JPS6221701A - Method for continuous production of ultrafine metal oxide powder and apparatus therefor - Google Patents

Method for continuous production of ultrafine metal oxide powder and apparatus therefor

Info

Publication number
JPS6221701A
JPS6221701A JP60161169A JP16116985A JPS6221701A JP S6221701 A JPS6221701 A JP S6221701A JP 60161169 A JP60161169 A JP 60161169A JP 16116985 A JP16116985 A JP 16116985A JP S6221701 A JPS6221701 A JP S6221701A
Authority
JP
Japan
Prior art keywords
gas
reaction
metal oxide
briquettes
briquette
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60161169A
Other languages
Japanese (ja)
Other versions
JPH0479963B2 (en
Inventor
Kiyohiko Uchida
内田 清彦
Taido Kanesaki
泰道 兼先
Mitsumasa Saito
光正 斉藤
Masahiro Fukushima
福島 正博
Masahiro Kato
昌宏 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP60161169A priority Critical patent/JPS6221701A/en
Publication of JPS6221701A publication Critical patent/JPS6221701A/en
Publication of JPH0479963B2 publication Critical patent/JPH0479963B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/20Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
    • C01B13/22Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain the titled ultrafine powder having uniform and stable quality, by forming a raw material containing finely pulverized metallic element in the form of briquette, reacting with chlorine gas and then subjecting to vapor-phase oxidation reaction. CONSTITUTION:Dried (101) and finely pulverized (102) raw material 1 containing metallic element is added with a reducing agent 2, pulverized and mixed (103), added with a granulation assistant 3 and formed in the form of briquette 10. The briquette 10 is calcined (105) in an inert atmosphere and subjected to chlorination reaction (106) by the following process. The briquette is supplied through the feeding tube 9 on a perforated rotary disk 12 in a vertical reaction tube 8, heated with the electrical furnace 16 surrounding the reaction tube 8, and rotated around its own axis by rotating the disk 12 and stopping the motion of the briquette 10 with the stopper 14. At the same time, chlorine gas 4 is supplied from under the disk 12 to and contacted with the briquette to produce a reaction product gas containing a metal chloride 5 and the gas is subjected to the fractional sublimation or distillation (107) to form a metal chloride 5, which is evaporated (108) again by heating and oxidized (109) in vapor phase to obtain ultrafine powder 7 of a metal oxide having a particle diameter of 0.01-0.1mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 構造材料や各種の機能をもつ新素材であるニューセラミ
ックスの焼結原料となるZrO2゜Ti 02  、A
l2O2,5to2等の金属酸化物のサブミクロンの大
きさをもつ超微粉体の製造を気相酸化反応によって行う
金属酸化物の超微粉体連続製造方法及び装置に係り、詳
しくは微粉砕した金属元素を含む原料から金属塩化物を
生成し、生成した金属塩化物を加熱してガス状にすると
共に、その金属塩化物のガスを気相酸化させて金属酸化
物の超微粉体を得る金属酸化物の超微粉体製造方法及び
該方法に直接使用する装置に関するものである。
[Detailed description of the invention] [Industrial application field] ZrO2゜Ti 02 , A, which is a sintering raw material for new ceramics, which is a new material with various functions as a structural material.
This article relates to a method and apparatus for continuous production of ultrafine powder of metal oxides such as l2O2, 5to2, etc., which produces submicron-sized ultrafine powders of metal oxides by gas phase oxidation reaction. Metal chloride is generated from raw materials containing metal elements, the generated metal chloride is heated to make it gaseous, and the metal chloride gas is oxidized in the gas phase to obtain ultrafine powder of metal oxide. The present invention relates to a method for producing ultrafine metal oxide powder and an apparatus directly used in the method.

〔従来の技術〕[Conventional technology]

従来から、Zr0z  、Ti0z  、A1203 
等の金属酸化物の超微粉体を製造する方法として湿式法
と乾式法とがある。
Conventionally, Zr0z, Ti0z, A1203
There are wet methods and dry methods for producing ultrafine powders of metal oxides such as metal oxides.

湿式法とは、水H液から金属酸化物の微粉体を製造する
方法であり、原料鉱物を酸・アルカリによって分解後各
種薬品等による処理を経て粉体を製造する方法である。
The wet method is a method for producing fine powder of a metal oxide from a water-H solution, and is a method for producing powder by decomposing a raw mineral with an acid or an alkali and then treating it with various chemicals.

