JPS6221608B2 - - Google Patents

Info

Publication number
JPS6221608B2
JPS6221608B2 JP53165312A JP16531278A JPS6221608B2 JP S6221608 B2 JPS6221608 B2 JP S6221608B2 JP 53165312 A JP53165312 A JP 53165312A JP 16531278 A JP16531278 A JP 16531278A JP S6221608 B2 JPS6221608 B2 JP S6221608B2
Authority
JP
Japan
Prior art keywords
glass fiber
resin
solvent
polyamide resin
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53165312A
Other languages
Japanese (ja)
Other versions
JPS5592740A (en
Inventor
Teijiro Arai
Hiroshi Fujii
Minoru Kishida
Kazuo Matsukura
Mutsuo Kuga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP16531278A priority Critical patent/JPS5592740A/en
Publication of JPS5592740A publication Critical patent/JPS5592740A/en
Publication of JPS6221608B2 publication Critical patent/JPS6221608B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ガラス繊維強化ポリアミド樹脂の製
造法に関するものである。詳しくは、複合素材に
おいて、ナイロンの強靭性とガラス繊維の剛性を
より効果的に発揮せしめるための中間素材および
製造方法を提供するものである。 ポリアミドに限らず一般に熱可塑性樹脂をガラ
ス繊維で強化することは既に知られており、各種
方法が採用されている。最も一般的な方法は熱可
塑性樹脂ペレツトまたはパウダーとほぼ3〜6mm
に切断されたガラス繊維束を所定の比率で混合
し、エクストルーダーに供給して溶融練込みを行
う方法である。この方法は特殊な工程を必要とし
ないため広く実施されているが、次に述べる問題
点がある。 エクストルーダーのホツパーで樹脂とガラス
繊維の分離が起こり、均一な組成の製品が得難
い。 ペレツトとガラス繊維束をブレンドする際
に、ガラス繊維束が単繊維化し嵩高となつて特
にガラス繊維高充填の場合、エクストルーダー
への均一な供給が困難となる。 上記問題解消のため、ガラス繊維結束剤を強
化したり、カツト長を長くすると、樹脂への均
一分散ができず、期待する物性が得られない。 練込操業性改良のための結束剤は、ガラス繊
維と樹脂の接着を妨げ物性を低下させる。 ガラス繊維が破砕され期待する物性が得られ
ない。 装置摩耗が著しく、ランニングコストが高く
つくとともに安定した物性が得難い。 これらの問題点の解決のためには、 ホツパーへ樹脂ペレツトとガラス繊維を定量
同時供給する。 エクストルーダー供給部に特別な工夫をす
る。 エクストルーダーのシリンダーの進行方向に
供給口を2個所以上設け、樹脂を溶融した後ガ
ラス繊維を供給する。 2基のエクストルーダーを連結し、第一エク
ストルーダーで溶融した樹脂とガラス繊維を第
二エクストルーダーへ供給し、練込押出しを行
う。 などの方法があるが、いずれも装置的に繁雑とな
り、必ずしも満足しうる効果は得られていない。 また、エクストルーダーの先端にクロスヘツド
を設け、溶融樹脂の中にガラス繊維束を連続的に
貫通させ、直接樹脂を被覆せしめた後、ペレツト
状にカツトするガラス繊維強化材料の製造方法も
あるが、樹脂粘度が高い(通常2000〜
4000poise)ためガラス繊維束の中まで樹脂が含
浸し難く、再溶融成形時にガラス繊維束が残りや
すく、またガラス繊維と樹脂の密着が悪いため、
性能的にも満足できるものではない。 さらに、樹脂の重合時に原料モノマーに予めガ
ラス繊維を添加して重合する方法もあるが、比重
差によつて分離し易く、特別な装置や工夫を要す
るとともに、少量多品種の素材の製造法として
は、切替ロスが多く、好ましい方法ではない。 本発明者らは、上記現状に鑑み、鋭意研究の結
果、溶剤可溶型ポリアミドの溶液を使用して、予
めガラス繊維含有量の高いマスターペレツトを製
造することを見出し、また該マスターペレツトを
ベースのポリアミド樹脂によつて稀釈溶融混合す
ることによつて容易に高性能のガラス繊維強化ポ
