JPS6221728Y2 - - Google Patents

Info

Publication number
JPS6221728Y2
JPS6221728Y2 JP7638682U JP7638682U JPS6221728Y2 JP S6221728 Y2 JPS6221728 Y2 JP S6221728Y2 JP 7638682 U JP7638682 U JP 7638682U JP 7638682 U JP7638682 U JP 7638682U JP S6221728 Y2 JPS6221728 Y2 JP S6221728Y2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
internal combustion
combustion engine
ratio control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7638682U
Other languages
Japanese (ja)
Other versions
JPS58178437U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7638682U priority Critical patent/JPS58178437U/en
Publication of JPS58178437U publication Critical patent/JPS58178437U/en
Application granted granted Critical
Publication of JPS6221728Y2 publication Critical patent/JPS6221728Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は内燃機関の空燃比制御装置に関する。[Detailed explanation of the idea] The present invention relates to an air-fuel ratio control device for an internal combustion engine.

従来、内燃機関からの排気ガスを浄化するため
に内燃機関の排気ガス中の酸素濃度を検出しこの
検出結果に応じて内燃機関に供給する混合気の空
燃比を制御する内燃機関の空燃比制御装置が提案
されており、かつこの制御を内燃機関の運転状態
全域で行なうと内燃機関に高出力が要求される加
速度時等に所要出力が得られず又減速時に燃料カ
ツトを行なうと燃料カツト終了時に混合気は過濃
となり排気ガス浄化に不具合が生じることから、
空燃比検出器からの検出値に応じて積分処理を行
ないこの積分処理値に応じて内燃機関に供給する
混合気の空燃比を補正し、かつスロツトル弁の全
開又は全閉する内燃機関の過渡運転時にはスロツ
トル弁の全開又は全閉となる直前に求めた積分処
理値を継続する装置が提案されている。内燃機関
に供給する混合気の空燃比は、例えば内燃機関の
吸気回路に設けられた気化器及び気化器に取付け
られ気化器のブリードエア量を増減するためのア
クチユエータにより制御されるが、車輛の減速状
態からアイドル状態に移行したとき、減速以前の
制御ブリードエア量のレベルのまゝアイドル空燃
比制御を継続したのでは空燃比がオーバーリーン
となりエンジンストールの不具合が生ずるので、
これを改善するために、車輛が減速状態に移行し
てからある一定時間空燃比制御を行い、その後一
時的にブリードエア量のレベルを下げ、ブリード
エア量をアイドル状態の最適エア量に制御するこ
とが従来行われていた。然し、この方式では減速
状態に移行後、所定時間(上記の一定時間)内の
空燃比制御を行つている最中に内燃機関がアイド
ル状態に移行した場合にはブリードエア量が未だ
高いレベルにある為エンジンストールの恐れがあ
り、一方減速状態移行後の空燃比制御を行う時間
を短かくすることは減速時のHC、COの増加を招
き、エミツシヨンが悪化するという問題があつ
た。
Conventionally, in order to purify the exhaust gas from the internal combustion engine, air-fuel ratio control for an internal combustion engine detects the oxygen concentration in the exhaust gas of the internal combustion engine and controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine according to the detection result. A device has been proposed, and if this control is performed over the entire operating state of the internal combustion engine, the required output cannot be obtained during acceleration, etc. when high output is required from the internal combustion engine, and if fuel is cut during deceleration, the fuel cut ends. Sometimes the air-fuel mixture becomes too rich, causing problems with exhaust gas purification.
Transient operation of an internal combustion engine in which integral processing is performed according to the detected value from the air-fuel ratio detector, the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is corrected according to this integral processed value, and the throttle valve is fully opened or fully closed. In some cases, a device has been proposed that continues the integral processing value obtained immediately before the throttle valve is fully opened or fully closed. The air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is controlled, for example, by a carburetor installed in the intake circuit of the internal combustion engine and an actuator attached to the carburetor to increase or decrease the amount of bleed air in the carburetor. When transitioning from a deceleration state to an idle state, if the idle air-fuel ratio control is continued at the same level as the control bleed air amount before deceleration, the air-fuel ratio will become over lean and cause an engine stall problem.
To improve this, the air-fuel ratio is controlled for a certain period of time after the vehicle enters a deceleration state, and then the level of the bleed air volume is temporarily lowered to control the bleed air volume to the optimal air volume for the idle state. This has traditionally been done. However, with this method, if the internal combustion engine shifts to an idle state while the air-fuel ratio is being controlled within a predetermined period of time (the above-mentioned fixed time) after shifting to a deceleration state, the amount of bleed air is still at a high level. On the other hand, shortening the time for air-fuel ratio control after transitioning to a deceleration state would lead to an increase in HC and CO during deceleration, which would worsen emissions.

