - Sor apparatus - Google Patents

Sor apparatus

Info

Publication number
JPS62217600A
JPS62217600A JP6130686A JP6130686A JPS62217600A JP S62217600 A JPS62217600 A JP S62217600A JP 6130686 A JP6130686 A JP 6130686A JP 6130686 A JP6130686 A JP 6130686A JP S62217600 A JPS62217600 A JP S62217600A
Authority
JP
Japan
Prior art keywords
sor
charged particles
synchrotron radiation
orbit
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6130686A
Other languages
Japanese (ja)
Inventor
徳重 久継
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6130686A priority Critical patent/JPS62217600A/en
Publication of JPS62217600A publication Critical patent/JPS62217600A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔概要〕 SOR装置を超伝導電磁石等の使用により小型化して、
粒子軌道面を垂直面とし、放射光の放射方向を一方向に
より多く揃えることにより、放射光が簡便に利用出来る
ようにする。
[Detailed Description of the Invention] [Summary] The SOR device is miniaturized by using superconducting electromagnets, etc.
By making the particle orbit plane a vertical plane and arranging more radiation directions of synchrotron radiation in one direction, synchrotron radiation can be used easily.

〔産業上の利用分野〕[Industrial application field]

本発明はシンクロトロン放射光(Synchro tr
onOrbital Radiation 、 S O
Rと略称、単に放射光とも称する)を発生させる装置に
係わり、特に荷電粒子の周回軌道が交叉する型のSOR
装置に関する。
The present invention uses synchrotron radiation (Synchro tr
onOrbital Radiation, S O
SOR is a type of SOR in which the orbits of charged particles intersect.
Regarding equipment.

SOR装置はX線から赤外光までの連続光を出し平行性
の高い、極めて強い光源であるため、今後広範な分野で
の利用が期待されている。
SOR devices are extremely strong light sources that emit continuous light ranging from X-rays to infrared light and are highly parallel, so they are expected to be used in a wide range of fields in the future.

しかし、従来のSOR装置は常伝導電磁石を使用してい
るため、荷電粒子は水平方向に周回させている。この方
法は荷電粒子の偏向により円周切線方向に放射状に出る
放射光が効率よ(使用出来ることも理由の一つである。
However, since conventional SOR devices use normal conduction electromagnets, charged particles are made to orbit in the horizontal direction. One of the reasons for this method is that the radiation emitted radially in the tangential direction of the circumference due to the deflection of charged particles can be used efficiently.

最近SOR装置に超伝導電磁石を使用して小型化する研
究開発が進められており、荷電粒子の周回軌道も水平面
内のものから垂直面内のものも可能になると考えられる
Recently, research and development has been progressing to miniaturize SOR devices by using superconducting electromagnets, and it is thought that the orbits of charged particles will be able to change from horizontal planes to vertical planes.

しかし、従来の一つの磁界を用いるSOR装置を単に縦
型にしたのでは放射光の方向が上向き、下向き、水平方
向といろいろの方向となるため、放射光を照射して利用
する装置が同一構造とすることが出来ず、また立体的な
配置となるため実用的でない。
However, if a conventional SOR device that uses a single magnetic field is simply made vertical, the direction of the synchrotron radiation will be in various directions, such as upward, downward, and horizontal. It is not practical because it cannot be used as a 3D arrangement, and the arrangement is three-dimensional.

本発明は荷電粒子軌道面を垂直面とした縦型に適したS
OR装置を提供しようとするものである。
The present invention is a S
It is intended to provide an OR device.

〔従来の技術〕[Conventional technology]

第3図(a) 、(b)は従来例におけるSOR装置の
模式図で、第3図(a)は側面図で、第3図(b)は断
面図である。
3(a) and 3(b) are schematic diagrams of a conventional SOR device, with FIG. 3(a) being a side view and FIG. 3(b) being a sectional view.