リアミド樹脂材料または直接成形品を得る方法を
見出すに至つた。すなわち、その主体とするとこ
ろは、 溶剤可溶型ポリアミド樹脂によつて固着され
たガラス繊維束(ロービング)をほぼ同寸法に
細かく切断してなるガラス繊維強化ポリアミド
樹脂製造用マスターペレツト。 ガラス繊維束に溶剤可溶型ポリアミド樹脂の
溶液を連続的に含浸せしめ、スクイズブツシユ
を通して余剰の樹脂溶液を除くとともに棒状に
保形し、張力下に溶剤成分を飛散せしめて繊維
を固着結束せしめ、しかるのちカツターでほぼ
同寸法に細かく切断して粒状となすことを特徴
とするガラス繊維強化ポリアミド樹脂製造用マ
スターペレツトの製造方法。 溶剤可溶型ポリアミド樹脂によつて固着され
たガラス繊維束をほぼ同寸法に細かく切断して
なるマスターペレツトとベースポリアミド樹脂
ペレツトと混合し、押出または射出成形を行つ
て所望のガラス繊維含有率を有するガラス繊維
強化ポリアミド樹脂成形材料または成形品を製
造する方法。 である。 ガラス繊維強化ポリアミド樹脂は、ポリアミド
樹脂が有する強靭性に加えてガラス繊維の剛性が
加味されて、複合素材としての優れた性能を発揮
するわけであるが、その製造方法によつて性能は
著しく左右されるものである。一般に期待される
物性を発揮するための必須要件は、 樹脂中にガラス繊維の束がなく、均一に分散
していること。 樹脂中のガラス繊維が細粉化せず、ある程度
の長さを有すること。(たとえば単糸径に対す
る繊維長の比L/D:10以上が好ましい。) 樹脂とガラス繊維界面が密着および接着して
いること。 とされている。 本発明方法によれば、溶剤可溶型ポリアミド樹
脂溶液にガラス繊維を浸漬し、単繊維間に樹脂液
を含浸せしめるため、樹脂とガラス繊維表面との
密着は確実である。また、樹脂液にカツプリング
剤を添加することもできるため、接着もより強固
なものが得られる。 さらに、溶剤可溶型ポリアミドは一般に融点ま
たは軟化点が低く、ベースポリアミド樹脂との相
溶性が良いので、マスターペレツトとベースポリ
アミド樹脂を混合し溶融押出するに際し、ベース
ポリアミドが溶融する直前に容易に軟化溶融し、
ガラス繊維束を解きほぐしベースポリマーに均一
に分散するため、過酷な混練を必要とせず、その
結果、ガラス繊維が細粉化されることが少なく、
一定の繊維長が維持される。また、ガラス繊維が
予め樹脂で被覆されているため溶融練込みにおい
てエクストルーダーの供給部および圧縮部におけ
る装置摩耗が少ない。 本発明で使用されるガラス繊維束は市販の
FRP用ガラスロービングでよく、FRTPブレンド
練込用として特にバインダーを強化したものでな
い方がむしろ良い。ロービングケークからの引出
しにおいて単糸切断がひどく起こらない程度の集
束性を有するものでむしろ、界面接着のためのカ
ツプリング剤処理に重点を置いたグレードが好ま
しい。 本発明で使用される溶剤可溶型ポリアミドと
は、ポリアミド多元共重合体、たとえば6/66/
6I、6/66/610、6/66/12、6/66/PACM6
などであり、水および低級アルコール可溶なコポ
リアミドである。また6/66/6I/6SLPE等の水
可溶コポリアミドも利用できる。ここで6はε−
カプロラクタム、66はヘキサメチレンジアミンと
アジピン酸の重縮合成分、610はヘキサメチレン
ジアミンとセバシン酸の重縮合成分、6Iはヘキサ
メチレンジアミンとイソフタル酸の重縮合成分、
12はω−ラウロラクタム、PACM6はビス(4−
アミノシクロヘキシル)メタンとアジピン酸の重
縮合成分、6SIPEはメキサメチレンジアミンと5
−ナトリウムスルホイソフタル酸ジメチルの重縮
合成分をいう。 本発明で使用されるベースポリアミド樹脂とし
ては、6、66、610、11、12、MXDA−6等のホ
モポリマーおよびこれらの単量体からなるコポリ
マーを主成分とするポリアミド樹脂であり、核
剤、無機充填剤、難燃剤、耐熱剤、耐候剤、帯電
防止剤等の各種改質剤および/または顔料、染料
等の着色剤を含んでも良い。 本発明のマスターペレツト製造用溶剤可溶型ポ
リアミドの融点または軟化点は、ベースのポリア
ミド樹脂の融点または軟化点より低いことが望ま
しく、高い場合は混合溶融練込過程でガラス繊維
の良好な分散が得難い。融点が200〜260℃である
ベース樹脂の場合、マスターペレツトの溶剤可溶
型ポリアミドとして融点180℃以下のものを使用
すると良好な結果が得られる。 本発明においてマスターペレツトを製造するた
めの溶剤可溶型ポリアミドの溶液は、水、低級ア
ルコール等の溶剤またはこれらの混合溶剤に20重
量%以上溶解せしめ、常温で0.5〜50poise、さら
に好ましくは3〜10poiseの粘度を有するものが
好ましく、粘度が低過ぎるとガラス繊維束への含
浸は良いが、乾燥後の結束性が不足し、高過ぎる
と含浸不良となり、最終組成物として十分な物性
が得られない。 次に、ガラス繊維束を樹脂液槽に導入して樹脂