本考案は従来技術における上記問題を解決する
ためのものであり、車輛の減速移行後所定時間内
の空燃比制御を行つている間に内燃機関がアイド
ル状態に移行した場合には即時に空燃比を制御
し、これにより混合気の空燃比をリツチ化しエン
ジンストールを防止することが可能となる空燃比
制御装置を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems in the prior art.If the internal combustion engine shifts to an idle state while the air-fuel ratio is being controlled within a predetermined period of time after the vehicle is decelerated, the air-fuel ratio is immediately adjusted. An object of the present invention is to provide an air-fuel ratio control device that can enrich the air-fuel ratio of an air-fuel mixture and prevent engine stall.

次に本考案の実施例を図面を参照して説明す
る。第1図は本考案に係る空燃比制御装置を内燃
機関と組合せた構成を示す図であり、第1図の全
体構成に於いて1は内燃機関(エンジン)、2は
エジン1の吸気通路に設けられた気化器であり、
気化器2には絞弁と別個に空燃比を調整するアク
チユエータ3が取り付けられており、この気化器
2とアクチユエータ3とにより吸気通路を介して
エンジン1に供給される混合気の空燃比を制御す
る燃料調量装置4が構成されている。前記アクチ
ユエータ3としては吸気通路に供給する気化器2
のブリードエア量を増減するリニアソレノイドバ
ルブにより構成されており、該アクチユエータ3
の通電電流によりバルブの開閉作動を制御し、開
時空燃比をリーン化するように設けられている。
なお、鎖線で示す如くアクチユエータ3′を気化
器2に取り付けずにインテークマニホールド部に
取り付け、二次空気供給装置として構成する場合
もある。また、5は排気管集合部に設けられ排気
ガス中の酸素濃度を検出する酸素濃度検出器、6
は酸素濃度検出器5の出力と理論空燃比に対応す
る設定値との偏差信号を出力する比較回路、7は
比較回路6の偏差信号の積分信号を出力する積分
回路、8は前記積分電圧に応じて前記アクチユエ
ータ3に通電する電流を制御するアクチユエータ
駆動回路である。9はエンジン回転センサであ
り、本考案ではイグニツシヨンコイルの一次波形
を入力しているがイグナイタのピツクアツプ波形
でもかまわない。10は前記エンジン回転数検出
回路であり、あらかじめ設定された回転数と比較
しその偏差信号を出力する。11はバキユームセ
ンサであり、吸気系の負圧を検出しエンジン状態
を判定するセンサであり通常スロツトルポジシヨ
ナー下部(TPポート)に設けられている。12
はバキユームスイツチ信号のバツフア回路であ
り、該出力信号と前記エンジン回転数検出回路1
0の偏差出力を減速検出回路13に入力し、エン
ジンが減速状態か否かを判定し、減速状態であれ
ば減速信号をタイマ回路14に入力し、所定時間
空燃比制御を持続し、所定時間後も減速状態が続
けばフイードバツク停止回路15により空燃比制
御を停止させる構成になつている。16はタイミ
ング回路であり前記エンジン回転数検出回路10
の出力とバキユームセンサ11の信号を入力し、
減速状態の前記所定時間内にエンジン回転が下が
りアイドル状態に移行したならば即時に前記フイ
ードバツク停止回路15にフイードバツク停止信
号を出力するものである。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration in which an air-fuel ratio control device according to the present invention is combined with an internal combustion engine. In the overall configuration shown in FIG. It is a vaporizer equipped with
An actuator 3 that adjusts the air-fuel ratio separately from the throttle valve is attached to the carburetor 2, and the carburetor 2 and actuator 3 control the air-fuel ratio of the air-fuel mixture supplied to the engine 1 via the intake passage. A fuel metering device 4 is configured. The actuator 3 is a carburetor 2 that supplies the intake passage.
The actuator 3 is composed of a linear solenoid valve that increases or decreases the amount of bleed air.
The opening/closing operation of the valve is controlled by the applied current, and the air-fuel ratio is made lean when the valve is opened.
Note that, as shown by the chain line, the actuator 3' may not be attached to the carburetor 2 but may be attached to the intake manifold section to form a secondary air supply device. Further, reference numeral 5 denotes an oxygen concentration detector which is provided at the exhaust pipe gathering part and detects the oxygen concentration in the exhaust gas;
7 is a comparison circuit that outputs a deviation signal between the output of the oxygen concentration detector 5 and a set value corresponding to the stoichiometric air-fuel ratio; 7 is an integration circuit that outputs an integral signal of the deviation signal of the comparison circuit 6; 8 is an integral voltage; This is an actuator drive circuit that controls the current applied to the actuator 3 accordingly. Reference numeral 9 denotes an engine rotation sensor, which inputs the primary waveform of the ignition coil in the present invention, but it may also input the pick-up waveform of the igniter. Reference numeral 10 denotes the engine rotation speed detection circuit, which compares the engine rotation speed with a preset rotation speed and outputs a deviation signal. Reference numeral 11 denotes a vacuum sensor, which detects negative pressure in the intake system and determines the engine condition, and is usually provided at the bottom of the throttle positioner (TP port). 12
is a buffer circuit for the vacuum switch signal, and the output signal and the engine rotation speed detection circuit 1 are
A deviation output of 0 is input to the deceleration detection circuit 13, it is determined whether or not the engine is in a deceleration state, and if the engine is in a deceleration state, a deceleration signal is input to the timer circuit 14, the air-fuel ratio control is continued for a predetermined time, and the deceleration signal is input to the timer circuit 14. If the deceleration state continues even after that, the feedback stop circuit 15 is configured to stop the air-fuel ratio control. 16 is a timing circuit, which is connected to the engine rotation speed detection circuit 10.
Input the output of and the signal of the vacuum sensor 11,
If the engine speed decreases within the predetermined period of time in the deceleration state and shifts to the idle state, a feedback stop signal is immediately output to the feedback stop circuit 15.

