JPS6221703A - Nitric acid plant having exhaust gas denitrizer - Google Patents

Nitric acid plant having exhaust gas denitrizer

Info

Publication number
JPS6221703A
JPS6221703A JP60161368A JP16136885A JPS6221703A JP S6221703 A JPS6221703 A JP S6221703A JP 60161368 A JP60161368 A JP 60161368A JP 16136885 A JP16136885 A JP 16136885A JP S6221703 A JPS6221703 A JP S6221703A
Authority
JP
Japan
Prior art keywords
exhaust gas
heater
ammonia
nitric acid
acid plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60161368A
Other languages
Japanese (ja)
Inventor
Mototaka Kojima
児島 素孝
Hideya Watanuki
綿貫 秀也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP60161368A priority Critical patent/JPS6221703A/en
Publication of JPS6221703A publication Critical patent/JPS6221703A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carry out the denitration reaction at optimum gas temperature, by placing two-stage exhaust gas heater after an ammonia oxidizer, and attaching an ammonia catalytic reduction denitration apparatus to the outlet channel of the former stage heater. CONSTITUTION:NH3 evaporated by the evaporator 1 is mixed with air supplied through the compressor 3 and the air heater 5, and oxidized in the oxidizer 3. The produced nitrogen oxide is passed through the heater 5, the first exhaust gas heater 7A and the second exhaust gas heater 7B to effect the heat-exchange, condensed in a condenser cooler 9, introduced into the absorption column 11, and absorbed in water to obtain nitric acid. The exhaust gas exhausted from the absorption column 11 is introduced into the heater 7A through the line 15 to effect the heat-exchange and to control the gas temperature to 310-350 deg.C and gas pressure to 6-7kg/cm<2>G at the outlet-side line D. The conditioned gas is supplied to the ammonia catalytic reduction denitration apparatus, denitrated by ammonia reduction, and supplied through the heater 7B to the steam turbine 13 to recover the energy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は排煙脱硝装置を有する硝酸プラントに関し、さ
らに詳しくは硝酸プラントから排出される排ガス中の窒
素酸化物をアンモニアの存在下に接触還元する排煙脱硝
装置を有するVJ酸プラントに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a nitric acid plant having a flue gas denitrification device, and more specifically to a method for catalytic reduction of nitrogen oxides in flue gas discharged from a nitric acid plant in the presence of ammonia. This invention relates to a VJ acid plant having a flue gas denitrification device.

(従来の技術) 硝酸プラントから排出される排ガスの脱硝に乾式アンモ
ニア接触還元法による排煙脱硝装置を通用する場合、従
来の硝酸プラントの機器構成では、脱硝反応に適当なガ
ス温度ゾーンがなく、このため脱硝装置が十分に機能し
ないという問題がある。
(Prior art) When using a flue gas denitrification device using the dry ammonia catalytic reduction method to denitrify flue gas discharged from a nitric acid plant, the equipment configuration of the conventional nitric acid plant does not have a gas temperature zone suitable for the denitrification reaction. For this reason, there is a problem that the denitrification device does not function sufficiently.