液を含浸させる工程について説明する。直径7〜
20μの単糸から成るガラス繊維束(ロービング)
を撚りがかからないように解舒し、樹脂液槽へ導
入して構内の数本のバーガイド(スクイズバー)
を経て槽上に導出し、必要ならばさらに槽外でバ
ーガイドにて余剰の樹脂液を除去したのち、適当
な径を有する孔付金具(スクイズブツシユ)に1
ないし2回通して最終スクイズを行うとともに保
形する。ロービングはスクイズバーによつてW型
の経路を通るが、樹脂液の粘度、ラインスピード
によつて著しく高張力を要する場合があるので、
ロービングのスクイズバーに対する角度およびス
クイズバーの数で調整する。張力が高過ぎるとロ
ービングの単糸切れが起こり、槽内の樹脂液の見
掛の粘度が変るため安定均一な製造ができないと
ともにガラス繊維が中心に偏り、保形が困難とな
る。また逆にロービングのバーに対する角度が浅
く、スクイズバーの数が少ないときは十分な樹脂
液の含浸が得られない。含浸が十分で、ロービン
グが傷まず、保形性を良くするためには浅い角度
の少なくとも2段以上のスクイズバーを経て入口
側に曲率を有する長さ/直径の比が3以上の最終
保形ブツシユを使用すると良い。樹脂液粘度が低
く保形が難しい場合、樹脂液に無機質微粉末、各
種合成樹脂パウダー等を添加して増粘することも
できる。また、樹脂とガラス繊維の界面接着を強
固ならしめるため樹脂溶液に可溶なカツプリング
剤を溶解させることができる。従来、ガラス繊維
の表面にカツプリング剤処理がなされているが、
集束性等後加工性能も考慮する必要から十分なも
のでなかつた。また、細片化されたガラス繊維束
に後処理したり、樹脂ペレツトとのブレンド時に
ドライブレンドする方法では、界面全域にわたる
均一な処理が困難で効果が十分でなかつたが、本
発明では溶液に溶解させるので含浸さえ十分であ
れば均一な処理が可能であり、これまでに見られ
ない界面接着の効果が発揮できる。 樹脂液含浸および保形を行つた棒状体は乾燥工
程へ導入される。乾燥は熱、熱風、赤外線、遠赤
外線などの方法が利用できるが高周波加熱による
乾燥が最も能率がよい。乾燥後の棒状体は冷却後
引きとられカツターへ送られる。引取り装置とし
て駆動ローラーとニツプローラー系からなるロー
ラー引取り装置などが使用できるが、接触面積が
大きく、接触圧力の低いキヤタピラプレス式引取
機を使用すると細かく切断した後の割れが少な
く、見掛け比重を一定にすることができる。ま
た、同じ理由からカツターは剪断切りでなく、鋭
利な刃付きの押し切り方式が良い。 マスターペレツトの見掛比重は0.5〜1.5の範囲
のものが好ましく、小さ過ぎるとベース樹脂とブ
レンドして再溶融練込みに際して材料の安定な供
給が困難となり供給部に特別な工夫を要し、また
大き過ぎるとホツパー部で樹脂ペレツトとの分離
が起こり、均一な練込が困難となる。厳密にはマ
スターペレツトの見掛比重はベース樹脂ペレツト
の見掛比重と同じにすることが理想であるが、少
なくとも両者の見掛比重の差が0.5以下であるこ
とが必要である。また粒形は球形に近い円柱形が
好ましい。 本発明のマスターペレツトのガラス繊維含量は
60〜95重量%が好ましく、ガラス繊維含量が低い
と高充填ガラス繊維強化のためのマスターペレツ
トとして使用できないだけでなく、最終組成物中
の樹脂分中の溶剤可溶型ポリアミド成分が多くな
つて十分な物性が得難く、また、一般にコスト高
ともなる。また、マスターペレツトのガラス繊維
含量が高過ぎると、ベースポリアミド樹脂との混
合溶融混練過程においてガラス繊維の均一分散が
得難く、分散を得るため混練を強化した場合はガ
ラス繊維が破砕し十分な物性が得られず、装置摩
耗もはげしくなつて本発明の効果が少ない。 ガラス繊維強化ポリアミド樹脂の製造におい
て、本発明の効果を十分発揮するためには、最終
組成物に対する溶剤可溶型ポリアミド成分の比率
が1〜30重量%、好ましくは3〜15重量%になる
ようにするとよい。溶剤可溶型ポリアミドの比率
が低過ぎると、ガラス繊維の良好な分散が得られ
ないとともに成形品の性能のうち特に衝撃耐性の
向上が十分でなく、高過ぎると、成形性が悪くな
り剛性が低下する。 マスターペレツトとベース樹脂との混合再溶融
練込に際して材料を十分乾燥しておく必要があ
り、特にマスターペレツトにおいては溶融温度に
おける揮発減量を0.2重量%以下とする必要があ
る。 マスターペレツトの揮発減量が多いときは、ガ
ラス繊維強化ポリアミド樹脂に気泡を生じたり、
物性的にも不満足な結果となる。 次に実施例に基づいて本発明をさらに詳細に説
明するが、本発明はこれらに限定されるものでは
ない。 実施例 1 ε−カプロラクタム(6モノマー)60モル%、
ヘキサメチレンジアンモニウムアジペート(66
塩)20モル%およびヘキサメチレンジアミンとイ
ソフタル酸ジメチルの等モル塩(6I塩)20モル%