第2図は第1図に示す本考案の実施例の電気回
路図であり、第3図はそのタイムチヤートであ
る。比較回路6に於いて、比較器61の非反転入
力端子には理論空燃比に対応する設定値を抵抗6
2と63の分圧電圧で入力し、反転入力端子には
前記酸素濃度検出器5の出力信号を入力し、これ
を前記分圧電圧で比較し偏差出力を得る。比較回
路6の出力は排気ガス空燃比が濃い(以下リツチ
と称する)場合は前記酸素濃度検出器5の出力が
“H”レベルの為“L”レベルとなり、排気ガス
空燃比が薄い(以下リーンと称する)場合は前記
酸素濃度検出器5の出力が“L”レベルの為比較
回路6の出力は“H”レベルとなる。積分回路7
は比較回路6の出力を受け、排気ガス空燃比がリ
ツチの場合は比較器61の出力が“L”レベルに
なることから抵抗71を通してコンデンサ72は
充電され積分回路7の出力は上昇し、アクチユエ
ータ駆動回路8は積分電圧に対応した電流をアク
チユエータ3に通電し、アクチユエータ3は開弁
方向に作動してブリードエア量を増加させ、制御
空燃比をリーン化する。
FIG. 2 is an electrical circuit diagram of the embodiment of the present invention shown in FIG. 1, and FIG. 3 is a time chart thereof. In the comparator circuit 6, a set value corresponding to the stoichiometric air-fuel ratio is connected to the non-inverting input terminal of the comparator 61 via a resistor 6.
2 and 63, and the output signal of the oxygen concentration detector 5 is input to the inverting input terminal, and these are compared using the divided voltages to obtain a deviation output. When the exhaust gas air-fuel ratio is rich (hereinafter referred to as "rich"), the output of the comparison circuit 6 becomes "L" level because the output of the oxygen concentration detector 5 is "H" level, and when the exhaust gas air-fuel ratio is lean (hereinafter referred to as "lean"), the output of the comparison circuit 6 becomes "L" level. In this case, since the output of the oxygen concentration detector 5 is at the "L" level, the output of the comparison circuit 6 is at the "H" level. Integral circuit 7
receives the output of the comparator circuit 6, and when the exhaust gas air-fuel ratio is rich, the output of the comparator 61 becomes "L" level, so the capacitor 72 is charged through the resistor 71, the output of the integrating circuit 7 rises, and the actuator The drive circuit 8 supplies a current corresponding to the integral voltage to the actuator 3, and the actuator 3 operates in the valve opening direction to increase the amount of bleed air and lean the control air-fuel ratio.

