JPS62216655A - Flotation method for particulate coal - Google Patents

Flotation method for particulate coal

Info

Publication number
JPS62216655A
JPS62216655A JP5942586A JP5942586A JPS62216655A JP S62216655 A JPS62216655 A JP S62216655A JP 5942586 A JP5942586 A JP 5942586A JP 5942586 A JP5942586 A JP 5942586A JP S62216655 A JPS62216655 A JP S62216655A
Authority
JP
Japan
Prior art keywords
coal
particles
flotation
particulate
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5942586A
Other languages
Japanese (ja)
Inventor
Akira Takei
武井 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5942586A priority Critical patent/JPS62216655A/en
Publication of JPS62216655A publication Critical patent/JPS62216655A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain deashing of particulate coal in high yield and high separation efficiency by giving ultrasonic wave to coal drainage contg. particulate coal or the like and thereafter introducing pressurized air thereinto. CONSTITUTION:In flotation of particulate coal as pretreatment technique in various coal utilization fields, ultrasonic wave along a stream is given to coal drainage contg. particulate coal and waste from a piezoelectric transducer 7, and fine foams are stuck on the surface of coal particles and also coal particles are flocculated and made to particle groups apparently large in particle diameter. Thereafter these are ascended through an air lift pipe 5 together with a scavenger 4 and dispersed foams by means of pressurized air fed from an aerator 2 and meanwhile a thin film of the scavenger is formed on the surface of the coal particle groups and sticks on foams and is floated. On the other hand, coal particles which are not flocculated and are weak in hydrophobic nature are gradually absorbed to a large flocculated material. In such away, deashing of particulate coal is performed in high yield and high separation efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種石炭利用分野の前処理技術として適用され
る微粒石炭の浮選方法に関する。本発明は有機物(純炭
)と無機物(灰)を含む石炭だけでなく、これと類似の
表面特性を有する成分を分離する場合には、石炭に限ら
ず適用可能である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for flotation of fine coal, which is applied as a pretreatment technique in various fields of coal utilization. The present invention is applicable not only to coal containing organic matter (pure coal) and inorganic matter (ash), but also when separating components having similar surface characteristics.

〔従来の技術〕[Conventional technology]

従来石炭は、山元で採鉱された坑内原炭を50111I
以下の塊炭に砕いた後水選機(ジグ)、振動ふるい等で
選炭し、精炭、二号炭、硬及び微粉炭等の各種産物に分
離して、それぞれの用途で利用あるいは処理されていた
。中でも微粉炭は、精炭及び二号炭中の粉炭を水洗して
生じた排水中の逃炭であって、約α5IIm以下の石炭
粒子及び廃石粒子を含む石炭排水(以後これをパルプと
称す)であり、浮選は一般にこの排水中の石炭粒子を廃
石粒子から分離して回収するのに使用される単位操作の
一つであった。
Conventional coal is 50111I raw coal mined in the mountains.
After crushing into the following lump coals, the coal is cleaned using a water separator (jig), vibrating sieve, etc., and separated into various products such as clean coal, No. 2 coal, hard coal, and pulverized coal, which are used or processed for each purpose. was. Among them, pulverized coal is the escaped coal in the wastewater produced by washing clean coal and pulverized coal in No. ), and flotation was one of the unit operations commonly used to separate and recover coal particles from waste rock particles in this wastewater.

この浮選方法は、気泡導入の方法によって一般に機械攪
拌方式、機械攪拌・空気吹込併用方式、空気吹込式及び
気体析出式の四方式に大別され各種浮選機が実用されて
きている(今泉、岡野;浮選機について、日本鉱業会誌
、86.991、p655〜658(1970))。
This flotation method is generally divided into four types depending on the method of bubble introduction: mechanical stirring, mechanical stirring and air blowing, air blowing, and gas precipitation, and various flotation machines have been put into practical use (Imaizumi , Okano; Regarding flotation machines, Journal of the Japan Mining Association, 86.991, p655-658 (1970)).