を少量の水とともにオートクレーブに入れ窒素気
流中で常圧下、130℃、2時間撹拌して初期縮合
させた後、さらに270℃にて5時間加熱を続けて
固有粘度1.1、軟化点155℃のポリアミド共重合樹
脂(6/66/6I)を得た。この樹脂を粉砕してメ
タノールに溶解せしめ、濃度33重量%、20℃にお
ける粘度7poise(東京計器製BH型粘度計によ
る)の安定な樹脂溶液を得た。 次に単糸径13μ、目付2.3g/mの市販のガラ
スロービング3本をそれぞれ無撚解舒により前記
樹脂溶液に導入し、槽中でロービングがW型の経
路を通るように設置された5本のバーガイドを経
て入口に曲率を有する直径2.5mm、長さ10mmの孔
を有するスクイズブツシユに通して、毎分6mの
速さで含浸保形を行つた。ロービングの樹脂溶液
浸漬距離はほぼ50cmであつたが保形棒状体は半透
明となり、単繊維間に樹脂液が十分含浸している
ことが確認できた。この棒状物を炉長5m、雰囲
気温度80℃から130℃まで段階的に設定された熱
風乾燥炉に導入し、乾燥したのち冷気吹付により
冷却し、接触長70cmのキヤタピラプレス式引取機
に導入して引取り、その後方に配置されたロータ
リー式カツターへ供給して約3mm長さにカツトし
てマスターペレツトを製造した。得られたペレツ
トはガラス含量90重量%、255℃における揮発減
量0.1%、見掛比重0.68であつた。 このマスターペレツトを固有粘度1.2のナイロ
ン6樹脂ペレツト(直径2.2mm、長さ2.0mm)で3
倍稀釈ブレンドし、シリンダー口径65mm、L/
D25のベント式押出機のホツパーに投入し、シリ
ンダー温度270℃で溶融押出しして常法に従つて
再ペレツト化してガラス含量30重量%のガラス繊
維強化ポリアミド樹脂成形材料を安定かつ高能率
で得た。得られた成形材料についてシリンダー口
径40mm、L/D15の射出成形機を用いて、各種試
験片を成形し、ASTM D638、D790およびD256
に基づいて物性を評価した。また、成形品の一部
を蟻酸に溶解し、顕微鏡撮して成形品中のガラス
繊維の平均繊維長を測定した。結果をともに表1
に示す。 実施例 2 実施例1で得られたマスターペレツトを固有粘
度1.2のナイロン6樹脂ペレツトで3倍に稀釈ブ
レンドし、再ペレツト化することなくそのまま実
施例1と同じ成形機で試験片を成形し、同様に評
価した。結果を表1に示す。 比較例 市販のFRTP用6mmのカツトのロービング(チ
ヨツプドストランド)と実施例で用いた同じナイ
ロン6樹脂を重量比3:7で混合し、実施例1と
同じ押出機で溶融押出しし、ガラス繊維含量30重
量%の成形用材料を作つた。混合はリボンブレン
ダーを使用したが、10分以上のブレンドではチヨ
ツプドストランドが単繊維化し、綿状となつて均
一なブレンドが困難であつた。また、押出再ペレ
ツト化において、押出機への材料の喰い込みが不
安定であり、ストランドの不揃いや切断が起こつ
た。 比較例についても実施例1および2と同じ評価
を行つた。また、実施例1、2および比較例の成
形片について硫硝酸分解し、樹脂中に含まれる微
量鉄分を原子吸光法により測定した。結果をとも
に表1に併記する。
The present invention relates to a method for producing glass fiber reinforced polyamide resin. Specifically, the present invention provides an intermediate material and a manufacturing method for making more effective use of the toughness of nylon and the rigidity of glass fiber in composite materials. It is already known that not only polyamides but also thermoplastic resins in general can be reinforced with glass fibers, and various methods have been adopted. The most common method is to use thermoplastic resin pellets or powder and approximately 3-6 mm