排気ガス空燃比がリーンの場合は比較回路61
の出力が“H”レベルとなることからコンデンサ
72は抵抗71を通して逆充電され前記積分回路
7の出力は下降し、アクチユエータ3は閉弁方向
に作動し空燃比をリツチ化する。
When the exhaust gas air-fuel ratio is lean, the comparison circuit 61
Since the output becomes "H" level, the capacitor 72 is reversely charged through the resistor 71, the output of the integrating circuit 7 decreases, and the actuator 3 operates in the valve closing direction to enrich the air-fuel ratio.

エンジン回転数検出回路10に於いて、101
はF/V変換器でありエンジン回転数に対応した
電圧を発生し、この電圧は比較器102により抵
抗103,104で設定される電圧と比較されそ
の偏差信号を出力する。従つてエンジン回転数が
設定値以下であれば“H”レベル、設定値以上で
あれば“L”レベルの出力信号を発生する。
In the engine rotation speed detection circuit 10, 101
is an F/V converter that generates a voltage corresponding to the engine speed, and this voltage is compared by a comparator 102 with the voltage set by resistors 103 and 104, and outputs a deviation signal. Therefore, if the engine speed is below the set value, an output signal of "H" level is generated, and if it is above the set value, an output signal of "L" level is generated.

エンジンが定常走行状態でスロツトル弁が開い
ている状態ではスロツトル弁下部の負圧は大気圧
に近くなり、バキユームセンサ11は閉じてい
る。その後減速状態に移行すると前記スロツトル
弁が閉じ負圧が発生し、バキユームセンサ11が
開き、バツフア回路12のトランジスタ121は
導通し、該トランジスタ121のコレクタ電圧は
0Vとなる。さらに上記減速状態ではおのずとエ
ンジン回転数も高くなり前記エンジン回転数検出
回路10の出力も“L”レベルとなり、減速検出
回路13の両入力共“L”レベルとなることから
トランジスタ131は非導通となりコレクタ電圧
は“H”レベルとなり、タイマ回路14のコンデ
ンサ141は抵抗132,142を通して充電さ
れコンデンサ電圧はRCの時定数をもつて上昇す
る。143は比較器であり、予め設定された時間
が経過し前記コンデンサ141の充電電圧が抵抗
144,145で設定される電圧以上に上昇する
と比較器143の出力は“L”レベルとなり、フ
イードバツク停止回路15のトランジスタ151
のベースは抵抗152,153を通してバイアス
されトランジスタ151は導通し、抵抗値が小さ
な抵抗154を通してコンデンサ72が急速充電
され、積分出力が急速下降して空燃比制御を停止
させる。即ちタイマ回路14で設定した時間が経
過すると積分値がリセツトされ空燃比制御が停止
される。
When the engine is running steadily and the throttle valve is open, the negative pressure below the throttle valve is close to atmospheric pressure, and the vacuum sensor 11 is closed. Thereafter, when the deceleration state is entered, the throttle valve is closed and negative pressure is generated, the vacuum sensor 11 is opened, the transistor 121 of the buffer circuit 12 is turned on, and the collector voltage of the transistor 121 is
It becomes 0V. Further, in the deceleration state, the engine speed naturally increases, and the output of the engine speed detection circuit 10 goes to "L" level, and both inputs of the deceleration detection circuit 13 go to "L" level, so the transistor 131 becomes non-conductive. The collector voltage becomes "H" level, the capacitor 141 of the timer circuit 14 is charged through the resistors 132 and 142, and the capacitor voltage rises with a time constant of RC. 143 is a comparator, and when the charging voltage of the capacitor 141 rises above the voltage set by the resistors 144 and 145 after a preset time has elapsed, the output of the comparator 143 becomes "L" level, and the feedback stop circuit is activated. 15 transistors 151
The base of is biased through resistors 152 and 153, transistor 151 becomes conductive, capacitor 72 is rapidly charged through resistor 154 having a small resistance value, and the integral output rapidly decreases to stop air-fuel ratio control. That is, when the time set by the timer circuit 14 has elapsed, the integral value is reset and the air-fuel ratio control is stopped.