中でも気体析出式のエアリフト浮選機はエアリフト管内
での気体析出効果により特に微粒子の浮選成績を向上さ
せるものとして注目され、ソ連で主に使用されていたと
言われている(工。
Among them, the gas precipitation type airlift flotation machine has attracted attention as a device that improves the flotation performance of fine particles due to the gas precipitation effect inside the airlift tube, and is said to have been mainly used in the Soviet Union (Eng.

N、Plaksin 、 V、 11C1assen 
: Fourth工nterna−tional Co
al Preparation Congress 、
 PaPerD5(1962))。
N, Plaksin, V, 11C1assen
: Fourth Engineering International Co
al Preparation Congress,
PaPerD5 (1962)).

さて第3図は上記エアリフト浮選機の構成を概略に示し
た一例であり、約(L5w以下の石炭及び廃石粒子を含
むパルプ1をエアレータ2で加圧空気3と捕集剤4を分
散させながらエアリフト管5に圧入するとエアリフト管
5内で減圧による気体析出と分散空気による空気混和が
生じ石炭粒子が捕集剤をバインダーとして気泡と共に凝
集(以後クロスと称す)して浮上し、セパレータ6によ
ってこのクロスが廃石粒子を含む排水(以後テールと称
す)と分離される。
Now, Fig. 3 is an example schematically showing the configuration of the above air lift flotation machine. Pulp 1 containing coal and waste rock particles of approximately When the coal particles are press-fitted into the air lift pipe 5 while being pressed, gas precipitation due to the reduced pressure and air mixing due to the dispersed air occur in the air lift pipe 5, and the coal particles aggregate with air bubbles (hereinafter referred to as cross) using the scavenger as a binder and float to the surface. This cloth is separated from the waste water (hereinafter referred to as tail) containing waste rock particles.

エアリフト浮選方式において浮選成績を向上させるため
罠は、パルプ中の空気混和率をできるだけ増大させるこ
とが重要な要素の−っであシ、一般にはエアリフト管内
の空気混和率50%(パルプと空気の体積比が1=1)
が一応の目安とされている(今泉、弁上、野中:サイク
ロン浮選に関する研究、日本鉱業会誌、83.950、
p817〜824 (1967))。
In order to improve the flotation performance in the airlift flotation system, it is important to increase the air mixing ratio in the pulp as much as possible, and generally the air mixing ratio in the airlift tube is 50% (pulp air volume ratio is 1=1)
(Imaizumi, Benjo, Nonaka: Research on cyclone flotation, Journal of the Japan Mining Association, 83.950,
p817-824 (1967)).

エアリフト管4内で減圧により生じる析出気泡の気泡径
は約10〜30μといわれるが、その体積は空気混和率
で高々数憾程度にすぎず、従来のエアリフト浮選におけ
る空気混和率はその大半がエアレータで圧入される分散
空気に依存しているといえる。この分散空気の気泡径は
エアレータ内の空気分散ノズルの径〈よシ調節されるが
、細かくてもせいぜい数100μ程度が限界である。
The bubble diameter of the precipitated bubbles generated by the reduced pressure in the air lift tube 4 is said to be about 10 to 30μ, but the volume is only a few at most in terms of air mixing ratio, and most of the air mixing ratio in conventional airlift flotation is It can be said that it depends on the dispersed air that is pressurized by the aerator. The diameter of the dispersed air bubbles is adjusted depending on the diameter of the air dispersion nozzle in the aerator, but the finer limit is several hundred microns at most.

従来一般に浮選の適正粒度け20〜200メツシユ(7
4〜840μ)と言われており、前述の選炭排水中の石
炭粒子においても74〜500、uが浮選によシ回収さ
れる対象石炭であって、これより微細な石炭粒子は回収
対象物とは成シ得なかったのである。
Conventionally, the appropriate particle size for flotation was generally 20 to 200 mesh (7
4 to 840 μ), and the coal particles in the coal preparation wastewater mentioned above also have a particle size of 74 to 500 μ, which is the target coal to be recovered by flotation, and coal particles finer than this are the target coal to be recovered. This was not achieved.

したがって、従来のエアリフト浮選方式において石炭粒
子を浮遊させるための気泡は、数100μ程度の分散気
泡で十分であった。
Therefore, in the conventional airlift flotation method, dispersed air bubbles of about several hundred microns were sufficient for suspending coal particles.

