JPS62217549A - Electrostatic lens - Google Patents

Electrostatic lens

Info

Publication number
JPS62217549A
JPS62217549A JP6131486A JP6131486A JPS62217549A JP S62217549 A JPS62217549 A JP S62217549A JP 6131486 A JP6131486 A JP 6131486A JP 6131486 A JP6131486 A JP 6131486A JP S62217549 A JPS62217549 A JP S62217549A
Authority
JP
Japan
Prior art keywords
electrode
electrostatic lens
ion
openings
end electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6131486A
Other languages
Japanese (ja)
Inventor
Takashi Horiuchi
堀内 敬
Toru Itakura
徹 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6131486A priority Critical patent/JPS62217549A/en
Publication of JPS62217549A publication Critical patent/JPS62217549A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]

Abstract

PURPOSE:To obtain good beam focusing with low impression voltage without impeding observation of a beam source by having a construction wherein diameters of the openings are simply increased from one end electrode to another end electrode. CONSTITUTION:A captioned lens has a construction wherein the diameters of openings of the electrostatic lenses arranged by placing plural sheets of electrodes 1-3 mutually in parallel while the centers of the openings of the respective electrodes in a straight line simply increase from their one end electrode 1 to another end electrode 3 whereby each opening diameter is not enlarged more than required. For example, the electrode, wherein an opening diameter of said electrostatic lens is the smallest, is placed on the incident side of a beam while the electrode having the largest opening diameter is placed on the outgoing side of the beam. Thereby, when observing an ion emission pattern, a visual field is not narrowed by the electrostatic lens while enabling to realize good beam focusing with low voltage.

Description

【発明の詳細な説明】 〔概要〕 この発明は、開口を有する複数枚の電極を相互に平行に
配設してなる静電レンズにおいて、該開口の径を、一端
の電極から他端の電極に向かって単調に増加する構造と
することにより、ビーム源観察等を妨げることなく、低
い印加電圧で良好なビーム集束を実現するものである。
[Detailed Description of the Invention] [Summary] The present invention provides an electrostatic lens in which a plurality of electrodes each having an aperture are arranged parallel to each other, and the diameter of the aperture is changed from one end of the electrode to the other end. By adopting a structure that increases monotonically toward the center, good beam focusing can be achieved with a low applied voltage without interfering with beam source observation, etc.

〔産業上の利用分野〕[Industrial application field]

本発明は静電レンズの構造の改善に関する。 The present invention relates to improvements in the structure of electrostatic lenses.

イオンビームは電子ビームに比較して固体中での散乱に
よる近接効果が殆どなく、かつレジストに対する感度が
非常に高いなどの特徴を有し、半導体装置等の製造に不
可欠であるリソグラフィ、注入、エツチング或いは堆積
等のプロセスへの集束イオンビームの利用が期待されて
いる。
Compared to electron beams, ion beams have almost no proximity effect due to scattering in solids, and have very high sensitivity to resists.Ion beams are used in lithography, implantation, and etching, which are essential for the manufacture of semiconductor devices. Alternatively, focused ion beams are expected to be used in processes such as deposition.

そのイオン源には液体金属イオン源が従来多く採用され
ているが、これより深い飛程を得るなどの目的で水素、
ヘリウム等のガスイオン源が開発されている。ガスイオ
ン源ではそのイオン放出状態を観察することが必要で、
イオン源に近接する集束用静電レンズの最適化が要望さ
れている。
Conventionally, liquid metal ion sources have been widely used as ion sources, but in order to obtain a deeper range, hydrogen and
Gaseous ion sources such as helium have been developed. With gas ion sources, it is necessary to observe the ion emission state.
Optimization of the focusing electrostatic lens close to the ion source is desired.

〔従来の技術〕[Conventional technology]

第2図は本発明者等が開発した電界電離型ヘリウム(H
e)イオン源を備えるコラムの模式図である。
Figure 2 shows the field ionization type helium (H) developed by the present inventors.
e) Schematic diagram of a column with an ion source.