上記タイマ回路14で設定する設定時間中にエ
ンジン回転数が設定回転数より下がつた場合には
タイミング回路16を設けないとした場合につい
てみると、エンジン回転数検出回路10の出力は
“H”レベルとなり、アイドル検出回路13のト
ランジスタ131は抵抗132を通してバイアス
され導通しタイマ回路14のコンデンサ141は
抵抗値が小さな抵抗142を通して急速に放電さ
れ、その結果比較器143の出力は“H”レベル
となり、フイードバツク停止回路15のトランジ
スタ151は非導通となり、積分回路7は比較回
路6の出力に対応して積分が行なわれ空燃比制御
が再開されることゝなる。然し本考案ではタイミ
ング回路16により、バキユームセンサ11が開
状態のとき、ダイオード161のカソードが
“H”レベルとなり、エンジン回転数10の出力
が“L”レベルから“H”レベルに切り換わると
き、すなわちエンジン回転数が設定回転数レベル
を高回転から低回転に変化するタイミング、(第
3図の時点a)でコンデンサ162と抵抗16
3,164,165の時定数で第3図3の如くパ
ルス波形が発生し、トランジスタ166は第3図
4に示す如くパルス状に一定時間導通し、これに
よりフイードバツク停止回路15のトランジスタ
151は抵抗155を通して一定時間導通する。
従つて積分回路7の積分出力は急速に下がり空燃
比制御を停止させ減速後のアイドル空燃比に相当
する低い空燃比補正量から空燃比制御が再開さ
れ、エミツシヨン向上が図れる。
In the case where the timing circuit 16 is not provided when the engine speed falls below the set speed during the set time set by the timer circuit 14, the output of the engine speed detection circuit 10 becomes "H". level, and the transistor 131 of the idle detection circuit 13 is biased through the resistor 132 and conducts. The capacitor 141 of the timer circuit 14 is rapidly discharged through the resistor 142 with a small resistance value, and as a result, the output of the comparator 143 becomes "H" level. , the transistor 151 of the feedback stop circuit 15 becomes non-conductive, the integration circuit 7 performs integration in accordance with the output of the comparison circuit 6, and the air-fuel ratio control is restarted. However, in the present invention, when the vacuum sensor 11 is in the open state, the cathode of the diode 161 becomes "H" level, and when the output at engine speed 10 switches from "L" level to "H" level, by the timing circuit 16, The capacitor 162 and the resistor 16 are connected to each other at the timing when the engine speed changes from high to low (point a in Fig. 3).
A pulse waveform as shown in FIG. 3 is generated with a time constant of 3,164,165, and the transistor 166 is turned on for a certain period of time in a pulsed manner as shown in FIG. 155 for a certain period of time.
Therefore, the integral output of the integrating circuit 7 rapidly decreases, the air-fuel ratio control is stopped, and the air-fuel ratio control is restarted from a low air-fuel ratio correction amount corresponding to the idle air-fuel ratio after deceleration, thereby improving emissions.

第4図は本考案に於いてマイクロコンピユータ
を用いた場合の実施例の構成図である。第4図に
於いて第1図及び第2図に示す構成装置と同じ構
成装置には同じ参照番号が付されている。17は
ワンチツプ・マイクロコンピユータ、18はA/
D(アナログ/デイジタル)変換器である。19
はA/D変換器18のコントロール信号線であ
り、20はA/D変換終了信号であり、21は
A/D変換後のデータ信号線である。なお、ワン
チツプ・マイクロコンピユータ17からアクチユ
エータ駆動回路8に出力される信号はデユーテイ
信号であり、アクチユエータ駆動回路8はこのデ
ユーテイ信号に対応した電流をアクチユエータ3
に通電する回路構成である。22はエンジン回転
数センサ9の波形整形回路でありその出力はワン
チツプ・マイクロコンピユータ17の外部割込み
端子に入力される。
FIG. 4 is a block diagram of an embodiment in which a microcomputer is used in the present invention. Components in FIG. 4 that are the same as those shown in FIGS. 1 and 2 are given the same reference numerals. 17 is a one-chip microcomputer, 18 is an A/
It is a D (analog/digital) converter. 19
is a control signal line of the A/D converter 18, 20 is an A/D conversion end signal, and 21 is a data signal line after A/D conversion. The signal output from the one-chip microcomputer 17 to the actuator drive circuit 8 is a duty signal, and the actuator drive circuit 8 supplies a current corresponding to this duty signal to the actuator 3.
This is a circuit configuration that supplies electricity to the 22 is a waveform shaping circuit for the engine speed sensor 9, and its output is input to an external interrupt terminal of the one-chip microcomputer 17.