一方、乾式法とは気相反応法ともいい、全体としては化
学反応を伴わない蒸発凝縮法と気相酸化反応によるもの
とがある。蒸発凝縮法は原料を高温に加熱して気化させ
、次にアークやプラズマフレームの大きな温度勾配によ
って2冷し、微粒子状に凝縮させる方法である。一方、
気相酸化反応によるものは揮発金属化合物ム気の酸化反
応によって目的物質を合成する方法である。この2つの
方法のうち気相酸化反応によるものは反応に用いる金属
化合物が揮発性で精製が容易であり、かつ生成粉体の粉
砕が不要なので生成物は高純度であり、生成粒子の分散
性がよく、反応条件によって粒径分布の狭い超微粒子が
容易に得られるという利点があるので広く利用されてい
る。従来、気相酸化反応においては、微粉砕した金属元
素を含む原料鉱物を用いて金属塩化物を生成し、生成し
た金属塩化物を加熱しにガス状にし、その金属塩化物の
ガスを気相酸化反応させて金属酸化物の超微粉体を得て
いた。
On the other hand, the dry method is also called a gas phase reaction method, and there are two types: an evaporation condensation method that does not involve a chemical reaction, and a method that uses a gas phase oxidation reaction. The evaporation condensation method is a method in which raw materials are heated to a high temperature and vaporized, then cooled twice by a large temperature gradient of an arc or plasma flame, and condensed into fine particles. on the other hand,
The gas-phase oxidation reaction is a method of synthesizing the target substance through the oxidation reaction of volatile metal compound vapor. Of these two methods, the one based on gas phase oxidation reaction is easy to purify as the metal compound used in the reaction is volatile and does not require pulverization of the resulting powder, resulting in a highly pure product and the dispersibility of the resulting particles. It is widely used because it has the advantage that ultrafine particles with a narrow particle size distribution can be easily obtained depending on the reaction conditions. Conventionally, in a gas phase oxidation reaction, a metal chloride is generated using a raw material mineral containing a finely ground metal element, the generated metal chloride is turned into a gas by heating, and the metal chloride gas is converted into a gas phase. Ultrafine powder of metal oxide was obtained through oxidation reaction.

ここで、一旦金属塩化物のガスを作るのは、金属塩化物
は製造が容易で蒸気圧が高く反応性も比較的高いからで
ある。
Here, the reason why metal chloride gas is first created is that metal chloride is easy to manufacture, has a high vapor pressure, and has relatively high reactivity.

一他方、気相酸化反応による金属酸化物等の超微粉体の
合成方法は、反応速度が大きい高温であるため、反応器
の構造と温度分布、反応ガスの混合状態等によって生成
物の性質に著しく影響を及ぼす。
On the other hand, since the method of synthesizing ultrafine powder such as metal oxides by gas phase oxidation reaction involves high temperatures with a high reaction rate, the properties of the product depend on the structure and temperature distribution of the reactor, the mixing state of the reaction gas, etc. significantly affect.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、従来の気相酸化反応の方法では、原料鉱物を
微粉砕したものを直接反応器に供給して反応用塩素ガス
と反応させている。この微粉砕しただけの原料鉱物はt
It動性が悪く、原料供給にむらが生じやすく原料供給
の微妙な制御が難かしいため反応の安定性を損ない、ひ
いては生成物である超微粉体の粒径の不均一や性質の不
安定を招くという欠点を有していた。
By the way, in the conventional gas phase oxidation reaction method, finely pulverized raw material minerals are directly supplied to a reactor and reacted with chlorine gas for reaction. This finely ground raw material mineral is t
It has poor kinetics, tends to cause unevenness in raw material supply, and makes delicate control of raw material supply difficult, impairing the stability of the reaction, and resulting in uneven particle size and unstable properties of the product, the ultrafine powder. It had the disadvantage of inviting

他方、湿式法では、分解の際1発生する酸・アルカリの
蒸気、または薬品処理中に副生ずる1!!類の処理に問
題があり、特にアルカリ分解の際に原料中のシリカ分が
ケイ酸ナトリウムゲルとなり、この処理が難かしいとい
う問題点があった。
On the other hand, in the wet method, acid/alkali vapors generated during decomposition or by-products generated during chemical treatment are used. ! There is a problem in the processing of these materials, especially when the silica content in the raw materials is converted into sodium silicate gel during alkaline decomposition, making this processing difficult.

本発明は以上の欠点を除去するためになされたものであ
り、その第1の発明は、気相酸化反応によって金属酸化
物の超微粉体を得る製造方法について、反応の制御の容
易性と1反応の安定性を確保することを目的としてなさ
れたものであり、その第2の発明は、第1の発明に直接
使用する装置を提供することを目的としてなされたもの
である。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and the first invention is to provide a method for producing ultrafine metal oxide powder by a gas phase oxidation reaction, with ease of reaction control and The second invention was made for the purpose of ensuring the stability of the first invention, and the second invention was made for the purpose of providing an apparatus that can be directly used in the first invention.