すなわち、第2図は、従来の硝酸プラントの概略構成を
示したフローシートであるが、アンモニアは蒸発器1で
気化され、酸化器3で酸化されて酸化窒素を生成し、空
気加熱器5および排ガス加熱″I51で熱交換を行った
後、凝縮冷却器9で凝縮し、さらに吸収塔11で酸化窒
素を水に吸収させて硝酸が得られる。酸化器3には圧縮
器6で加圧された空気が、空気加熱器5で予熱された後
、芸発器1からのアンモニアと混合されて酸化器3に導
入される。吸収塔11から排出された排ガスは、排ガス
加熱器7を通って加熱された後、蒸気タービン13でエ
ネルギーが回収され、排ガスとなって排出される。アン
モニア接触還元装置は、アンモニア導入手段とバナジウ
ム、チタン等の窒素酸化物還元触媒の充填部を有し、吸
収塔11からの排ガス管路15に設けられるが、排ガス
加熱器7の前の位置Aに設けた場合、排ガス温度は20
〜3Q ’C1圧力6〜7kg/cIIIGと低く、新
たな昇温装置が必要になる。また排ガス加熱器7の出口
位置Bに設けた場合には温度が500〜550”C(圧
力6〜7 kg / col G )と高すぎるので反
応率が低下する。一方、タービン13の出口1cに設け
た場合には、排ガス温度220〜260℃、圧力0.0
2kg / cot Gと温度が低すぎる。このよう北
従来の硝酸プラントでは、アンモニア還元脱硝を行うに
は、脱硝装置の設定位置の温度が低すぎるか、または高
すぎるので、十分な脱硝率が得られないという問題があ
った。
That is, FIG. 2 is a flow sheet showing the schematic configuration of a conventional nitric acid plant. Ammonia is vaporized in the evaporator 1, oxidized in the oxidizer 3 to produce nitrogen oxide, and the air heater 5 and After exchanging heat with exhaust gas heating I51, it is condensed in a condensing cooler 9, and nitrogen oxide is absorbed into water in an absorption tower 11 to obtain nitric acid.The oxidizer 3 is pressurized with a compressor 6. After the air is preheated by the air heater 5, it is mixed with ammonia from the generator 1 and introduced into the oxidizer 3.The exhaust gas discharged from the absorption tower 11 passes through the exhaust gas heater 7. After being heated, the energy is recovered by the steam turbine 13 and discharged as exhaust gas.The ammonia catalytic reduction device has an ammonia introducing means and a part filled with a nitrogen oxide reduction catalyst such as vanadium or titanium. It is installed in the exhaust gas pipe 15 from the tower 11, but when installed at position A in front of the exhaust gas heater 7, the exhaust gas temperature is 20
~3Q'C1 pressure is as low as 6-7 kg/cIIIG, and a new temperature raising device is required. Moreover, if it is installed at the outlet position B of the exhaust gas heater 7, the temperature will be too high at 500-550"C (pressure 6-7 kg/col G), so the reaction rate will decrease. On the other hand, at the outlet 1c of the turbine 13, the reaction rate will decrease. If provided, exhaust gas temperature 220-260℃, pressure 0.0
The temperature is too low at 2kg/cot G. In such conventional nitric acid plants, the temperature at the set position of the denitrification device is either too low or too high to perform ammonia reduction denitrification, so there is a problem in that a sufficient denitrification rate cannot be obtained.

(発明が解決しようとする問題点) 本発明の目的は、上記従来技術の問題点を解決し、硝酸
プラントにおいてアンモニア還元脱硝を行うのに好適な
機器構成を有する硝酸プラントを提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a nitric acid plant having a suitable equipment configuration for performing ammonia reduction and denitrification in the nitric acid plant. .

(問題点を解決するための手段) 本発明は、アンモニア酸化器の後流に排ガス加熱器を有
し、かつ吸収塔の排ガス管路にアンモニア接触還元によ
る排ガス脱硝装置を設けた硝酸プラントにおいて、排ガ
ス加熱器を2段に設け、1段目の排ガス加熱器を通る排
ガス管路の出口側にアンモニア接触還元脱硝装置を設け
たことを特徴とする。
(Means for Solving the Problems) The present invention provides a nitric acid plant that has an exhaust gas heater downstream of an ammonia oxidizer and an exhaust gas denitrification device using ammonia catalytic reduction in the exhaust gas pipe of an absorption tower. The present invention is characterized in that exhaust gas heaters are provided in two stages, and an ammonia catalytic reduction and denitrification device is provided on the exit side of the exhaust gas pipe line passing through the first stage exhaust gas heater.