第5図に示すフローチヤートは第4図に示され
る本考案の実施例のメインプログラムであり、第
6図はエンジン回転センサの割込発生時のプログ
ラムである。なお、第7図はRAM領域のデータ
エリアである。第5図に於いて、ワンチツプ・マ
イクロコンピユータ17の初期セツトを行ない、
酸素濃度検出器5の出力をA/D変換器18によ
りA/D変換を行ない、A/D変換後のデータ信
号をワンチツプ・マイクロコンピユータ17に入
力する。次に車輛のスロツトル位置を判別するバ
キユームスイツチ11の信号をバツフア回路12
を通してワンチツプ・マイクロコンピユータ17
に同様に入力する。
The flowchart shown in FIG. 5 is the main program of the embodiment of the present invention shown in FIG. 4, and FIG. 6 is the program when an interrupt occurs in the engine rotation sensor. Note that FIG. 7 shows the data area of the RAM area. In FIG. 5, the initial setting of the one-chip microcomputer 17 is performed,
The output of the oxygen concentration detector 5 is A/D converted by an A/D converter 18, and the data signal after A/D conversion is input to a one-chip microcomputer 17. Next, the signal from the vacuum switch 11, which determines the throttle position of the vehicle, is transferred to the buffer circuit 12.
Through one chip microcomputer 17
Enter the same in .

以下ワンチツプ・マイクロコンピユータ17に
より車輛が減速状態か否かを判定し、減速状態に
移行後遅延タイマ1による遅延後空燃比フイード
バツクを停止する。またバキユームスイツチが開
状態でかつ、エンジン回転数が所定の回転数より
高い状態から低い状態に移行した場合はワンシヨ
ツトタイマ2により所定時間だけ空燃比フイード
バツクを停止し、その後空燃比フイードバツクを
再開する。
Thereafter, the one-chip microcomputer 17 determines whether or not the vehicle is in a deceleration state, and after shifting to the deceleration state, the delayed air-fuel ratio feedback by the delay timer 1 is stopped. Additionally, if the vacuum switch is open and the engine speed changes from higher to lower than the predetermined rotation speed, one-shot timer 2 will stop the air-fuel ratio feedback for a predetermined period of time, and then restart the air-fuel ratio feedback. do.