一方、各種の石炭利用技術が開発されていくにつれて、
石炭中の無機物(灰分)によるトラブルがクローズアッ
プされ、従来の選炭では取シ除けなかった灰分をも除去
しようとする脱灰技術が要求されてきてる。この脱灰技
術の一つとして坑内原炭を200メツシユ(74μ)ア
ンダー約80%まで粉砕し、浮選によって石炭(#fl
炭)を回収しようという企みが検討されている。ここで
対象となる石炭粒子は大半が従来の浮選において対象外
とされた非常に細かいものであるから、前述した従来の
浮選方式では気泡径が大きすぎて好ましくなく、析出気
泡のような微小気泡を多量に供給することが必要となる
On the other hand, as various coal utilization technologies are developed,
Problems caused by inorganic substances (ash content) in coal have come under close scrutiny, and there is a growing demand for deashing technology that attempts to remove ash content that cannot be removed by conventional coal preparation. As part of this deashing technology, raw coal in the mine is crushed to about 80% under 200 mesh (74μ), and then coal (#fl) is crushed by flotation.
Plans are being considered to recover charcoal. Most of the coal particles that are targeted here are very fine particles that are excluded from conventional flotation, so the conventional flotation method described above is undesirable because the bubble diameter is too large, and the coal particles such as precipitation bubbles are It is necessary to supply a large amount of microbubbles.

微小気泡の析出方法としては、前述したエアリフトによ
る方法の他、真空ポンプによる方法、電気分解による方
法及び超音波による方法等いくつかの方法が考えられる
が、石炭粒子を浮遊させるに必要な気泡量、すなわち空
気混和率という点から考えるといづれの方法も多くの問
題をかかえてbる。
In addition to the above-mentioned airlift method, there are several methods for depositing microbubbles, including a vacuum pump, electrolysis, and ultrasonic waves. In other words, both methods have many problems when considered from the point of view of air mixing ratio.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来の微粒石炭の浮選法の欠点を解消し、超
音波によプ発生する微小気泡の石炭粒子に対する選択的
凝集作用に続いて捕集剤を用いるエアリフトの浮選作用
を巧みに組み合わせることにより、少量の微小析出気泡
で多量の微粒石炭の回収と脱灰を高い効率で行なうこと
を可能にする浮選方法を提供しようとするものである。
The present invention overcomes the drawbacks of the conventional flotation method of fine coal, and cleverly combines the flotation action of airlift using a scavenger followed by the selective agglomeration action of microbubbles generated by ultrasonic waves on coal particles. The present invention aims to provide a flotation method that makes it possible to recover and deash a large amount of fine coal with high efficiency using a small amount of microscopic precipitated bubbles.

c問題点を解決するための手段〕 本発明は微粒の石炭及び廃石を含む石炭排水に超音波を
与えた後に、該排水中に加圧空気を導入して、エアリフ
トにより浮選を行なうことを特徴とする微粒石炭の浮選
方法である。
Means for Solving Problems c] The present invention involves applying ultrasonic waves to coal waste water containing fine coal particles and waste stones, and then introducing pressurized air into the waste water to carry out flotation using an air lift. This is a method for flotation of fine coal.

〔作用コ 超音波の振動により水中で負圧になる部分が生じ、そこ
に空洞が出来て微小気泡が発生する(キャビテーション
)ことはよく知られている。
[Operations] It is well known that ultrasonic vibrations create areas of negative pressure in water, which create cavities and generate microbubbles (cavitation).