以下、本発明を図面により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の硝酸プラントの機器構成を示すフロ
ーシートである。この硝酸プラントにおける蒸発器l、
酸化器3、空気加熱器5、凝縮冷却器9および吸収塔1
1は従来公知のものが用いられる。例えば酸化器3とし
ては白金網触媒、または酸化鉄を主体とした触媒を充填
したものが用いられる。このプラントで第2図の従来装
置と異なる点は、排ガス加熱器を2段に設け、第1排ガ
ス加熱器7Aと第2排ガス加熱器7Bとで構成し、空気
加熱器5からの酸化窒素を含むガスを第1排ガス加熱器
7Aおよび7Bを通って排ガス管路15を通る排ガスと
熱交換させ、また第1排ガス加熱器7Aの出口管路りに
アンモニア接触還元脱硝装置を設けたことである。但し
、第1および第2排ガス加熱器7Aおよび7Bの能力の
合計は元の排ガス加熱器7とほぼ等しいものとする。こ
のように第1および第2排ガス加熱器7A、7Bを設け
ることにより、該加熱器7への出口側管路りのガス温度
を脱硝反応に最適な温度および圧力、例えば310〜3
50℃、圧力6〜7 kg / cj Qとすることが
でき、そこに設置される脱硝反応器の機能を最大限に発
揮させることができる。
FIG. 1 is a flow sheet showing the equipment configuration of the nitric acid plant of the present invention. Evaporator l in this nitric acid plant,
Oxidizer 3, air heater 5, condensing cooler 9 and absorption tower 1
1 is a conventionally known one. For example, as the oxidizer 3, a platinum mesh catalyst or one filled with a catalyst mainly composed of iron oxide is used. This plant differs from the conventional system shown in FIG. The gas containing the exhaust gas passes through the first exhaust gas heaters 7A and 7B to exchange heat with the exhaust gas passing through the exhaust gas pipe line 15, and an ammonia catalytic reduction denitrification device is provided in the outlet pipe line of the first exhaust gas heater 7A. . However, the total capacity of the first and second exhaust gas heaters 7A and 7B is approximately equal to that of the original exhaust gas heater 7. By providing the first and second exhaust gas heaters 7A and 7B in this manner, the gas temperature in the outlet side pipe line to the heater 7 can be adjusted to the optimal temperature and pressure for the denitrification reaction, for example, 310 to 3
It can be set at 50°C and the pressure is 6 to 7 kg/cj Q, and the function of the denitrification reactor installed there can be maximized.

(実施例) 第1図に示すように、硝酸プラントの排ガス加熱器を2
段階で設け、第1排ガス加熱器7Aの排ガス出口側管路
りにアンモニア注入管を設け、その後流に脱硝反応器を
設けた。該脱硝反応器としては、触媒としてTiO2系
卑金属触媒を充填したものを用いた。脱硝反応器に導入
される排ガス温度は310〜350℃、圧力は6〜7k
g/cIIIGであった。脱硝実験の結果、脱硝率は9
8%であった。
(Example) As shown in Figure 1, two exhaust gas heaters of a nitric acid plant were installed.
An ammonia injection pipe was provided on the exhaust gas outlet side of the first exhaust gas heater 7A, and a denitrification reactor was provided downstream thereof. The denitration reactor used was one filled with a TiO2 base metal catalyst as a catalyst. The temperature of the exhaust gas introduced into the denitrification reactor is 310-350℃, and the pressure is 6-7K.
g/cIIIG. As a result of the denitrification experiment, the denitrification rate was 9.
It was 8%.

比較のために第2図に示す排ガス加熱器7の出口側管路
Bに第1図と同様な脱硝反応器を設け、脱硝実験を行っ
たところ、排ガス温度は500〜500℃、圧力6〜7
 kg/ col Gで、脱硝率は50%であった。
For comparison, a denitrification reactor similar to that shown in Fig. 1 was installed in the outlet side pipe B of the exhaust gas heater 7 shown in Fig. 2, and a denitrification experiment was conducted. 7
kg/col G, and the denitrification rate was 50%.

(発明の効果) 本発明によれば、硝酸プラントの排ガス加熱器を2段階
とし、その前段の出口管路に脱硝反応器を設けることに
より、最適なガス温度で脱硝反応を行うことができ、ま
た圧力が高いために使用触媒量も少なくてすみ、反応塔
径も小さくすることができる。
(Effects of the Invention) According to the present invention, the exhaust gas heater of the nitric acid plant has two stages, and the denitrification reaction can be performed at the optimal gas temperature by providing the denitrification reactor in the outlet pipe line in the previous stage. Furthermore, since the pressure is high, the amount of catalyst used can be reduced, and the diameter of the reaction column can also be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明が適用される硝酸プラントの概略フロ
ーを示す図、第2図は、従来の硝酸プラントの概略フロ
ーを示す図。 代理人 弁理士  川 北 武 長 HNO3 HNO3
FIG. 1 is a diagram showing a schematic flow of a nitric acid plant to which the present invention is applied, and FIG. 2 is a diagram showing a schematic flow of a conventional nitric acid plant. Agent Patent Attorney Takeshi Kawakita HNO3 HNO3

Claims (1)