以上に述べた如く本考案によれば、車輛が減速
状態に移行した場合の所定時間空燃比制御を行つ
ている最中に内燃機関回転数が設定回転数より下
がりアイドル状態に移行した場合には直ちにそれ
迄の空燃比偏差値積分値による空燃比制御を停止
し積分値をリセツトした状態から空燃比制御を行
うので、上記のアイドル状態に移行した場合に内
燃機関に供給する混合気の空燃比をリツチ化して
エンジンストールを防止し得るという優れた効果
を得ることができる。本考案によれば、車輛が減
速状態に移行した場合の空燃比制御を行う上記所
定時間を短くする必要がなくエミツシヨンの悪化
を防止することができる。
As described above, according to the present invention, when the internal combustion engine rotation speed falls below the set rotation speed while the air-fuel ratio is being controlled for a predetermined period when the vehicle shifts to a deceleration state and the vehicle shifts to an idle state, Immediately, the air-fuel ratio control based on the air-fuel ratio deviation integral value is stopped and the air-fuel ratio control is performed from the state where the integral value is reset, so that the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine when the state shifts to the above-mentioned idle state is It is possible to obtain the excellent effect of preventing engine stall by making the engine richer. According to the present invention, it is not necessary to shorten the predetermined time for performing air-fuel ratio control when the vehicle shifts to a deceleration state, and deterioration of emissions can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る空燃比制御装置の一実施
例を内燃機関と組合せた構成図、第2図は第1図
の実施例の電気回路図、第3図は第2図の電気回
路図の動作説明用のフローチヤート、第4図は本
考案に係る空燃比制御装置の他の実施例でマイク
ロコンピユータを用いたものゝ構成図、第5図は
第4図の実施例のメインプログラムを示すフロー
チヤート、第6図は第4図の実施例におけるエン
ジン回転センサの割込発生時のプログラムを示す
フローチヤート、第7図は第4図の実施例におけ
るRAM領域のデータエリアを示す図である。 1……エンジン、2……気化器、3……アクチ
ユエータ、4……燃料調量装置、5……酸素濃度
検出器、6……比較回路、7……積分回路、8…
…アクチユエータ駆動回路、9……エンジン回転
数センサ、10……エンジン回転検出回路、11
……バキユームスイツチ、12……バツフア回
路、13……減速検出回路、14……タイマ回
路、15……フイードバツク停止回路、16……
タイミング回路、17……マイクロコンピユー
タ、18……A/D変換器、22……波形整形回
路。
Fig. 1 is a block diagram of an embodiment of the air-fuel ratio control device according to the present invention combined with an internal combustion engine, Fig. 2 is an electric circuit diagram of the embodiment shown in Fig. 1, and Fig. 3 is an electric circuit diagram of the embodiment shown in Fig. 2. Fig. 4 is a block diagram of another embodiment of the air-fuel ratio control device according to the present invention using a microcomputer, and Fig. 5 is a main program of the embodiment shown in Fig. 4. FIG. 6 is a flowchart showing a program when an interrupt occurs in the engine rotation sensor in the embodiment of FIG. 4, and FIG. 7 is a diagram showing the data area of the RAM area in the embodiment of FIG. 4. It is. DESCRIPTION OF SYMBOLS 1... Engine, 2... Carburizer, 3... Actuator, 4... Fuel metering device, 5... Oxygen concentration detector, 6... Comparison circuit, 7... Integrating circuit, 8...
... Actuator drive circuit, 9 ... Engine rotation speed sensor, 10 ... Engine rotation detection circuit, 11
... Vacuum switch, 12 ... Buffer circuit, 13 ... Deceleration detection circuit, 14 ... Timer circuit, 15 ... Feedback stop circuit, 16 ...
Timing circuit, 17...Microcomputer, 18...A/D converter, 22...Waveform shaping circuit.

Claims (1)