In this method, glass fiber bundles cut into glass fibers are mixed at a predetermined ratio and fed to an extruder for melt kneading. Although this method is widely practiced because it does not require any special steps, it has the following problems. Separation of resin and glass fiber occurs in the hopper of the extruder, making it difficult to obtain a product with a uniform composition. When blending pellets and glass fiber bundles, the glass fiber bundles become single fibers and bulky, making it difficult to uniformly supply them to the extruder, especially when the glass fiber bundles are highly filled. In order to solve the above problem, if the glass fiber binding agent is strengthened or the length of the cut is increased, uniform dispersion into the resin cannot be achieved, and the expected physical properties cannot be obtained. Binding agents used to improve kneading operability impede adhesion between glass fibers and resin and reduce physical properties. The glass fibers are crushed and the expected physical properties cannot be obtained. Equipment wear is significant, running costs are high, and stable physical properties are difficult to obtain. In order to solve these problems, resin pellets and glass fibers must be simultaneously fed in fixed amounts to the hopper. A special twist is made to the extruder supply section. Two or more supply ports are provided in the direction of movement of the extruder cylinder, and glass fiber is supplied after melting the resin. Two extruders are connected, and the resin and glass fibers melted in the first extruder are supplied to the second extruder for kneading and extrusion. There are the following methods, but all of them are complicated in terms of equipment and do not necessarily produce satisfactory effects. There is also a method for producing glass fiber reinforced materials in which a crosshead is installed at the tip of an extruder, the glass fiber bundles are continuously passed through the molten resin, the resin is directly coated, and then the material is cut into pellets. High resin viscosity (usually 2000~
4000poise), it is difficult for the resin to penetrate into the glass fiber bundles, and the glass fiber bundles tend to remain during remelting and molding, and the adhesion between the glass fibers and resin is poor.