〔問題点を解決するための手段〕[Means for solving problems]

かかる目的達成のため、第1の発明にあっては、微粉砕
した原料に必要に応じて還元剤および造粒助剤の少なく
とも−・方を添加したものを一旦ブリケットに成型する
と共に、該ブリケットを高温で反応用1tl素ガスと接
触させて金属塩化物を含む反応生成カスを作り、その反
応生成ガスを分別昇崩又は分留して金属塩化物を生成す
ることを特徴とする金属酸化物の超微粉体製造方法であ
る。
In order to achieve such an object, in the first invention, a finely pulverized raw material to which at least one of a reducing agent and a granulation aid is added as required is once formed into briquettes, and the briquettes are A metal oxide characterized in that it is brought into contact with 1 tl of reaction gas at high temperature to produce a reaction product gas containing a metal chloride, and the reaction product gas is fractionated and distilled to produce a metal chloride. This is a method for producing ultrafine powder.

ここで、還元剤を必要に応じて加えるのは、金属酸化物
の均一な粉体を得るために一旦原料にまじっている安定
性の強い金属酸化物を還元してから金11塩化物を生成
するようにしたものである。
Here, a reducing agent is added as necessary to first reduce the highly stable metal oxide mixed with the raw material in order to obtain a uniform powder of metal oxide, and then to generate gold-11 chloride. It was designed to do so.

また、造粒助剤は、一般には無添加の方がよいが、ブリ
ケットに成型したときに十分な圧壊強度が得られない場
合が多いために加えるものである。ただ、造粒助剤を使
用する場合に注意を要するのは、反応に供する前に前処
理として不活性雰囲気中で高温にして充分仮焼しておく
必要がある。これは、造粒助剤に由来する水や炭化水素
等の低温揮発物がブリケット中に残存していると装着系
を破損する原因になるからである。
Furthermore, although it is generally better not to add a granulation aid, it is added because sufficient crushing strength is often not obtained when briquettes are formed. However, when using a granulation aid, care must be taken that it must be sufficiently calcined at a high temperature in an inert atmosphere as a pretreatment before being subjected to the reaction. This is because if low-temperature volatile substances such as water and hydrocarbons derived from the granulation aid remain in the briquettes, they will cause damage to the mounting system.

一方、第2の発明にあっては、竪型管の周囲に加熱手段
を備えると共に、竪型管壁の供給孔とブリケットを供給
する傾創の小さい供給管の端部とを連結する一方、ii
’ii記供給孔より下方の竪型管に回転可能な多孔回転
板を設け、該多孔回転数のに1面近傍に竪型管壁より該
多孔回転板の回転軸に向けて該多孔回転板」二のブリゲ
ットの移動を防ぐように堰を突設し、かつ該多孔回転板
下方からは反応用塩素ガスを流入させることを特徴とす
る竪型反応装置である。
On the other hand, in the second invention, the heating means is provided around the vertical tube, and the supply hole in the vertical tube wall is connected to the end of the supply tube with a small inclination for supplying briquettes. ii
A rotatable multi-hole rotary plate is provided in the vertical pipe below the supply hole described in 'ii, and the multi-hole rotary plate is directed from the vertical pipe wall toward the rotation axis of the multi-hole rotary plate near one side of the multi-hole rotation speed. This is a vertical reactor characterized in that a weir is provided in a protruding manner to prevent the second brigget from moving, and chlorine gas for reaction is introduced from below the porous rotary plate.

〔実施例〕〔Example〕

以ド、第1の発明の実施例に係る金属酸化物のaWI粉
体連続方法、及び第2の発明の実施例に係る竪型反応装
置としての竪型反応管を図面に基づいて説明する。
Hereinafter, a metal oxide aWI powder continuous method according to an embodiment of the first invention and a vertical reaction tube as a vertical reaction apparatus according to an embodiment of the second invention will be explained based on the drawings.

第1の発明に係る実施例は第1図の斡程図に示すように
乾燥工程101によって乾燥した金属鉱物の原料lを適
当な方法により微粉砕工程102で微粉砕し、この微粉
砕した原料lに還元剤として粉体にした炭素物質2を所
定量加え、粉砕混合工程103によって粉砕混合する。
As shown in the process diagram of FIG. 1, the embodiment according to the first invention involves pulverizing the raw material l of metal minerals dried in the drying step 101 in a pulverizing step 102 using an appropriate method, and A predetermined amount of powdered carbon material 2 as a reducing agent is added to l, and the mixture is pulverized and mixed in a pulverization and mixing step 103.