これら図において、■は円環状ストレージリングの真空
容器でこの内部に加速された荷電粒子例えば電子3が貯
蔵される。真空容器1の両側には超伝導電磁石2があり
、これによる磁界の作用で電子3は円軌道を周回し、こ
の軌道面の全方向に放射光を放射する。このうち水平、
垂直方向の放射光5を放射光チャネルで照射試料6に導
いて利用する。
In these figures, ◯ indicates a vacuum container of an annular storage ring in which accelerated charged particles such as electrons 3 are stored. There are superconducting electromagnets 2 on both sides of the vacuum vessel 1, and the electrons 3 orbit in a circular orbit under the action of the magnetic field produced by the electromagnets 2, and emit synchrotron radiation in all directions of this orbital plane. Of these, horizontal
Vertical synchrotron radiation 5 is guided to the irradiation sample 6 through a synchrotron radiation channel and utilized.

ここで、例えば照射試料としてX線露光によるアライナ
−を設置して使用する場合は、放射光の入射方向が上向
き、下向き、水平方向と3種類あるため、機23構造も
夫々に適したものとする必要があり極めて使い辛いもの
となる。又、照射試料位置が立体的配置となることも、
好ましいことではない。
For example, when installing and using an aligner using X-ray exposure as an irradiation sample, there are three types of incident directions of synchrotron radiation: upward, downward, and horizontal, so the structure of the machine 23 must be suitable for each. This makes it extremely difficult to use. In addition, the irradiation sample position may be arranged three-dimensionally.
That's not a good thing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来例のSOR装置は放射光の方向が上向き、下向き、
水平方向といろいろあるため、一つの利用目的のために
も、放射光利用設備の構造を変更する必要があり不便で
ある。
In conventional SOR devices, the direction of emitted light is upward, downward,
Since there are various horizontal directions, it is necessary to change the structure of the synchrotron radiation utilization equipment even for one purpose, which is inconvenient.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、高エネルギーの荷電粒子が磁石の
磁界によって、回転させられながら運行しその軌道を周
回して、再び元の位置に戻るまでに、前記軌道が奇数回
交叉するように、偶数個の磁石を有し、この磁石はその
磁界方向が逆向きのものが交互に隣接しており、前記荷
電粒子の軌道面が略垂直な面でなっている本発明による
SOR装置により達成される。
The solution to the above problem is to move high-energy charged particles while being rotated by the magnetic field of a magnet so that the orbits intersect an odd number of times before returning to the original position. This is achieved by the SOR device according to the present invention, which has an even number of magnets, in which magnets with opposite magnetic field directions are adjacent to each other alternately, and the orbital plane of the charged particles is a substantially perpendicular plane. Ru.

〔作用〕[Effect]

SOR装置のストレージリングにおいて、荷電粒子の周
回軌道が奇数回交叉するメービウス環状軌道とすること
により、両端の円弧軌道からの放射光の放射方向を一方
向に揃えて、放射光利用に便ならしめる。
In the storage ring of the SOR device, by creating a Möbius circular orbit in which the orbits of charged particles intersect an odd number of times, the radiation direction of the synchrotron radiation from the circular arc orbits at both ends is aligned in one direction, making it convenient for the use of synchrotron radiation. .

〔実施例〕〔Example〕

第1図(a) 、(b)は本発明の実施例(1)におけ
るSOR装置の模式図で、第1図(a)は側面図、第1
図(b)は断面図である。
FIGS. 1(a) and 1(b) are schematic diagrams of the SOR device in Example (1) of the present invention, where FIG. 1(a) is a side view, and FIG.
Figure (b) is a cross-sectional view.