同図において、11は電界電離型Heイオン源、12は
ジンバル支持機構、13は第1の静電レンズ、14はマ
イクロチャネルプレート及びスクリーン、15は反射鏡
、16は観察窓、17はアパーチュア、18は第2の静
電レンズ、19は偏向器、20はステージである。
In the figure, 11 is a field ionization type He ion source, 12 is a gimbal support mechanism, 13 is a first electrostatic lens, 14 is a microchannel plate and screen, 15 is a reflector, 16 is an observation window, 17 is an aperture, 18 is a second electrostatic lens, 19 is a deflector, and 20 is a stage.

この装置では先ずイオンビーム軸とコラムの光軸とを整
合させるために、マイクロチャネルプレート14の中心
を光軸上に位置させて観察窓16がらイオン源11のH
eイオン放出パターンを観察し、例えば直径25〜40
mm程度のその像がマイクロチャネルプレート14と中
心が合致する様にジンバル支持機構12を調整する。
In this apparatus, first, in order to align the ion beam axis and the optical axis of the column, the center of the microchannel plate 14 is positioned on the optical axis, and the observation window 16 is
e Observe the ion release pattern, e.g.
The gimbal support mechanism 12 is adjusted so that the center of the image, which is about mm in size, coincides with the microchannel plate 14.

この様に軸整合されたイオンビームは第1の静電レンズ
I3及び第2の静電レンズ18によりステージ20上の
試料面に集束され、偏向器19により試料面上の所要の
位置に投射される。
The ion beam axially aligned in this manner is focused onto the sample surface on the stage 20 by the first electrostatic lens I3 and the second electrostatic lens 18, and is projected to a desired position on the sample surface by the deflector 19. Ru.

前記第1の静電レンズ13として従来第3図に示す構成
のいわゆるアインツエルレンズが用いられている。すな
わちこの静電レンズは3枚の電極21.22.23を備
え、各電極21〜23は何れも厚さ3mm、開口直径1
4mmの同一寸法で、相互間の間隔を5mmとし、中央
の電極22を狭義のイオン源11oから25mmの位置
に置いている。
As the first electrostatic lens 13, a so-called Einzel lens having a configuration shown in FIG. 3 has conventionally been used. That is, this electrostatic lens includes three electrodes 21, 22, and 23, each of which has a thickness of 3 mm and an aperture diameter of 1.
They have the same dimensions of 4 mm, the interval between them is 5 mm, and the central electrode 22 is placed at a position 25 mm from the ion source 11o in a narrow sense.

この第1の静電レンズ13の両端の電極21.23は接
地してVz+ =OV、 Vzz =OVとし、中央の
電極22ニ例えばv2□= 63kVを印加して、例え
ばイオン源11゜の直径Do ’= 208m 、印加
電圧Vo = 50kV、イオンビームのエネルギー分
布ΔE = 10eV、取り出し半角α0= l mr
adであるとき、集束するビームの最小錯乱円の直径D
i#47nmで、これは中央の電極22から約3711
II+の位置にある。
The electrodes 21.23 at both ends of the first electrostatic lens 13 are grounded to set Vz+ = OV, Vzz = OV, and a voltage of, for example, v2□ = 63 kV is applied to the central electrode 22, for example, to reduce the diameter of the ion source 11°. Do' = 208 m, applied voltage Vo = 50 kV, ion beam energy distribution ΔE = 10 eV, extraction half angle α0 = l mr
When ad, the diameter D of the circle of least confusion of the focused beam
i#47nm, which is about 3711 from the center electrode 22
It is in position II+.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記例の如きイオンビーム集束のためには、この第1の
静電レンズの各電極21〜23の開口直径を141もの
大きさとする必要はなく、先に述べたイオン放出パター
ン観察の際にこの第1の静電レンズ13によって視野が
絞られることなく大きい立体角の観察を可能とするため
に、全電極21〜23の開口直径をこの様に大きくして
いる。
In order to focus the ion beam as in the above example, it is not necessary to make the aperture diameter of each electrode 21 to 23 of this first electrostatic lens as large as 141, and when observing the ion emission pattern described earlier, In order to enable observation of a large solid angle without narrowing the field of view by the first electrostatic lens 13, the aperture diameters of all the electrodes 21 to 23 are made large in this way.