この粉体状の炭素物質2は原料lの鉱物中に含まれてい
るll5Jと化合して反応温度に応じて一酸化炭素もし
くは二酸化炭素となる。したがって、設定した反応温度
に応じて一酸化炭素と二酸化炭素とのいずれかが生成す
るかを見きわめた上で加える炭素物質の前記所定量を決
定する。この所定量は原料1の鉱物中の酸素がすべて一
酸化炭素または二酸化炭素になるとして算出した炭素量
を幾分超えるのがよい。これは、空気中の酸素と反応し
て失われる分を考慮したためである。しかし、過剰炭素
量があまり多いと、過剰量が未反応炭素として多罎に残
存して後述のブリケラ)10と反応用塩素ガス4との接
触を阻害するので注意を要する0次に、炭素物質2を加
えて粉砕混合工程103で粉砕混合された原料1は、成
型行程104においてブリケットマシンもしくは加圧成
型機を用いて圧壊強度の高い10mm径程度0球状のブ
リゲット10に成型する。その際、造粒助剤3として適
宜水又は有機系バインダを適当量加える。造粒助剤を加
えた後には、その後の反応に供する前に仮焼工程105
で前処置としてN2等の不活性雰囲気中で高温にして充
分仮焼しておく。
This powdered carbon substance 2 is combined with 115J contained in the mineral of raw material 1 to become carbon monoxide or carbon dioxide depending on the reaction temperature. Therefore, the predetermined amount of carbon material to be added is determined after determining whether carbon monoxide or carbon dioxide is produced depending on the set reaction temperature. It is preferable that this predetermined amount somewhat exceeds the amount of carbon calculated assuming that all the oxygen in the mineral of raw material 1 is converted to carbon monoxide or carbon dioxide. This is to take into account the amount lost by reacting with oxygen in the air. However, if the amount of excess carbon is too large, the excess amount will remain as unreacted carbon and inhibit the contact between Brichera) 10 and reaction chlorine gas 4, which will be described later. The raw material 1 that has been pulverized and mixed in the pulverization and mixing step 103 is molded into a spherical brigette 10 with a high crushing strength and a diameter of about 10 mm using a briquette machine or a pressure molding machine in the molding step 104. At that time, an appropriate amount of water or an organic binder is added as the granulation aid 3. After adding the granulation aid, a calcination step 105 is performed before the subsequent reaction.
As a pretreatment, the material is sufficiently calcined at a high temperature in an inert atmosphere such as N2.

続いて、塩素化反応工程106で、第2図及び第3図に
示すように、第2の発明の実施例に係る竪型反応装ごと
しての9.型反応管8を使用する。
Subsequently, in the chlorination reaction step 106, as shown in FIGS. 2 and 3, 9. Type reaction tube 8 is used.

本実施例に係る竪型反応管8は以下に示す構成である0
円筒状の竪型管13の周囲に加熱手段として電気炉16
を備えると共に、竪型管壁17に穿、没した供給孔15
とブリケラ)10を供給する供給管9の端部とを連結す
る。供給管9はブリケット10を供給する際に、ブリケ
ット10を壊さないようになだらかな傾斜になるように
前記供給孔15と連結される。さらに、 r′fJ記供
給孔15より下方の竪型管13にブリグー2トlOの落
下を阻止するように回転可能な円形の多孔回転板12を
竪型管13の軸と多孔回転板12の回転軸とを一致させ
るように挿設する。該多孔回転板12の上面近傍に該上
面に平行に竪型管壁17から等間隔に4本の棒状の堰1
4を該多孔回転板12の回転軸に向けて該多孔回転板1
2上のブリケラ)10の移動を防ぐように突設する。さ
らに、該多孔回転板12の下方から反応用塩素ガス4が
流入するようにする。この竪型反応管8を使用して11
!素化反応を行うには、ブリケット10を竪型反応管B
内に供給管9より供給かつ充填して塩素化反応を行う、
その際、ブリケット充填層11と下方から流入する反応
用塩素ガス4との接触界面にある多孔回転円板12をブ
リケラ)10を壊さないように約0.5〜2 rp■の
角速度でゆっくり回転させる。
The vertical reaction tube 8 according to this embodiment has the following configuration.
An electric furnace 16 is installed around the cylindrical vertical tube 13 as a heating means.
and a supply hole 15 bored and sunk in the vertical pipe wall 17.
and the end of the supply pipe 9 that supplies Briquella 10. The supply pipe 9 is connected to the supply hole 15 so as to have a gentle slope so as not to break the briquettes 10 when the briquettes 10 are supplied. Furthermore, a rotatable circular multi-hole rotary plate 12 is connected between the axis of the vertical pipe 13 and the multi-hole rotary plate 12 so as to prevent the Brigu 2 TolO from falling into the vertical pipe 13 below the supply hole 15 indicated by r'fJ. Insert it so that it matches the rotation axis. Near the upper surface of the multi-hole rotary plate 12, four rod-shaped weirs 1 are arranged parallel to the upper surface at equal intervals from the vertical pipe wall 17.
4 toward the rotation axis of the porous rotary plate 12.
Protrudingly installed to prevent the movement of Brichera) 10 on 2). Furthermore, the reaction chlorine gas 4 is made to flow in from below the porous rotary plate 12. Using this vertical reaction tube 8,
! To carry out the hydrogenation reaction, the briquettes 10 are placed in a vertical reaction tube B.
The chlorination reaction is carried out by supplying and filling the tank from the supply pipe 9.
At this time, the porous rotating disk 12 at the contact interface between the briquette packed bed 11 and the reaction chlorine gas 4 flowing from below is rotated slowly at an angular velocity of about 0.5 to 2 rp so as not to break the briquettes 10. let

