JPS62216904A - Pressure type medical oxygen concentrator - Google Patents

Pressure type medical oxygen concentrator

Info

Publication number
JPS62216904A
JPS62216904A JP6033486A JP6033486A JPS62216904A JP S62216904 A JPS62216904 A JP S62216904A JP 6033486 A JP6033486 A JP 6033486A JP 6033486 A JP6033486 A JP 6033486A JP S62216904 A JPS62216904 A JP S62216904A
Authority
JP
Japan
Prior art keywords
air
separation membrane
gas
cooler
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6033486A
Other languages
Japanese (ja)
Inventor
Minoru Sugiura
実 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP6033486A priority Critical patent/JPS62216904A/en
Publication of JPS62216904A publication Critical patent/JPS62216904A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain sanitary oxygen-enriched air which is medically required and temporarily humidified by communicating the exhaust system of a separation membrane module with the cooling system of a cooler through an expansion valve, and controlling the cooling temp. CONSTITUTION:The air sucked by the action of a primary air compressor 2 through the primary air filter 1 is cooled by a gas cooler 3. The contained water is separated in a drain separator 4, and then the air is supplied under pressure to the primary side of the gas separation membrane module 5 provided with a separation membrane. the air passing through the separation membrane is enriched in oxygen, and the temp. is lowered due to adiabatic expansion. The air not passing through the separation membrane is supplied to the gas cooler 3 through the expansion valve 6 to cool the untreated gas, and then discharged. Since a vacuum pump and a drain separator are not fitted on the secondary side of the gas separation membrane module 5 in this device, there is no danger of the sterilized air after passing through the clean separation membrane being contaminated.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、濾過器、冷却器、ドレン水分離器およびガス
分離膜モジュールを備え、空気を処理して酸素富化空気
を製造し、その他を排気するようにした、医療用酸素濃
縮器に関するものである。
Detailed Description of the Invention (A) Industrial Application Field The present invention includes a filter, a cooler, a drain water separator, and a gas separation membrane module, and processes air to produce oxygen-enriched air. This invention relates to a medical oxygen concentrator that exhausts other substances.

(ロ)従来の技術 ガス分離膜を利用して酸素富化空気をつくシ、これを患
者に供給する医療用酸素濃縮器は最近広く用いられるよ
うになってきた。
(b) Conventional Technology Medical oxygen concentrators, which utilize gas separation membranes to produce oxygen-enriched air and supply this to patients, have recently become widely used.

第4図に示すように、従来の装置は、1次空気ファン、
分離膜モジュール、減圧ポンプ、冷却器、ドレン水分離
器、透過空気フィルターおよび2次ドレン水分離器を備
えている。
As shown in FIG. 4, the conventional device includes a primary air fan,
It is equipped with a separation membrane module, a vacuum pump, a cooler, a drain water separator, a permeable air filter, and a secondary drain water separator.

1次空気ファン12の作用により1次空気フィルター1
1を通して吸入された空気は、ガス分離膜モジュール1
301次側にほぼ大気圧下で供給され、そこから分離膜
13aを通り、2次側に接続された減圧ポンプ14によ
、9,0.2〜0.3ataの圧力で吸引される。分離
膜13aを通過した酸素富化空気は、分離膜13aを通
過しなかった空気(排気)によりガス冷却器15におい
て冷却される。その冷却された酸素富化空気はドレン水
分離器16において水分を除去され、さらに透過空気フ
ィルター17および2次ドレン水分離器18において含
有するミスト→を最終的に除去され、患者に供給される
The primary air filter 1 is activated by the action of the primary air fan 12.
The air sucked through the gas separation membrane module 1
It is supplied to the primary side of 30 at approximately atmospheric pressure, passes through the separation membrane 13a, and is sucked at a pressure of 9.0.2 to 0.3 ata by the vacuum pump 14 connected to the secondary side. The oxygen-enriched air that has passed through the separation membrane 13a is cooled in the gas cooler 15 by the air (exhaust air) that has not passed through the separation membrane 13a. The cooled oxygen-enriched air is dehydrated in a drain water separator 16, and the mist contained therein is finally removed in a permeable air filter 17 and a secondary drain water separator 18, and then supplied to the patient. .