【実用新案登録請求の範囲】 (1) 内燃機関の排気ガスの空燃比を検出し、この
検出値に応じて内燃機関に供給する混合気の空
燃比を制御する空燃比制御装置であつて、内燃
機関の排気ガスの空燃比を検出する検出器と、
内燃機関回転数センサと、機関負荷状態検出手
段と、前記検出器から出力される排気ガスの空
燃比を予め定められた所定空燃比と比較して偏
差値を求め前記偏差値を積分して積分値に応じ
た値の空燃比制御信号を発生する制御装置であ
つて、内燃機関回転数センサ及び機関負荷状態
検出手段の出力を受け、内燃機関を搭載する車
輌が減速状態に移行した場合には空燃比制御を
予め定められた時間継続してから空燃比制御を
停止し、前記時間中に内燃機関の回転数が予め
定められた設定値より下がり内燃機関がアイド
ル状態に移行した場合には直ちに空燃比制御を
停止する制御装置と、前記空燃比制御信号に応
じて内燃機関に供給する混合気の空燃比を調節
する装置とを有する空燃比制御装置。 (2) 実用新案登録請求の範囲第1項に記載の空燃
比制御装置であつて、前記制御装置は、前記検
出器の出力と所定空燃比との差異を表す偏差値
信号を発生する装置と、前記偏差値信号を積分
して空燃比制御信号を発生する積分手段と、車
輌が減速状態に移行したことを検出して前記の
予め定められた時間経過後タイマ信号を発生す
るタイマ手段と、内燃機関の回転数が前記設定
値より下り内燃機関がアイドル状態に移行した
ことを検出して内燃機関回転数の前記設定値よ
りの低下に同期したパルス信号を発生するタイ
ミング手段と、前記タイマ信号及びパルス信号
に応じて前記積分手段の積分値をリセツトし空
燃比制御を停止させる装置とを含む、空燃比制
御装置。 (3) 実用新案登録請求の範囲第1項に記載の空燃
比制御装置であつて、前記制御装置はマイクロ
コンピユータにより構成される空燃比制御装
置。
[Scope of Claim for Utility Model Registration] (1) An air-fuel ratio control device that detects the air-fuel ratio of exhaust gas of an internal combustion engine and controls the air-fuel ratio of a mixture supplied to the internal combustion engine according to the detected value, a detector that detects an air-fuel ratio of exhaust gas from an internal combustion engine;
an internal combustion engine rotation speed sensor, an engine load state detection means, and an air-fuel ratio of exhaust gas outputted from the detector to a predetermined air-fuel ratio determined in advance to obtain a deviation value and integrate the deviation value. A control device that generates an air-fuel ratio control signal with a value corresponding to a value, and receives the output of an internal combustion engine rotation speed sensor and an engine load state detection means, and when a vehicle equipped with an internal combustion engine shifts to a deceleration state. After the air-fuel ratio control continues for a predetermined period of time, the air-fuel ratio control is stopped, and if the rotational speed of the internal combustion engine falls below a predetermined set value during the period and the internal combustion engine shifts to an idle state, the control is immediately performed. An air-fuel ratio control device comprising: a control device that stops air-fuel ratio control; and a device that adjusts an air-fuel ratio of an air-fuel mixture supplied to an internal combustion engine in accordance with the air-fuel ratio control signal. (2) Utility model registration The air-fuel ratio control device according to claim 1, wherein the control device is a device that generates a deviation value signal representing a difference between the output of the detector and a predetermined air-fuel ratio. , an integrating means that integrates the deviation value signal to generate an air-fuel ratio control signal, and a timer means that detects that the vehicle has shifted to a deceleration state and generates a timer signal after the predetermined time elapses; a timing means for detecting that the rotational speed of the internal combustion engine has fallen below the set value and that the internal combustion engine has entered an idle state, and generating a pulse signal synchronized with the decrease in the rotational speed of the internal combustion engine from the set value; and the timer signal. and a device for resetting the integral value of the integrating means in response to a pulse signal and stopping air-fuel ratio control. (3) Utility Model Registration The air-fuel ratio control device according to claim 1, wherein the control device is constituted by a microcomputer.
JP7638682U 1982-05-25 1982-05-25 Air fuel ratio control device Granted JPS58178437U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7638682U JPS58178437U (en) 1982-05-25 1982-05-25 Air fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7638682U JPS58178437U (en) 1982-05-25 1982-05-25 Air fuel ratio control device

Publications (2)

Publication Number Publication Date
JPS58178437U JPS58178437U (en) 1983-11-29
JPS6221728Y2 true JPS6221728Y2 (en) 1987-06-02

Family

ID=30085703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7638682U Granted JPS58178437U (en) 1982-05-25 1982-05-25 Air fuel ratio control device

Country Status (1)

Country Link
JP (1) JPS58178437U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623551B2 (en) * 1984-10-22 1994-03-30 富士重工業株式会社 Air-fuel ratio controller for vehicle engine

Also Published As

Publication number Publication date
JPS58178437U (en) 1983-11-29

Similar Documents

Publication Publication Date Title
US4186691A (en) Delayed response disabling circuit for closed loop controlled internal combustion engines
JPS6014182B2 (en) Air flow adjustment device
US4111162A (en) Method and system for controlling the mixture air-to-fuel ratio
US4178884A (en) Method and system to control the mixture air-to-fuel ratio
US4721082A (en) Method of controlling an air/fuel ratio of a vehicle mounted internal combustion engine
JPS6118664B2 (en)
US4402295A (en) Electronically controlled fuel injection apparatus for internal combustion engine
US4479464A (en) Air-to-fuel ratio correcting arrangement in a fuel supply control system having a feedback loop
JPS633138B2 (en)
JPS5996454A (en) Engine air-fuel ratio control device
JPS6221728Y2 (en)
US4478191A (en) Air-fuel ratio control system for internal combustion engines
JPH0379542B2 (en)
US4425895A (en) Air-fuel ratio feedback control system
US4501243A (en) Air-fuel ratio control apparatus
US4478192A (en) Air-fuel ratio control system for internal combustion engines
JPS638294B2 (en)
US5284113A (en) Arrangement in an i. c. engine
JPS6053770B2 (en) Air-fuel ratio control device for internal combustion engines
JPH0321739B2 (en)
JPS62345B2 (en)
JPS6244108Y2 (en)
JPS643807Y2 (en)
JP3096379B2 (en) Catalyst temperature control device for internal combustion engine
JPH0137156Y2 (en)