すると、多孔回転板12に載っているブリケット充填層
11も回転しようとする。ところが、堰14によってブ
リケット10が多孔回転板12と共に移動することを阻
止されるので、ブリケット10はその場で自転すること
になる。さらに。
Then, the briquette packed layer 11 placed on the porous rotating plate 12 also tries to rotate. However, since the weir 14 prevents the briquettes 10 from moving together with the porous rotating plate 12, the briquettes 10 will rotate on the spot. moreover.

反応進行と共に生ずる微粉状の反応残物は該ブリケット
充填jfllから除去され、除去された反応残物は多孔
回転板12の多孔を通して排気される。こうして、常に
ブリケットlOと反応用塩素ガス4とが有効に接触する
ようになる。この塩素化反応工程106で得られた金属
塩化物5によって反応生成ガスを作り、この反応生成ガ
スを各々所定の温度に保持した数基のトラップに通すこ
とにより各々の温度に応じた金属塩化物5を固体もしく
は液体にて分離し、これを分別昇壱工程107で個別に
昇華器もしくは気化器に送って分別昇岩する。
The reaction residue in the form of fine powder generated as the reaction progresses is removed from the briquette-filled jflll, and the removed reaction residue is exhausted through the pores of the perforated rotary plate 12. In this way, the briquettes 1O and the reaction chlorine gas 4 are always brought into effective contact. A reaction product gas is produced using the metal chloride 5 obtained in this chlorination reaction step 106, and the reaction product gas is passed through several traps each held at a predetermined temperature to produce a metal chloride according to each temperature. 5 is separated as a solid or liquid, and in a fractionation sublimation step 107, it is sent individually to a sublimator or a vaporizer for fractionation and sublimation.

分別昇華された金属塩化物5は再ガス化玉程10Bで加
熱によって再ガス化させ、気相酸化反応工程109でキ
ャリヤガスと共にバーナ火炎中に入れ高温酸化雰囲気の
下で気相酸化反応を起こさせ均一な粒径の金属酸化物の
超微粉体7を生成する。ここで、気相酸化反応に必要な
燃焼バーナに供給する燃料としては一酸化炭素等のよう
に燃焼生成ガス中に水分を含まないものが望ましい。
The metal chloride 5 that has been fractionated and sublimed is regasified by heating in a regasifying stage 10B, and then put into a burner flame together with a carrier gas in a gas phase oxidation reaction step 109 to cause a gas phase oxidation reaction in a high temperature oxidizing atmosphere. This produces ultrafine metal oxide powder 7 with a uniform particle size. Here, as the fuel to be supplied to the combustion burner necessary for the gas phase oxidation reaction, it is desirable to use a fuel that does not contain moisture in the combustion generated gas, such as carbon monoxide.

これは、気相酸化反応により金属塩化物5から分離する
塩素ガスが水と反応して塩化水素を生成し、これが装置
等の汚損を招くからである。該金属酸化物の超微粉体7
の粒径は、上記金属塩化物5のガスを含むキャリヤガス
の流量を変えることにより0.O1〜0.I IL層の
範囲で制御できる。
This is because the chlorine gas separated from the metal chloride 5 by the gas phase oxidation reaction reacts with water to generate hydrogen chloride, which causes contamination of the equipment and the like. Ultrafine powder 7 of the metal oxide
The particle size of the metal chloride 5 can be adjusted by changing the flow rate of the carrier gas containing the metal chloride 5 gas. O1~0. I Can be controlled within the IL layer.