これら図において、1は2つの円弧をX字状部で連結し
た■字状のストレージリングの真空容器でこの内部に加
速された荷電粒子例えば電子3が貯蔵される。真空容器
1の各円形部の両側には超伝導電磁石2があり、これに
よる磁界の作用で電子3は円弧軌道を描いて運行しX字
部で他方の磁石による磁界に移行する。このような■字
状の周回軌道を電子3は運行しながらこの軌道面におい
て、電子3が曲がるとき全切線方向に放射光を放射する
In these figures, reference numeral 1 denotes a storage ring vacuum container in the form of a square square, in which two circular arcs are connected by an X-shaped part, and accelerated charged particles, such as electrons 3, are stored inside the vacuum vessel. There are superconducting electromagnets 2 on both sides of each circular part of the vacuum vessel 1, and the electrons 3 move in an arcuate orbit under the action of the magnetic field produced by the electromagnets, and transfer to the magnetic field produced by the other magnet at the X-shaped part. The electrons 3 travel along such a circular orbit in the shape of a letter square, and when the electrons 3 bend in this orbital plane, they emit synchrotron radiation in all tangential directions.

軌道が最も膨らんだ付近の両円弧軌道部からの放射光5
は略下向きの方向に放射されるので、垂直下向きのもの
はそのまま、傾斜しているものはミラー4を用いて最終
的には全部垂直下向きの放射光5として照射試料6に当
てる。このように放射光5の方向が全ての照射試料6に
対して揃っていると、この照射試料6が例えばX線露光
装置としたとき、光源部を除〈従来の装置がそのまま利
用出来る利点がある。
Synchrotron radiation from both arcuate orbit parts near the most expanded orbit 5
Since the radiation is emitted in a substantially downward direction, the vertically downward beam is used as it is, and the inclined beam is used by the mirror 4, so that all the beams are finally applied to the irradiated sample 6 as vertically downward beam 5. When the direction of the synchrotron radiation 5 is aligned with respect to all the irradiated samples 6 in this way, when this irradiated sample 6 is used as an X-ray exposure device, for example, there is an advantage that the conventional device can be used as is except for the light source section. be.

7はリングクロス部の諸装置で、これは粒子衝突防止用
調整器、粒子取出しおよび取り入れ用調整器、エネルギ
ー補給用の粒子加速装置でなっている。
Reference numeral 7 denotes various devices in the ring cross section, which are a particle collision prevention regulator, a particle extraction and intake regulator, and a particle accelerator for energy supply.

第2図は本発明の実施例(2)におけるSOR装置の側
面模式図である。
FIG. 2 is a schematic side view of the SOR device in Example (2) of the present invention.

これは軌道交叉部が3個で超伝導電磁石が4個のもので
、内側2個の円弧軌道からの放射光も利用しようとする
ものである。
This has three orbital intersections and four superconducting electromagnets, and is intended to also utilize the light emitted from the two inner arcuate orbits.

このように、粒子軌道面を垂直とした縦型のSOR装置
とすることにより装置据付面積を小さくしたまま、多く
の放射光照射チャネルを設けることが出来、放射光照射
方向を揃えているので利用に極めて便利となる。
In this way, by using a vertical SOR device with the particle orbital plane perpendicular, it is possible to provide many synchrotron radiation channels while keeping the device installation area small, and the synchrotron radiation direction is aligned, making it easy to use. It is extremely convenient.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、小さなスペ
ースで、多くの垂直方向の放射光を得ることが出来、種
々の既存装置への利用が簡便となる。
As described in detail above, according to the present invention, it is possible to obtain a large amount of vertically emitted light in a small space, and it is easy to use it in various existing devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、(b)は本発明の実施例(1)におけ
るSOR装置の模式図、 第2図は本発明の実施例(2)におけるSOR装置の側
面模式図、 第3図(a) 、(b)は従来例におけるSOR装置の
模式図である。 図において、 1は真空容器、 2は磁石、 3は荷電粒子(電子)、 4はミラー、 5は放射光、 6は照射試料、 7はリーングクロス部諸設備 第1図 イを束イ〃す(こお1丁うSOR装置の軍1〜図第3図
Figures 1 (a) and (b) are schematic diagrams of the SOR device in Example (1) of the present invention, Figure 2 is a schematic side view of the SOR device in Example (2) of the present invention, and Figure 3 ( a) and (b) are schematic diagrams of a conventional SOR device. In the figure, 1 is a vacuum container, 2 is a magnet, 3 is a charged particle (electron), 4 is a mirror, 5 is a synchrotron radiation beam, 6 is an irradiated sample, and 7 is a bundle of various equipment of the ring cross section in Figure 1 A. (1 to 3 units of SOR equipment)