このようにして発生した微小気泡は、水中に浮遊固体が
存在すればその固体表面に付着して安定すると言われて
hる。また、超音波の振動によって、石炭のような疎水
性粒子は、灰のような親水性粒子より凝集され易く石炭
と灰の分離にとって好都合な石炭粒子への選択凝集作用
の存在も知られている。(今泉;水中の粒子に及ぼす超
音波の作用、選炭、vo18 Nn 35、p100〜
105(1958)、佐々木:超音波による石炭ig濁
粒子の凝集に関する研究、選炭、v017、rI&12
9、p119〜123 (1957))このような超音
波の作用をそのまま分離手段として、凝集した石炭粒子
を回収するのも一つの方法であるが、大量の微粒石炭を
分離するためには極めて高い周波数と高出力の超音波発
生装置を必要とする。
It is said that the microbubbles thus generated are stabilized by adhering to the surface of floating solids if they exist in the water. It is also known that ultrasonic vibrations have a selective agglomeration effect on coal particles, which makes it easier for hydrophobic particles such as coal to agglomerate than hydrophilic particles such as ash, which is advantageous for separation of coal and ash. . (Imaizumi; Effect of ultrasonic waves on particles in water, coal preparation, vo18 Nn 35, p100~
105 (1958), Sasaki: Research on agglomeration of coal turbid particles by ultrasonic waves, Coal Preparation, v017, rI&12
9, p. 119-123 (1957)) One method is to use the effect of ultrasonic waves as a means of separation to recover aggregated coal particles, but it is extremely expensive to separate large amounts of fine coal. Requires a high frequency and high power ultrasound generator.

本発明では、高い空気混和率の得られるエアリフト浮選
において、不足する微小気泡を補充すると共に浮選に入
る前のパルプ中の微小石炭粒子を多少なりとも凝集させ
ておくために必要な最小限の超音波を備えていれば良い
のでちる。
In the present invention, in airlift flotation where a high air mixing ratio can be obtained, the minimum necessary amount is required to replenish the missing microbubbles and to aggregate some of the microscopic coal particles in the pulp before entering the flotation. It would be good if it had ultrasonic waves.

200メツシユアンダ一約80%の石炭粒子を含むパル
プを浮選すること分想定すると、浮選される前に該パル
プに超音波を照射して、石炭粒子表面に微小気泡を付着
させると共に石炭粒子は凝集して見かけ上粒子径の大き
な粒子群となる。この凝集粒子群を含むパルプを史に強
固な凝集体とするため捕集剤と多量な気泡を加えると、
捕集剤は見かけ土掻の大きくなった凝集体表面上に薄い
層を形成し、これが気泡に付着して浮上する。このよう
にして形成された凝集体が浮上する過程において、疎水
性のいくぶん弱い石炭粒子は取り残されたまま未だパル
プ中に浮遊しているが、ここで新たに析出する発生期の
微小気泡がこの石炭粒子に付着し、凝集体を成長させて
いく。
Assuming that a pulp containing approximately 80% of coal particles of 200 mesh weight is to be flotated, the pulp is irradiated with ultrasonic waves before flotation to attach microbubbles to the surface of the coal particles and remove the coal particles. It aggregates to form a group of particles with an apparently large particle size. When a scavenger and a large amount of air bubbles are added to the pulp containing this aggregated particle group to make it into a strong aggregate,
The scavenger forms a thin layer on the surface of the aggregate, which has an increased apparent dirtiness, and this layer adheres to the air bubbles and floats to the surface. In the process of floating the aggregates formed in this way, the slightly less hydrophobic coal particles are left behind and are still floating in the pulp, but the nascent microbubbles that are newly precipitated here It adheres to coal particles and grows into aggregates.

本発明の特徴は、このように1析出する発生期の微小気
泡を二段階で作用させ、少量の析出気泡を合理的に利用
する点にある。
The feature of the present invention is that the nascent microbubbles that are precipitated in this manner are acted upon in two stages to rationally utilize a small amount of precipitated bubbles.

上記析出気泡は発生した時直ちに石炭粒子に付着しなけ
れば、消滅してしまう不安定な気泡であり、また一度に
多量発生させることも困難である。多量の微粒石炭を浮
上させるには多重の気泡が必要であるが、これを全て析
出気泡でまかなうのは経済的にも不合理であることから
必要最小限の析出気泡と加圧分散気泡を組み合わせて、
多量の微粒石炭を効果的に浮上させるところに本発明の
特徴がある。
The above-mentioned precipitated bubbles are unstable bubbles that will disappear if they do not adhere to coal particles immediately after they are generated, and it is also difficult to generate a large amount at one time. Multiple bubbles are required to float a large amount of granular coal, but it is economically unreasonable to cover all of these with precipitation bubbles, so we combined the minimum necessary precipitation bubbles with pressurized dispersion bubbles. hand,
A feature of the present invention is that a large amount of fine coal can be effectively floated.