なお、気相酸化反応工程109により金属塩化物5から
遊離した塩素は反応排ガス6中から分離回収して反応用
塩素ガス4として再度使用する。
Note that the chlorine liberated from the metal chloride 5 in the gas phase oxidation reaction step 109 is separated and recovered from the reaction exhaust gas 6 and used again as the reaction chlorine gas 4.

以上の構成から明らかなように、第1の発明の実施例に
よると1反応排ガス6から塩素ガスを取り出して反応用
塩素ガス4として再利用しているため、環境汚染防止と
コストの低減を図ることになる。加えて、本実施例に係
る気相酸化反応工程109では、原料ガスである金属塩
化物5のガスを含む午ヤリャガスを直接バーナ火炎中に
導入して気相酸化反応を行うため、生成する金属酸化物
の超微粉体7の性状に影響を及ぼす因子もなく、主とし
て火炎温度、酸素流琶などのバーナに関する条件とキャ
リヤガスmuとによって制御される。したがって、バー
ナに関する条件を−・定にしておけばキャリヤガス流量
のみにより生成する金ms化物の超微粉体7の性状は決
定される。
As is clear from the above configuration, according to the embodiment of the first invention, chlorine gas is extracted from the reaction exhaust gas 6 and reused as the reaction chlorine gas 4, thereby preventing environmental pollution and reducing costs. It turns out. In addition, in the gas phase oxidation reaction step 109 according to the present example, the gas containing the metal chloride 5 gas, which is the raw material gas, is directly introduced into the burner flame to perform the gas phase oxidation reaction. There are no factors that affect the properties of the ultrafine oxide powder 7, and it is mainly controlled by conditions related to the burner, such as flame temperature and oxygen flow, and the carrier gas mu. Therefore, if the conditions regarding the burner are kept constant, the properties of the ultrafine gold oxide powder 7 to be produced are determined only by the flow rate of the carrier gas.

また1本実施例では、塩素化反応工程lO6で生成した
金属塩化物5を分離捕集後直ちに昇華器または気化器に
て再ガス化し、気相酸化反応工程109に供することに
よって金属塩化物5が微妙なm威変化を起こすことを防
【ヒしている。これは、組成変化が起きると再ガス化温
度が変化して昇華器または気化器内におけるガス化工程
の定量的制御が困難になるとともに未昇華残分の急激な
増加によりガス化効率の低下を招くからである。
In addition, in this embodiment, the metal chloride 5 generated in the chlorination reaction step 106 is immediately regasified in a sublimator or vaporizer after being separated and collected, and then subjected to the gas phase oxidation reaction step 109. This prevents subtle changes in power from occurring. This is because when a composition change occurs, the regasification temperature changes, making it difficult to quantitatively control the gasification process in the sublimator or vaporizer, and the gasification efficiency decreases due to a rapid increase in unsublimated residue. Because it invites you.

〔発明の効果〕〔Effect of the invention〕

第1の発明によると従来のように金属元素を含む鉱物を
微粉砕したものを直接高温で塩素ガスと反応させるので
はなく、微粉砕したものを一旦所定の規格化したブリケ
ットに成型した後に塩素ガスと反応させるようにしたた
め、従来に比べ流動性がよく、原料を安定的に供給する
とともに工程の機械的制御等にとっても便利である。
According to the first invention, instead of directly reacting finely pulverized minerals containing metal elements with chlorine gas at high temperatures as in the past, the finely pulverized minerals are first molded into briquettes of a predetermined standard, and then chlorine gas is reacted with chlorine gas. Since it is made to react with gas, it has better fluidity than conventional methods, allows for a stable supply of raw materials, and is convenient for mechanical control of processes.

また、fiS2の発明によると、ブリケットを竪型管に
直結したなだらかな傾斜をもつ供給管より補給してブリ
ケットの破壊を防止すると共に、ブリケット充填層の厚
さを一定に保ち、供給反応用塩素ガスの流量を一定に保
持することにより、金属塩化物の生成速度及び性状を安
定させることができる。さらに、竪¥!管内にブリケッ
トを充填して反応用塩素ガスと反応さゼでいるので、1
:層ブリケットから順に反応が進行すると共に、多孔回
転板の回転により常にブリケット表面と反応用塩素ガス
との接触が有効に行われるので効率よく反応が進むこと
になる。
In addition, according to the invention of fiS2, briquettes are replenished from a gently sloping supply pipe directly connected to the vertical pipe to prevent the briquettes from breaking, and the thickness of the briquette packed layer is kept constant, and chlorine for the supply reaction is By keeping the gas flow rate constant, the production rate and properties of metal chlorides can be stabilized. Furthermore, vertical ¥! Since the briquettes are filled into the pipe and reacted with the chlorine gas for reaction, 1
:The reaction progresses in order from the layered briquettes, and the rotation of the porous rotary plate always effectively brings the briquette surface into contact with the reaction chlorine gas, so the reaction progresses efficiently.