汚染除去のため、フィルターには活性炭等を利用したも
のが設けられる場合が多い。
In order to remove contamination, filters that use activated carbon or the like are often installed.

eウ  発明が解決しようとする問題点上記のような、
従来の医療用酸素濃縮器において、酸素富化用ガス分離
膜13aは、酸素と同時に水分に対する透過速度も大き
いため、2次側の水分濃度は高くなる。また減圧ポンプ
14における断熱圧縮により2次側の温度が高くなるこ
とは避けられない。
eC Problems to be solved by the invention As mentioned above,
In the conventional medical oxygen concentrator, the oxygen-enriching gas separation membrane 13a has a high permeation rate for both oxygen and moisture, so the moisture concentration on the secondary side is high. Further, it is inevitable that the temperature on the secondary side increases due to adiabatic compression in the pressure reducing pump 14.

このため、ガス分離膜モジュール1302次側に通過し
たガスは、患者に供給される前に、1次側の排気を利用
して冷却されるとともに、フィルター17および2次ド
レン水分離器18においてさらにミスト等を分離する必
要がある。
For this reason, the gas that has passed through the secondary side of the gas separation membrane module 130 is cooled using the exhaust air on the primary side before being supplied to the patient, and is further processed in the filter 17 and the secondary drain water separator 18. It is necessary to separate mist, etc.

したがって上記のような従来の装置は、(1)  ガス
分離膜モジュールの2次側に減圧ポンプ、ドレン水分離
器等があるために、折角得られた無菌の酸素富化空気が
汚染される危険性がある。
Therefore, in the conventional device as described above, (1) there is a risk that the sterile oxygen-enriched air that has been obtained through the effort will be contaminated because there is a pressure reduction pump, drain water separator, etc. on the secondary side of the gas separation membrane module; There is sex.

(2)  減圧ポンプが、高酸素、ミスト発生の雰囲気
下にあるため、ボ/プ部品中のダイヤフラムの破損また
は摩耗が早く、耐久性に問題が生じる。
(2) Since the vacuum pump is in an atmosphere of high oxygen and mist generation, the diaphragm in the pump parts is easily damaged or worn out, causing problems in durability.

(3)  ドレン水分離器が微圧作動型で、大気湿度の
影響を犬きく受けるため、必要なときに動かない等の不
具合を生じ、また細菌汚染の原因ともなる。
(3) The drain water separator is a low-pressure type and is highly affected by atmospheric humidity, which can cause problems such as not operating when needed, and can also cause bacterial contamination.

(4)透過空気フィルターがミストによυ閉塞し易く、
また度々交換の必要がある。
(4) The permeable air filter is easily clogged by mist,
It also needs to be replaced frequently.

(5)排気による冷却ではほぼ大気湿度までの露点しか
得られず、透過空気の利用先に至るまでの間にさらに結
露し、ドレンを発生する場合がある。(高湿度大気時に
2次側の相対湿度%RH=100% となることがある
。)等の欠点を免れなかった。
(5) Cooling by exhaust air can only achieve a dew point close to atmospheric humidity, and further condensation may occur before the permeated air reaches its intended use, resulting in drainage. (The relative humidity %RH on the secondary side may be 100% in high humidity atmosphere.)

本発明は、上記欠点がなく、とくに、医療用として要求
される衛生的な一時湿度の酸素富化空気を得ることので
きる、酸素濃縮器を提供することを目的とするものであ
る。
It is an object of the present invention to provide an oxygen concentrator which does not have the above-mentioned drawbacks and is particularly capable of obtaining oxygen-enriched air with a sanitary temporary humidity required for medical use.

に)問題点を解決するための手段及び作用本発明は、1
次側空気を予め冷却して水分を除去した後、加圧状態で
ガス分離膜モジュールに供給し、一方、1次側排気が断
熱膨張するときの温度低下を利用して前記のように供給
空気を冷却調温し、1次側のガス組成を一定とし、2次
側透過空気の酸素濃度とH20濃度を併せて一定に制御
することができる。
(b) Means and action for solving the problems The present invention provides: 1
After the downstream air is cooled in advance to remove moisture, it is supplied to the gas separation membrane module under pressure, while the supplied air is The gas composition on the primary side can be kept constant, and the oxygen concentration and H20 concentration of the permeated air on the secondary side can both be controlled to be constant.

これによシ、2次側透過空気の汚染原因は完全に除去さ
れる。また、透過空気湿度が過剰とならないようにでき
るため、患者近くの2次ドレン水分離器が不要となる。
As a result, the cause of contamination of the permeated air on the secondary side is completely eliminated. Furthermore, since the permeated air humidity can be prevented from becoming excessive, a secondary drain water separator near the patient is not required.