そのためにまず超音波により発生する少量の析出気泡で
石炭粒子の緩い凝集を生ぜしめ、この凝集体を更に大き
くかつ強固にするためには捕集剤と加圧分散気泡でこれ
を補っておき、残った未凝集の石炭粒子のみ第二段の析
出気泡で凝集させる必要がある。このような作用を持た
せるためには、超音波と組み合わせる浮選方式として従
来のエアリフト式が最も適しているものと考えられる。
To do this, first, a small amount of precipitated air bubbles generated by ultrasonic waves is used to cause a loose agglomeration of coal particles, and in order to make this agglomerate larger and stronger, this is supplemented with a scavenger and pressurized dispersion bubbles. Only the remaining unagglomerated coal particles need to be agglomerated by the second-stage precipitation bubbles. In order to provide such an effect, the conventional air lift type flotation method combined with ultrasonic waves is considered to be the most suitable.

前述したようにエアリフト浮選方式は加圧空気による気
泡の分散及び空気混和率の点で他の浮選方式に比べ優れ
ているのみならず、浮選フロスがエアリフト管を上昇す
る間に流れの減圧による気体析出効果が期待できるから
である。
As mentioned above, the airlift flotation method is not only superior to other flotation methods in terms of bubble dispersion using pressurized air and air mixing ratio, but also improves the flow rate while the flotation floss ascends the airlift tube. This is because the effect of gas precipitation due to reduced pressure can be expected.

〔実施例〕〔Example〕

本発明の1実施例を第1図に示す。パルプ1からセパレ
ータ6までは第3図と同じであプ、異なる点はエアレー
タ2の上流側の管に超音波振動子7を備えていることで
ある。超音波振動子としては現在チタン酸バリウムが最
も優れているが、水晶板も使用することができる。振動
子の取付方法は第1図の他に第2図に示す種々の型式が
考えられるが、いづれの方法を採用するかはパルプの性
状に応じて決定する必要がある。第2図(a)はパルプ
導管の立ち上がり部の底に1振動子7を設けてパルプの
流れに沿って超音波を付与する亀のであり、第2図(b
)は第2図(a)の変形で、振動子7に向き合って反射
板を導管内に設けたものであり、超音波の効果を高めた
ものである。第2図(0)はパルプ導管の側壁の一部に
振動子7を設けたもので振動子7に対向する側壁で超音
波は反射する。振動子7は図のように複数個設けること
もできる。第2図(d)は振動子7をエアレータ2に一
体的に組込んだものである。円筒形のエアレータ2の下
端側壁に接線方向からパルプを導入するようにパルプ導
管を接続してパルプに旋回流を付与する。該エアレータ
2の下方側壁の周囲には円筒状の振動子7を設けた。ま
た、該エアレータ2の中間部にオリフィスを設け、その
開口に向けて加圧空気分散ノズルを配置してパルプ中に
空気を分散させ、攪拌混合が行なわれる。しかし、いづ
れにしても振動子7はエアレータ2の上流側に取付けな
ければならない。エアレータ2で加圧空気を分散させる
と超音波による振動が気泡によって緩衝されてしまうか
らである。
One embodiment of the invention is shown in FIG. The structure from the pulp 1 to the separator 6 is the same as in FIG. 3, except that the tube upstream of the aerator 2 is equipped with an ultrasonic vibrator 7. Currently, barium titanate is the best ultrasonic transducer, but quartz plates can also be used. In addition to the method shown in FIG. 1, various methods of mounting the vibrator are conceivable, as shown in FIG. 2, but it is necessary to decide which method to adopt depending on the properties of the pulp. Figure 2(a) shows a turtle system in which one vibrator 7 is installed at the bottom of the rising part of the pulp conduit to apply ultrasonic waves along the flow of pulp, and Figure 2(b)
) is a modification of FIG. 2(a), in which a reflecting plate is provided in the conduit facing the vibrator 7, and the effect of the ultrasonic wave is enhanced. In FIG. 2(0), a vibrator 7 is provided on a part of the side wall of the pulp conduit, and the ultrasonic waves are reflected on the side wall facing the vibrator 7. A plurality of vibrators 7 may be provided as shown in the figure. FIG. 2(d) shows the vibrator 7 integrated into the aerator 2. In FIG. A pulp conduit is connected to the lower end side wall of the cylindrical aerator 2 so as to introduce the pulp from a tangential direction, thereby imparting a swirling flow to the pulp. A cylindrical vibrator 7 was provided around the lower side wall of the aerator 2. Further, an orifice is provided in the middle of the aerator 2, and a pressurized air dispersion nozzle is disposed toward the opening of the orifice to disperse air into the pulp, thereby performing agitation and mixing. However, in any case, the vibrator 7 must be installed upstream of the aerator 2. This is because if the pressurized air is dispersed by the aerator 2, the vibrations caused by the ultrasonic waves will be buffered by the air bubbles.