こうして、反応条件のわずかな変化に影響を受けやすい
気相酸化反応を安定的に制御して、より均一で性質の安
定した金属酸化物の超微粉体の連続的な製造を可能とし
た。
In this way, the gas phase oxidation reaction, which is susceptible to slight changes in reaction conditions, was stably controlled, making it possible to continuously produce ultrafine metal oxide powder with more uniform and stable properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の発明の実施例に係る気相酸化反応を示す
工程図、第2図は第2の発明の実施例に係る竪型反応管
を示す模式図、第3図は竪型反応管のm−m線視断面図
である。 1・・・原料         2・・・炭素物質3・
・・造粒助剤       4・・・反応用塩素ガス5
・・・金属塩化物      6・・・反応排ガス7・
・・金属酸化物の超微粉体 8・・・竪型反応管9・・
・供給管        10・・・ブリケット11・
・・ブリケット充1’i!i層  12・・・多孔回転
板13・・・竪型管       14・・・堰15・
・・供給孔       16・・・itt気炉17・
・・竪型管壁
FIG. 1 is a process diagram showing a gas phase oxidation reaction according to an embodiment of the first invention, FIG. 2 is a schematic diagram showing a vertical reaction tube according to an embodiment of the second invention, and FIG. 3 is a vertical reaction tube according to an embodiment of the second invention. FIG. 3 is a cross-sectional view taken along line mm of the reaction tube. 1...Raw material 2...Carbon material 3.
... Granulation aid 4 ... Chlorine gas for reaction 5
...Metal chloride 6...Reaction exhaust gas 7.
...Ultrafine powder of metal oxide 8...Vertical reaction tube 9...
・Supply pipe 10...briquette 11・
...briquette charge 1'i! I-layer 12... Porous rotating plate 13... Vertical pipe 14... Weir 15.
・・Supply hole 16・Itt air furnace 17・
・Vertical pipe wall

Claims (1)

【特許請求の範囲】 1)微粉砕した金属元素を含む原料から金属塩化物を生
成し、生成した金属塩化物を加熱してガス状にすると共
に、その金属塩化物のガスを気相酸化させて金属酸化物
の超微粉体を得る金属酸化物の超微粉体製造方法におい
て、微粉砕した原料に必要に応じて還元剤および造粒助
剤の少なくとも一方を添加したものを一旦ブリケットに
成型すると共に、該ブリケットを高温で反応用塩素ガス
と接触させて金属塩化物を含む反応生成ガスを作り、そ
の反応生成ガスを分別昇華又は分留して金属塩化物を生
成することを特徴とする金属酸化物の超微粉体連続製造
方法。 2)前記環元剤として所定量の炭素物質を用いることを
特徴とする特許請求の範囲第1項記載の金属酸化物の超
微粉体連続製造方法。 3)前記造粒助剤として所定量の水または有機系バイン
ダを用いることを特徴とする特許請求の範囲第1項記載
の金属酸化物の超微粉体連続製造方法。 4)造粒助剤を添加してブリケットを成型する際に該ブ
リケットを不活性雰囲気中で高温にて加熱することを特
徴とする特許請求の範囲第1項記載の金属酸化物の超微
粉体連続製造方法。 5)金属塩化物のガスを気相酸化する際に前記金属塩化
物のガスをキャリヤガスと共にバーナ等の火炎中に直接
入れて高温酸化雰囲気のもとで気相酸化を行うようにす
ることを特徴とする特許請求の範囲第1項記載の金属酸
化物の超微粉体連続製造方法。 6)竪型管の周囲に加熱手段を備えると共に、竪型管壁
の供給孔とブリケットを供給する傾斜の小さい供給管の
端部とを連結する一方、前記供給孔より下方の竪型管に
回転可能な多孔回転板を設け、該多孔回転板の上面近傍
に竪型管壁より該多孔回転板の回転軸に向けて該多孔回
転板上のブリケットの移動を防ぐように堰を突設し、か
つ該多孔回転板下方からは反応用塩素ガスを流入させる
ことを特徴とする竪型反応装置。
[Claims] 1) Generating metal chloride from a raw material containing finely pulverized metal elements, heating the generated metal chloride to make it gaseous, and oxidizing the gas of the metal chloride in the gas phase. In the method for producing ultrafine metal oxide powder, the finely pulverized raw material is mixed with at least one of a reducing agent and a granulation aid as necessary, and then turned into briquettes. The briquettes are molded and brought into contact with reaction chlorine gas at high temperature to produce a reaction product gas containing metal chlorides, and the reaction product gas is fractionally sublimated or fractionally distilled to produce metal chlorides. A method for continuously producing ultrafine metal oxide powder. 2) The method for continuously producing ultrafine metal oxide powder according to claim 1, characterized in that a predetermined amount of carbon material is used as the ring-forming agent. 3) The method for continuously producing ultrafine metal oxide powder according to claim 1, characterized in that a predetermined amount of water or an organic binder is used as the granulation aid. 4) Ultrafine metal oxide powder according to claim 1, characterized in that the briquettes are heated at high temperature in an inert atmosphere when forming the briquettes with the addition of a granulation aid. continuous manufacturing method. 5) When performing gas phase oxidation of metal chloride gas, the metal chloride gas is directly introduced into a flame such as a burner together with a carrier gas to perform gas phase oxidation in a high temperature oxidizing atmosphere. A method for continuously producing ultrafine metal oxide powder according to claim 1. 6) A heating means is provided around the vertical pipe, and a supply hole in the wall of the vertical pipe is connected to an end of the supply pipe with a small slope for supplying briquettes, while a heating means is provided in the vertical pipe below the supply hole. A rotatable porous rotary plate is provided, and a weir is provided near the upper surface of the porous rotary plate to protrude from a vertical pipe wall toward the rotation axis of the porous rotary plate so as to prevent the briquettes on the porous rotary plate from moving. , and a vertical reactor characterized in that chlorine gas for reaction is introduced from below the porous rotary plate.
JP60161169A 1985-07-23 1985-07-23 Method for continuous production of ultrafine metal oxide powder and apparatus therefor Granted JPS6221701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60161169A JPS6221701A (en) 1985-07-23 1985-07-23 Method for continuous production of ultrafine metal oxide powder and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60161169A JPS6221701A (en) 1985-07-23 1985-07-23 Method for continuous production of ultrafine metal oxide powder and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS6221701A true JPS6221701A (en) 1987-01-30
JPH0479963B2 JPH0479963B2 (en) 1992-12-17