【特許請求の範囲】[Claims] (1)アンモニア酸化器の後流に排ガス加熱器を有し、
かつ吸収塔の排ガス管路にアンモニア接触還元による排
ガス脱硝装置を有する硝酸プラントにおいて、排ガス加
熱器を2段に設け、1段目の排ガス加熱器を通る排ガス
管路の出口側にアンモニア接触還元脱硝装置を設けたこ
とを特徴とする排煙脱硝装置を有する硝酸プラント。
(1) Having an exhaust gas heater downstream of the ammonia oxidizer,
In a nitric acid plant that has an exhaust gas denitrification device using ammonia catalytic reduction in the exhaust gas pipe of the absorption tower, exhaust gas heaters are installed in two stages, and the ammonia catalytic reduction denitrification device is installed on the exit side of the exhaust gas pipe that passes through the first stage exhaust gas heater. A nitric acid plant having a flue gas denitrification device, characterized in that the device is provided with a flue gas denitrification device.
JP60161368A 1985-07-22 1985-07-22 Nitric acid plant having exhaust gas denitrizer Pending JPS6221703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60161368A JPS6221703A (en) 1985-07-22 1985-07-22 Nitric acid plant having exhaust gas denitrizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60161368A JPS6221703A (en) 1985-07-22 1985-07-22 Nitric acid plant having exhaust gas denitrizer

Publications (1)

Publication Number Publication Date
JPS6221703A true JPS6221703A (en) 1987-01-30

Family

ID=15733757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60161368A Pending JPS6221703A (en) 1985-07-22 1985-07-22 Nitric acid plant having exhaust gas denitrizer

Country Status (1)

Country Link
JP (1) JPS6221703A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939598A (en) * 1972-08-21 1974-04-13
JPS52114014A (en) * 1976-03-17 1977-09-24 Akiyama Jiyouzai Kk Llmenthol containing medicine
JPS52156168A (en) * 1976-06-22 1977-12-26 Mitsubishi Chem Ind Ltd Waste gas treatment of nitric acid plant
JPS5364103A (en) * 1976-09-24 1978-06-08 Hitachi Ltd Waste heat recovery boiler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939598A (en) * 1972-08-21 1974-04-13
JPS52114014A (en) * 1976-03-17 1977-09-24 Akiyama Jiyouzai Kk Llmenthol containing medicine
JPS52156168A (en) * 1976-06-22 1977-12-26 Mitsubishi Chem Ind Ltd Waste gas treatment of nitric acid plant
JPS5364103A (en) * 1976-09-24 1978-06-08 Hitachi Ltd Waste heat recovery boiler

Similar Documents

Publication Publication Date Title
WO2021082308A1 (en) Flue gas low-temperature adsorption denitration method
JPS6017967B2 (en) Exhaust heat recovery boiler equipment
US10988380B2 (en) Plant and process for producing nitric acid
CN101898086A (en) Power-generation and denitrification integrated device by residual heat of glass furnace and method thereof
CN112403258A (en) System and method for removing carbon monoxide and denitration of flue gas
JPS6015377B2 (en) How to remove nitrogen oxides
CN106731826A (en) One kind reduces NO in spent acid cracker tail gasXThe method of concentration
US5554350A (en) Air pollution control and heat recovery system and process for coal fired power plant
CN104785102A (en) Energy-saving and efficient N2O and NOx removing process
CN113019121A (en) Low-temperature SCR (selective catalytic reduction) flue gas denitration device for household garbage incineration plant
CN109467149B (en) Acid waste liquid recovery device and waste acid recovery process
JPS6221703A (en) Nitric acid plant having exhaust gas denitrizer
JPS60166292A (en) Device and method for producing nitrogen fertilizer solutionat agricultural field
CN112403224B (en) CO oxidation and denitration system and method
US3567367A (en) Method of removing nitrogen oxides from gases
CN211753798U (en) CO oxidation and denitration system
CN112403221B (en) Flue gas denitration and decarburization treatment system and method
CN113144848A (en) Method for treating tail gas from acid production by low-temperature SCR (selective catalytic reduction) process by using conversion heat of acid production
CN218409951U (en) Low temperature deNOx systems after msw incineration trade wet flue gas desulfurization
JPH0741143B2 (en) Exhaust gas treatment method
CN219596290U (en) SO 2 Equipment for catalytic oxidation of process gas
CN112403222B (en) CO oxidation and denitration system and method
CN208512173U (en) Compound flue gas desulfurization and denitrification takes off white minimum discharge integrated system
RU2151736C1 (en) Nitric acid production process
JPS5995922A (en) Denitration method of gas containing nox