200メツシユアンダ一約80傷程度の微粒石炭を含む
パルプ1は振動子6から照射された超音波によha小気
泡を発生し、パルプ1中の石炭粒子及び灰粒子表面上に
析出する。そして疎水性の強い石炭粒子は親水性の強い
灰粒子よυ凝集しやすいので、石炭粒子のみ選択的に凝
集する。しかしこの時点では疎水性の弱い石炭粒子及び
親水性の強い灰粒子はまだ凝集してhない。この凝集し
た石炭粒子群及び凝集していない石炭粒子、灰粒子を含
むパルプは、エアレレータ2で圧入される加圧空気3に
より、捕集剤〃及び分散気泡と共にエアリフト管5を上
昇し、上昇している間に凝集した石炭粒子群の表面上に
捕集剤の薄い膜が形成して分散気泡に付着し浮上する。
The pulp 1 containing fine coal particles with about 80 scratches per 200 mesh sized particles generates small bubbles by the ultrasonic waves irradiated from the vibrator 6, and precipitates on the surfaces of the coal particles and ash particles in the pulp 1. Since highly hydrophobic coal particles are more likely to aggregate than highly hydrophilic ash particles, only the coal particles are selectively aggregated. However, at this point, the less hydrophobic coal particles and the more hydrophilic ash particles have not yet aggregated. The pulp containing the agglomerated coal particles, non-agglomerated coal particles, and ash particles rises through the air lift pipe 5 together with the scavenger and dispersed air bubbles by the pressurized air 3 that is injected by the aerator 2. During this time, a thin film of scavenger is formed on the surface of the aggregated coal particles, which adheres to the dispersed bubbles and floats to the surface.

捕集剤としては一般にケロシンが用いられる。一方まだ
凝集していない疎水性の弱い石炭粒子の表面にも捕集剤
の薄い層が形成されるのでエアリフト管5内に生じる減
圧によって発生した微小気泡がこの粒子表面上に析出し
て太き表凝集体に吸収されていく。このようにして成長
した石炭粒子の凝集体はセパレータ6で弱い遠心力によ
りパルプ中の灰粒子と分離され回収される。
Kerosene is generally used as a scavenger. On the other hand, a thin layer of the scavenger is also formed on the surface of coal particles with weak hydrophobicity that have not yet aggregated, so that microbubbles generated by the reduced pressure inside the air lift tube 5 precipitate on the surface of these particles and become thick. It is absorbed by surface aggregates. The aggregates of coal particles thus grown are separated from the ash particles in the pulp by a weak centrifugal force in the separator 6 and recovered.

〔発明の効果〕〔Effect of the invention〕

本発明は上記構成を採用することによシ微粒子の浮選で
多量に必要とされる微小な析出気泡を比較的少量の析出
気泡で可能とし、特にこれまで不可能と考えられていた
微粒石炭(例えば200メツシユアンダ一約80%)の
脱灰を高収率及び高分離効率で達成するという著しい効
果を発揮するものである。
By adopting the above-mentioned structure, the present invention makes it possible to achieve the fine precipitation bubbles required in large quantities in the flotation of fine particles with a relatively small amount of precipitation bubbles. It exhibits a remarkable effect of achieving deashing (for example, about 80% of 200 mesh) with high yield and high separation efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための1例である浮選装置の
概念図、第2図(a)〜(a)は第1図の振動取付部分
の拡大変形図、第3図は従来の浮選装置の概念図である
。 復代理人  内 1)  明 復代理人  葦 原 亮 − 復代理人  安 西 篤 夫 第1図 カロ圧空気3
Fig. 1 is a conceptual diagram of a flotation device which is an example of implementing the present invention, Figs. 2 (a) to (a) are enlarged modified views of the vibration mounting part of Fig. 1, and Fig. 3 is a conventional flotation device. FIG. 2 is a conceptual diagram of a flotation device. Sub-Agents 1) Meifuku Agent Ryo Ashihara - Sub-Agent Atsuo Anzai Figure 1 Karo Pressure Air 3