(ホ)実施例 第1図に示す本発明の実施例は、吸入空気を断熱圧縮し
て加圧空気を供給する圧縮機、該加圧空気を冷却する冷
却器、該冷却された加圧空気からドレンを分離するドレ
ン水分離器、および該ドレン水分離器を通過したガスか
ら酸素富化空気を得る分離膜モジュールを備えている。
(e) Embodiment The embodiment of the present invention shown in FIG. It is equipped with a drain water separator that separates drain water from the drain water separator, and a separation membrane module that obtains oxygen-enriched air from the gas that has passed through the drain water separator.

本発明によれば、加圧空気を冷却するため、分離膜モジ
ュールを通過しなかった空気を膨脹弁において膨張させ
、低温にして用いる。
According to the present invention, in order to cool the pressurized air, the air that has not passed through the separation membrane module is expanded in the expansion valve and used at a low temperature.

すなわち、1次空気コンプレッサ2の作用によシ1次空
気フィルタA1を通して吸入された空気は、ガス冷却器
3において冷却され、含有する水分をドレン水分離器4
において分離した後、分離膜5aを備えたガス分離膜モ
ジュール5の1次側に圧力下で供給される。分離膜5a
を通過した空気は酸素が富化されるとともに、断熱膨張
のため温度が低下する。一方、分離膜5aを通過しなか
った空気(非透過ガス)は、膨脹弁6を通してガス冷却
器3に供給され、未処理ガスを冷却した後排出する。
That is, the air sucked through the primary air filter A1 by the action of the primary air compressor 2 is cooled in the gas cooler 3, and the water contained is drained into the water separator 4.
After being separated at , it is supplied under pressure to the primary side of a gas separation membrane module 5 equipped with a separation membrane 5a. Separation membrane 5a
The air passing through becomes enriched with oxygen and its temperature decreases due to adiabatic expansion. On the other hand, air that has not passed through the separation membrane 5a (non-permeable gas) is supplied to the gas cooler 3 through the expansion valve 6, and is discharged after cooling the untreated gas.

上記の作用を第2図の水蒸気飽和特性曲線図を用いて説
明する。
The above operation will be explained using the water vapor saturation characteristic curve diagram shown in FIG.

なお第2図において、φ点は大気の状態を示す。In FIG. 2, the point φ indicates the state of the atmosphere.

従来の装置においては、分離膜における水分の透過性が
高いため水の分圧は点φから大気圧下の飽和曲線Pを通
過し、点1に達する。そして大気によ)冷却され、最終
的に点2の状態となる。
In the conventional device, since the water permeability in the separation membrane is high, the partial pressure of water passes through the saturation curve P under atmospheric pressure from point φ and reaches point 1. It is then cooled (by the atmosphere) and finally reaches the state at point 2.

本発明の装置においては、点φからまず圧縮され点5の
状態となる。点5から膨脹弁6を通過することによシ、
温度の低下した非透過ガス(このとき第2図で温度Tx
 )により冷却器3で冷却されて、1次側温度はTrと
なシ、加圧下の飽和曲線上の点6に達し、ドレンを生成
する。ついでドレン分離以後の配管等に於ける吸熱によ
って点7に至り、さらに分離膜を通過して点8まで水の
分圧が高まる。それでもなお、従来の場合の点2よシは
水の分圧は低い。膨張後の温度Trを膜の水の濃縮特性
に合わせて設定すれば5点8の温度条件を一定に保つこ
とができる。すなわち、飽和点以下に設定することがで
きる。
In the apparatus of the present invention, the point φ is first compressed to the state of point 5. By passing from point 5 through expansion valve 6,
Non-permeable gas whose temperature has decreased (at this time, the temperature Tx in Figure 2
), the primary side temperature reaches Tr and reaches point 6 on the saturation curve under pressure, producing condensate. Next, the water reaches point 7 due to heat absorption in the piping after drain separation, and further passes through the separation membrane, increasing the partial pressure of water to point 8. Nevertheless, the partial pressure of water is lower than point 2 in the conventional case. If the temperature Tr after expansion is set in accordance with the water concentration characteristics of the membrane, the temperature conditions at points 5 and 8 can be kept constant. That is, it can be set below the saturation point.

つぎに第3図は、本発明の具体的な実例を示す。Next, FIG. 3 shows a concrete example of the present invention.