しかしながら静電レンズの開口直径を太き(すれぼ印加
電圧が高くなって電極間等の絶縁、電源がこれに対応し
なければならず、また多くの部品が密集するイオン源前
面の各部品の配置が窮屈となる。
However, if the aperture diameter of the electrostatic lens is increased (the applied voltage increases, the insulation between the electrodes, etc., and the power supply must support this), and each part in the front of the ion source where many parts are crowded The layout is cramped.

上述の如き状況から、この様な目的に使用する静電レン
ズの最適化が要望されている。
Under the above-mentioned circumstances, there is a demand for optimization of electrostatic lenses used for such purposes.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、複数枚の電極が相互に平行に、かつ各該
電極に設けられた開口の中心を一直線上において配設さ
れ、一端の該電極から他端の該電極に向かって該開口の
径が単調に増大する本発明による静電レンズにより解決
される。
The problem is that a plurality of electrodes are arranged parallel to each other and in a straight line with the centers of the openings provided in each electrode, and the openings extend from the electrode at one end to the electrode at the other end. This is solved by an electrostatic lens according to the invention whose diameter increases monotonically.

〔作 用〕[For production]

本発明によれば、複数枚の電極が相互に平行に、かつ各
電極の開口の中心を一直線上において配設された静電レ
ンズの開口の径が、その一端の電極から他端の電極に向
かって単調に増大する構造とし、各開口径を必要以上に
大きくしない。
According to the present invention, the diameter of the aperture of the electrostatic lens, in which a plurality of electrodes are arranged parallel to each other and the center of the aperture of each electrode is arranged in a straight line, varies from the electrode at one end to the electrode at the other end. The structure is such that the diameter of each opening increases monotonically toward the end, and the diameter of each opening is not made larger than necessary.

例えば前記利用例では、この静電レンズの開口径が最小
である電極をビームの入射側、開口径が最大である電極
をビームの出射側とする。
For example, in the usage example described above, the electrode with the smallest aperture diameter of this electrostatic lens is the beam incident side, and the electrode with the largest aperture diameter is the beam exit side.

この構造により、例えば先に述べたイオン放出パターン
観察の際にこの静電レンズによって視野が絞られること
なく、かつ以下に実施例により説明する如く、低電圧で
良好なビーム集束を実現することが可能となる。
With this structure, for example, when observing the ion emission pattern mentioned above, the field of view is not narrowed down by this electrostatic lens, and as will be explained in the examples below, it is possible to realize good beam focusing with a low voltage. It becomes possible.

〔実施例〕〔Example〕

以下本発明を第1図に模式図を示す実施例により具体的
に説明する。
The present invention will be specifically explained below with reference to an example schematically shown in FIG.

第1図において1.2.3は静電レンズの電極で、電極
1をイオン源11o側としてこの順序に配列し、その中
心軸をZ軸、原点2=0を中央の電極2の中心とし、イ
オン5iloの座標をZo、集束されたビームの最小錯
乱円の座標をZiとする。
In Fig. 1, 1.2.3 are the electrodes of the electrostatic lens, which are arranged in this order with electrode 1 on the ion source 11o side, with the center axis being the Z axis, and the origin 2 = 0 being the center of the central electrode 2. , the coordinates of the ion 5ilo are Zo, and the coordinates of the circle of least confusion of the focused beam are Zi.

なお本実施例でも、イオン源11oの直径Do = 2
0om、印加電圧ν0=50kV、イオンビー11のエ
ネルギー分布ΔE = 10eV、取り出し半角cro
= l mradであるとする。
Note that also in this embodiment, the diameter Do of the ion source 11o = 2
0 om, applied voltage ν0 = 50 kV, energy distribution ΔE of ion bee 11 = 10 eV, extraction half angle cro
= l mrad.