Claims (1)

【特許請求の範囲】[Claims] 微粒の石炭及び廃石を含む石炭排水に超音波を与えた後
に、該排水中に加圧空気を導入して、エアリフトにより
浮選を行なうことを特徴とする微粒石炭の浮選方法。
A method for flotation of fine coal, which comprises applying ultrasonic waves to coal waste water containing fine coal particles and waste rock, and then introducing pressurized air into the waste water to carry out flotation using an air lift.
JP5942586A 1986-03-19 1986-03-19 Flotation method for particulate coal Pending JPS62216655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5942586A JPS62216655A (en) 1986-03-19 1986-03-19 Flotation method for particulate coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5942586A JPS62216655A (en) 1986-03-19 1986-03-19 Flotation method for particulate coal

Publications (1)

Publication Number Publication Date
JPS62216655A true JPS62216655A (en) 1987-09-24

Family

ID=13112894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5942586A Pending JPS62216655A (en) 1986-03-19 1986-03-19 Flotation method for particulate coal

Country Status (1)

Country Link
JP (1) JPS62216655A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181960A (en) * 2009-05-11 2009-08-13 Ehime Univ Method for generating plasma in liquid
CN110227682A (en) * 2019-05-29 2019-09-13 安徽理工大学 Ultrasonic wave desliming device before a kind of coal slime flotation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181960A (en) * 2009-05-11 2009-08-13 Ehime Univ Method for generating plasma in liquid
JP4517098B2 (en) * 2009-05-11 2010-08-04 国立大学法人愛媛大学 Method for generating plasma in liquid
CN110227682A (en) * 2019-05-29 2019-09-13 安徽理工大学 Ultrasonic wave desliming device before a kind of coal slime flotation

Similar Documents

Publication Publication Date Title
US4537599A (en) Process for removing sulfur and ash from coal
US5087379A (en) Ultrasonic vibrator tray processes
US5472094A (en) Flotation machine and process for removing impurities from coals
US4741839A (en) Ultrasonic vibrator tray processes and apparatus
US4783268A (en) Microbubble flotation process for the separation of bitumen from an oil sands slurry
CA2213212C (en) Beneficiation of ore and coal with ultrasound
US5236596A (en) Method and apparatus for dewatering
CN101306398A (en) Microbubble swirl separation method and divice
US2907455A (en) Apparatus for the recovery of fine carbonic fuel particles from slurry by ultrasonicwaves
US5996808A (en) Fly ash processing using inclined fluidized bed and sound wave agitation
CA1119106A (en) Coal agglomeration by nonintensive mixing with hydrocarbons
CA1138353A (en) Recovery of coal from coal handling operations
JPS62216655A (en) Flotation method for particulate coal
GB2143155A (en) A method of separating fine coal particles from refuse
US4293099A (en) Recovery of silicon carbide whiskers from coked, converted rice hulls by froth flotation
RU2304467C2 (en) Coal concentration method
CA1119321A (en) Beneficiation and dewatering of slurries
CN113546753A (en) Pipeline equipment for strengthening desliming of surface of cast quartz sand
Tao et al. Enhanced fine coal beneficiation using ultrasonic energy
US4412842A (en) Coal beneficiation process
CN101072643A (en) Treatment of phosphate material using directly supplied, high power ultrasonic energy
US5340481A (en) Dense media processing cyclone
US1258869A (en) Process of and apparatus for concentrating ores.
US4597858A (en) Multistream, multiproduct beneficiation arrangement
Franko et al. Application of ultrasonics to enhance wet-drum magnetic separator performance