1次空気コンプレッサ2は15 NJ/min 、  
200 Wの容量を有し、コンプレッサと冷却器30間
にさらに配置したガス放冷器3aは、径8φで、長さ2
扉のCuチューブから構成されている。ドレン水分離器
4は自動排出型である。分離膜5aはシリコン系高分子
薄膜のガス分離膜を使用した。膨脹弁6の開度は冷却器
3の排出側の温度に応じて制御される。
The primary air compressor 2 is 15 NJ/min,
The gas cooler 3a, which has a capacity of 200 W and is further arranged between the compressor and the cooler 30, has a diameter of 8φ and a length of 2.
The door is made of Cu tube. The drain water separator 4 is of an automatic discharge type. As the separation membrane 5a, a gas separation membrane made of a silicon-based polymer thin film was used. The opening degree of the expansion valve 6 is controlled according to the temperature on the discharge side of the cooler 3.

いま22℃の空気を吸入すると、放冷器3aを出た空気
の温度は47゛Cとなシ、冷却器3で冷却され、ドレン
水分離器4を通過後温度16°Cで分離膜モジュール5
に達し、毎分31の酸素富化空気(0□%40チ)が得
られる。上記のように、酸素富化空気をRH90%(a
t20°C)にするためには、1次側の冷却温度を15
℃に保持する必要がある。一方、膜5aを通過しなかっ
た空気(排気)は、18℃の状態で12 N!I/mi
nずつ膨脹弁6に達するが、弁の開度を適当に定めるこ
とにより、2℃に冷却され、冷却器3を通υ、温度が3
2℃に上昇して排出する。
When air at 22°C is inhaled, the temperature of the air that exits the cooler 3a is 47°C.It is cooled by the cooler 3, and after passing through the drain water separator 4, it reaches the separation membrane module at a temperature of 16°C. 5
31% of oxygen-enriched air (0□% 40%) is obtained per minute. As mentioned above, oxygen-enriched air was heated to 90% RH (a
t20°C), the primary side cooling temperature should be set to 15°C.
Must be kept at ℃. On the other hand, the air that did not pass through the membrane 5a (exhaust air) was heated to 12 N! at 18°C. I/mi
It reaches the expansion valve 6 in increments of n, but by appropriately determining the opening degree of the valve, it is cooled to 2°C, and then passed through the cooler 3 to reduce the temperature to 3°C.
The temperature rises to 2°C and is discharged.

(へ)発明の効果 上記のように構成されているので、本発明は、下記のよ
うな効果を奏する。
(F) Effects of the Invention As configured as described above, the present invention has the following effects.

■ 分離膜モジュールの2次側に減圧ポンプ、ドレン分
離器等がないので、清浄な分離膜を通過した無菌空気は
汚染される危険性がない。
■ Since there are no vacuum pumps, drain separators, etc. on the secondary side of the separation membrane module, there is no risk of contamination of the sterile air that has passed through the clean separation membrane.

■ 減圧ポンプに代えて1次空気コンプレッサを用いた
ため、ポンプに故障のおこることがない。
■ Since a primary air compressor is used instead of a pressure reducing pump, there is no risk of pump failure.

■ 分離膜の下流にドレン分離器を必要としないため、
大気湿度の影響によるドレン水分離器の不具合と無関係
である。
■ No drain separator is required downstream of the separation membrane;
This is unrelated to the drain water separator malfunction caused by atmospheric humidity.

■ 透過空気フィルターを備えていないので。■ Because it is not equipped with a permeable air filter.

流路の詰まることがない。No clogging of flow path.

■ 膨脹弁を設けたため、非透過ガスが十分に冷却され
、したがってドレン水の除去が完全となる。
■ Since the expansion valve is provided, the non-permeable gas is sufficiently cooled, so that drain water can be completely removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明実施例の線図的構成図。 第2図は、水蒸気の温度、圧力に対する飽和曲線を用い
た本発明の詳細な説明するだめの図。 第3図は本発明の具体的実例を示す図。 tg4図は従来の装置を示す第1図と同様の図。 1 、、、1次空気フィルター 2 、、、1次空気コンプレッサ 3・・、ガス冷却器  411.ドレン水分離器591
1分離膜モジュール  5a−・0分離膜61..膨脹
FIG. 1 is a diagrammatic configuration diagram of an embodiment of the present invention. FIG. 2 is a detailed diagram illustrating the present invention using saturation curves for water vapor temperature and pressure. FIG. 3 is a diagram showing a specific example of the present invention. tg4 is a diagram similar to FIG. 1 showing a conventional device. 1. Primary air filter 2. Primary air compressor 3... Gas cooler 411. Drain water separator 591
1 separation membrane module 5a-.0 separation membrane 61. .. expansion valve