本実施例では、先に述べたイオン放出パターン観察の際
にこの静電レンズによって視野が絞られない各電極1〜
3の開口の直径d、、 at、d3として、d+ = 
7mm、    dz = 10mn+、   d+ 
= 14omとし、各電極1〜3の厚さ3m111、間
隔5mmは前記従来例と同一とする。なお両端の電極1
.3は接地してV+ =OV、 V3=OVとする。
In this example, each electrode 1 to
As the diameter d, at, d3 of the opening of 3, d+ =
7mm, dz = 10mn+, d+
= 14 ohm, and the thickness of each electrode 1 to 3 is 3 m111, and the interval 5 mm is the same as in the conventional example. Note that the electrodes 1 at both ends
.. 3 is grounded so that V+ = OV and V3 = OV.

本実施例及び前記従来例(dl=dz=d3=14mm
)の静電レンズについてビームを追跡し、下記例の結果
を得ている。
This embodiment and the conventional example (dl=dz=d3=14mm
), the beam was tracked for an electrostatic lens, and the following example results were obtained.

先ず前記従来例の静電レンズについては、であり、これ
と最小錯乱円の位置がほぼ等しくなる様に、本実施例の
中央電極2の印加電圧v2を選択して、 が得られている。
First, for the electrostatic lens of the conventional example, the following is obtained by selecting the voltage v2 applied to the central electrode 2 of this embodiment so that the position of the circle of least confusion is approximately equal to this.

各データを比較して、Vz=49.50にνとすればZ
Compare each data and set ν to Vz=49.50, then Z
.

=−30,−35、−40ニ対して、Vt = 49.
45kV とすればZo= −20,−25に対して、
Ziが前記従来例とより良く一致するが、その最小錯乱
円の直径Diは前記従来例より若干小さい傾向にあるこ
とが知られる。
= -30, -35, -40 vs. Vt = 49.
If it is 45kV, then for Zo=-20,-25,
It is known that although Zi matches better with the conventional example, the diameter Di of the circle of least confusion tends to be slightly smaller than that of the conventional example.

本実施例ではこの様に同等以上のビーム集束を、中央電
極2の印加電圧v2を49.50〜49.45kVと前
記従来例の63kVに比較して13.5kV低下して実
現することが可能である。
In this example, it is possible to achieve the same or better beam focusing as described above by lowering the applied voltage v2 of the central electrode 2 by 49.50 to 49.45 kV, which is 13.5 kV compared to 63 kV in the conventional example. It is.

なお前記実施例の各部の寸法、印加電圧等は一例を示す
もので、これらの値を選択して種々の結像条件、間口径
等の要求に対処することができる。
It should be noted that the dimensions of each part, applied voltage, etc. in the above embodiments are merely examples, and these values can be selected to meet various imaging conditions, apertures, etc. requirements.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、例えば先に述べたイ
オン放出パターン観察等に際して視野が絞られることな
く、低電圧で良好なビーム集束を実現することが可能と
なり、半導体装置の製造プロセス等に期待されるイオン
ビームの利用に大きい効果が得られる。
As explained above, according to the present invention, it is possible to achieve good beam focusing at low voltage without narrowing down the field of view, for example, when observing the ion emission pattern described above, etc. This will bring great benefits to the expected use of ion beams.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の模式図、 第2図はHeイオン源を備えるコラムの模式図、第3図
は従来例の模式図である。 図において、 1.2.3は静電レンズの電極、 11は電界電離型Heイオン源、 11oは狭義のイオン源、 12はジンバル支持機構、 13及び18は静電レンズ、 14はマイクロチャネルプレート及びスクリーン、15
は反射鏡、     16は観察窓、17はアパーチュ
ア、  19は偏向器、20はステージを示す。 1OK=OlL グ4 Hご4オンJ省εイ奇却]う人の獣冒 亭 2  @
FIG. 1 is a schematic diagram of an embodiment of the present invention, FIG. 2 is a schematic diagram of a column equipped with a He ion source, and FIG. 3 is a schematic diagram of a conventional example. In the figure, 1.2.3 is an electrode of an electrostatic lens, 11 is a field ionization type He ion source, 11o is an ion source in a narrow sense, 12 is a gimbal support mechanism, 13 and 18 are electrostatic lenses, and 14 is a microchannel plate. and screen, 15
16 is a reflecting mirror, 16 is an observation window, 17 is an aperture, 19 is a deflector, and 20 is a stage. 1 OK=OlL gu 4 H Go 4 On J Ministry ε I Kirika] The Beast Adventures of Utojin 2 @