Claims (1)

【特許請求の範囲】[Claims] 高エネルギーの荷電粒子(3)が磁石(2)の磁界によ
って、回転させられながら運行しその軌道を周回して、
再び元の位置に戻るまでに、前記軌道が奇数回交叉する
ように、偶数個の磁石(2)を有し、この磁石(2)は
その磁界方向が逆向きのものが交互に隣接しており、前
記荷電粒子(3)の軌道面が略垂直な面でなっているこ
とを特徴とするSOR装置。
High-energy charged particles (3) move while being rotated by the magnetic field of the magnet (2) and orbit around the orbit.
An even number of magnets (2) are provided so that the orbits intersect an odd number of times before returning to the original position, and these magnets (2) are arranged such that magnets (2) whose magnetic fields are directed in opposite directions are arranged adjacent to each other alternately. An SOR device characterized in that the orbital plane of the charged particles (3) is a substantially vertical plane.
JP6130686A 1986-03-19 1986-03-19 Sor apparatus Pending JPS62217600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6130686A JPS62217600A (en) 1986-03-19 1986-03-19 Sor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6130686A JPS62217600A (en) 1986-03-19 1986-03-19 Sor apparatus

Publications (1)

Publication Number Publication Date
JPS62217600A true JPS62217600A (en) 1987-09-25

Family

ID=13167358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6130686A Pending JPS62217600A (en) 1986-03-19 1986-03-19 Sor apparatus

Country Status (1)

Country Link
JP (1) JPS62217600A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06501334A (en) * 1990-08-06 1994-02-10 シーメンス アクチエンゲゼルシヤフト synchrotron radiation source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06501334A (en) * 1990-08-06 1994-02-10 シーメンス アクチエンゲゼルシヤフト synchrotron radiation source

Similar Documents

Publication Publication Date Title
Hughes Elementary particles
Tavernier Experimental techniques in nuclear and particle physics
CN108701502A (en) Radioisotopic production
Pavlovic Beam-optics study of the gantry beam delivery system for light-ion cancer therapy
JPS62217600A (en) Sor apparatus
WO1995032021A1 (en) Apparatus and method for providing an antigravitational force
Rosen Meson factories
JP3839652B2 (en) Charged particle acceleration magnet using permanent magnet and high magnetic field circular charged particle accelerator
JPS62217599A (en) Storage ring apparatus for synchrotron radiation light
JPH02299200A (en) Apparatus for generating synchrotron radiant light
Mckellar et al. Neutrino clustering and the Z-burst model
JPH0479199A (en) Electron storing ring for synchrotron radiation light
KR20020076639A (en) Ion beam synthesis system apparatus using plural particle accelerators
Davier André Lagarrigue: From cosmic rays to the discovery of the weak neutral currents
Rodin Low-Energy Beam Preparation for the Next Generation Antimatter Experiments
Curtis et al. Use of intersecting lasers in the alignment of the new electron-positron collider at the Stanford Linear Accelerator Center
Kats Planar system replacing gantry for protons and carbon ions beams transportation
JPH0556000B2 (en)
Kolstad et al. Visit of US High-energy Physics Team to USSR, May 1960
Riley Inverse kinematics proton scattering with a radioactive (18) Ne beam
Melissinos Elementary Particle Physics: Some Decisive Contributions by Greek Scientists
JPS62198100A (en) Charged particle accumulator
Jacob Antimatter
Khan Octupole Correlation Effects in Odd-A Nuclei Near A~ 150
Dupen A Two-Mile-Long Electron Beam