Claims (1)

【特許請求の範囲】[Claims] 1、吸込空気を断熱圧縮して加圧空気を供給する圧縮機
、該加圧空気を冷却する冷却器、該冷却された加圧空気
からドレンを分離するドレン水分離器、および該ドレン
水分離器を通過したガスから酸素富化空気を得る分離膜
モジュールを備え、前記冷却器が前記ドレン水分離器の
直前に配設され、前記分離膜モジュールの排気系と前記
冷却器の冷却系とが、冷却温度調節可能の膨脹弁を介し
て導通していることを特徴とする加圧式医療用酸素濃縮
器。
1. A compressor that adiabatically compresses intake air to supply pressurized air, a cooler that cools the pressurized air, a drain water separator that separates drain from the cooled pressurized air, and a drain water separator. a separation membrane module that obtains oxygen-enriched air from the gas that has passed through the device, the cooler is disposed immediately before the drain water separator, and the exhaust system of the separation membrane module and the cooling system of the cooler are connected. , a pressurized medical oxygen concentrator characterized in that conduction is conducted through an expansion valve with adjustable cooling temperature.
JP6033486A 1986-03-18 1986-03-18 Pressure type medical oxygen concentrator Pending JPS62216904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6033486A JPS62216904A (en) 1986-03-18 1986-03-18 Pressure type medical oxygen concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6033486A JPS62216904A (en) 1986-03-18 1986-03-18 Pressure type medical oxygen concentrator

Publications (1)

Publication Number Publication Date
JPS62216904A true JPS62216904A (en) 1987-09-24

Family

ID=13139164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6033486A Pending JPS62216904A (en) 1986-03-18 1986-03-18 Pressure type medical oxygen concentrator

Country Status (1)

Country Link
JP (1) JPS62216904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827026B1 (en) * 2001-09-22 2008-05-02 주식회사 나노포아 Potable Oxygen Generator
WO2019139010A1 (en) * 2018-01-09 2019-07-18 隆 竹原 Portable gas supply device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827026B1 (en) * 2001-09-22 2008-05-02 주식회사 나노포아 Potable Oxygen Generator
WO2019139010A1 (en) * 2018-01-09 2019-07-18 隆 竹原 Portable gas supply device
CN111527240A (en) * 2018-01-09 2020-08-11 竹原隆 Portable gas supply device
JPWO2019139010A1 (en) * 2018-01-09 2020-11-19 隆 竹原 Portable gas supply device

Similar Documents

Publication Publication Date Title
JPS5841891B2 (en) A device that supplies oxygen-rich air
US7644594B2 (en) Method and apparatus for self-contained anesthetic gas reclamation
US3930813A (en) Process for producing nitrogen dioxide-free oxygen-enriched gas
JP6042341B2 (en) System and method for efficient air dehumidification and liquid recovery by evaporative cooling
JPS6214066B2 (en)
CN100584403C (en) Oxygen humidifier
JPS62216904A (en) Pressure type medical oxygen concentrator
JPH0299113A (en) Gas separation method according to pressure variation type adsorption method
JP2514133Y2 (en) Membrane air dryer controller and sterilizer in compressor
JPH02145402A (en) Oxygen-enriching device
JPS61120614A (en) Oxygen enriching apparatus
JPS6354920A (en) Dehumidifier
JPS60118604A (en) Oxygen concentrator
JPH02263705A (en) Oxygen enriching device
JPH02136631A (en) Air conditioner with air composition varying function
JP2004236925A (en) Oxygen enrichment closed room system
JPS60264309A (en) Apparatus for enriching oxygen
JP2004166957A (en) Humidifier
JPH0419163B2 (en)
JPS63178824A (en) Dehumidifier
JPS61101405A (en) Oxygen enricher
JP3790380B2 (en) Medical oxygen concentrator
JPH0475841B2 (en)
JPH0783818B2 (en) Method of dehumidifying oxygen concentrator and apparatus therefor
JPH04243527A (en) Operation of pervaporation membrane apparatus