Claims (1)

【特許請求の範囲】 1)複数枚の電極が相互に平行に、かつ各該電極に設け
られた開口の中心を一直線上において配設され、一端の
該電極から他端の該電極に向かって該開口の径が単調に
増大することを特徴とする静電レンズ。 2)前記開口の径が最小である前記電極をビームの入射
側、前記開口の径が最大である前記電極をビームの出射
側とすることを特徴とする特許請求の範囲第1項記載の
静電レンズ。
[Claims] 1) A plurality of electrodes are arranged parallel to each other and in a straight line with the center of the opening provided in each electrode, from the electrode at one end to the electrode at the other end. An electrostatic lens characterized in that the diameter of the aperture monotonically increases. 2) The static electrode according to claim 1, characterized in that the electrode with the smallest diameter of the aperture is on the beam incidence side, and the electrode with the largest diameter of the aperture is on the beam exit side. Electric lens.
JP6131486A 1986-03-19 1986-03-19 Electrostatic lens Pending JPS62217549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6131486A JPS62217549A (en) 1986-03-19 1986-03-19 Electrostatic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6131486A JPS62217549A (en) 1986-03-19 1986-03-19 Electrostatic lens

Publications (1)

Publication Number Publication Date
JPS62217549A true JPS62217549A (en) 1987-09-25

Family

ID=13167572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6131486A Pending JPS62217549A (en) 1986-03-19 1986-03-19 Electrostatic lens

Country Status (1)

Country Link
JP (1) JPS62217549A (en)

Similar Documents

Publication Publication Date Title
US7297948B2 (en) Column simultaneously focusing a particle beam and an optical beam
US4912326A (en) Direct imaging type SIMS instrument
US7381949B2 (en) Method and apparatus for simultaneously depositing and observing materials on a target
JP2009528668A (en) Aberration correction cathode lens microscope equipment
US8314404B2 (en) Distributed ion source acceleration column
JP4416208B2 (en) Electron microscope with magnetic imaging energy filter
US4556798A (en) Focused ion beam column
US20030122085A1 (en) Field ionization ion source
JP7194849B2 (en) electron optical system
TW202205340A (en) Aperture assembly, beam manipulator unit, method of manipulating charged particle beams, and charged particle projection apparatus
JPH08274020A (en) Projective lithography device by charged particle
JPS60105229A (en) Charged beam exposure apparatus
US5874739A (en) Arrangement for shadow-casting lithography
JP2000173919A (en) Particle beam optical structure and manufacture of fine structure thereby
JPS62217549A (en) Electrostatic lens
JPS60185352A (en) Charged particle optical system
JPH08148116A (en) Micro-laser flight time type mass spectrometer
US6677592B2 (en) Deflection lens device for electron beam lithography
US6653645B1 (en) Deflection lens device for electron beam lithography
JP2004134386A (en) Particle optical arrangement and particle optical system
US6995378B2 (en) Lens array with a laterally movable optical axis for corpuscular rays
JPH09129166A (en) Electron gun
KR102576701B1 (en) Low-blur electrostatic transfer lens for multi-beam electron gun
Van Someren et al. Multibeam electron source using mems electron optical components
JP2002524870A (en) Quadrupole-type apparatus for projection lithography with charged particles.