Family

ID=15729902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60161169A Granted JPS6221701A (en) 1985-07-23 1985-07-23 Method for continuous production of ultrafine metal oxide powder and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS6221701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267107A (en) * 1989-04-07 1990-10-31 Konica Corp Nitrate briquette and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267107A (en) * 1989-04-07 1990-10-31 Konica Corp Nitrate briquette and production thereof

Also Published As

Publication number Publication date
JPH0479963B2 (en) 1992-12-17

Similar Documents

Publication Publication Date Title
JPS60175537A (en) Preparation of ultra-fine ceramic particles
US3252823A (en) Process for aluminum reduction of metal halides in preparing alloys and coatings
US3404078A (en) Method of generating a plasma arc with a fluidized bed as one electrode
JPH02289B2 (en)
JPS5820989B2 (en) Method and apparatus for increasing the degree of graphitization of carbon black
US7288501B2 (en) Process and apparatus for the thermal treatment of pulverulent substances
EP1018386B1 (en) Method for producing nickel powder
TWI401206B (en) Manufacturing method for aln
US2708158A (en) Production of titanium
US3469941A (en) Ultrafine boron nitride and process of making same
El-Naas et al. Solid-phase synthesis of calcium carbide in a plasma reactor
JPS6346002B2 (en)
JPS59107904A (en) Manufacture of fine particle of metallic oxide
JP2957455B2 (en) Zirconium dioxide powder produced by high pyrolysis, method for producing the same, and starting materials, fillers, electric industrial materials, heat insulating materials, catalyst materials, catalyst carrier materials, and cosmetic materials for producing ceramics and ceramic precursors composed thereof
JPS6221701A (en) Method for continuous production of ultrafine metal oxide powder and apparatus therefor
US3723608A (en) Production of phosphorus
JPH033610B2 (en)
US3640682A (en) Increasing the rate of reaction in reducing calcium sulfate to calcium sulfide
JPH0643244B2 (en) Method for producing silicon tetrachloride
JPS63266001A (en) Production of composite spherical powder
US3207579A (en) Process for producing hydrogen fluoride
JP2726703B2 (en) Method for producing aluminum nitride powder
US3318670A (en) Production of actinide aluminide in a fluidized bed
JPS63103899A (en) Production of silicon carbide whisker of high-quality and apparatus therefor
US3919400A (en) Recovering chlorine from ferric chloride vapors