Performance is also not satisfactory. Furthermore, there is a method in which glass fiber is added in advance to the raw material monomer during resin polymerization, but it is easy to separate due to the difference in specific gravity, requires special equipment and ingenuity, and is not suitable for manufacturing a wide variety of materials in small quantities. is not a preferable method because it causes a lot of switching loss. In view of the above-mentioned current situation, the present inventors have conducted extensive research and discovered that master pellets with a high glass fiber content can be manufactured in advance using a solution of solvent-soluble polyamide, and We have found a way to easily obtain high-performance glass fiber-reinforced polyamide resin materials or directly molded products by diluting and melt-mixing them with base polyamide resins. In other words, the main component is master pellets for manufacturing glass fiber reinforced polyamide resin, which are made by cutting glass fiber bundles (rovings) fixed with solvent-soluble polyamide resin into approximately the same size. A glass fiber bundle is continuously impregnated with a solution of a solvent-soluble polyamide resin, the excess resin solution is removed through a squeeze bushing, the shape is maintained in a rod shape, and the solvent component is scattered under tension to firmly bind the fibers. A method for producing master pellets for producing glass fiber-reinforced polyamide resin, characterized in that the master pellets are then cut into particles with approximately the same size using a cutter. Glass fiber bundles fixed by solvent-soluble polyamide resin are finely cut to approximately the same size, and the master pellets are mixed with base polyamide resin pellets, and extrusion or injection molding is performed to obtain the desired glass fiber content. A method for producing a glass fiber-reinforced polyamide resin molding material or molded article. It is. Glass fiber-reinforced polyamide resin combines the toughness of polyamide resin with the rigidity of glass fiber, and exhibits excellent performance as a composite material, but its performance is significantly affected by the manufacturing method. It is something that will be done. An essential requirement for exhibiting the generally expected physical properties is that there are no bundles of glass fibers in the resin, and that they are uniformly dispersed. The glass fibers in the resin do not become fine powder and have a certain length. (For example, the ratio L/D of fiber length to single fiber diameter is preferably 10 or more.) The interface between the resin and the glass fiber is in close contact and adhesion. It is said that According to the method of the present invention, the glass fibers are immersed in a solvent-soluble polyamide resin solution and the resin solution is impregnated between the single fibers, so that the resin and the surface of the glass fibers are in close contact with each other. Moreover, since a coupling agent can be added to the resin liquid, even stronger adhesion can be obtained. Furthermore, solvent-soluble polyamides generally have a low melting point or softening point and are highly compatible with the base polyamide resin. softens and melts,
Because the glass fiber bundles are loosened and uniformly dispersed in the base polymer, harsh kneading is not required, and as a result, the glass fibers are less likely to become fine powder.
A constant fiber length is maintained. Furthermore, since the glass fibers are coated with resin in advance, there is less equipment wear in the supply section and compression section of the extruder during melt kneading. The glass fiber bundle used in the present invention is commercially available.
Glass roving for FRP is fine, and for FRTP blend kneading, it is better not to have a reinforced binder. It is preferable to use a grade that has enough cohesiveness to prevent single filament breakage when being pulled out from the roving cake, and is rather focused on a coupling agent treatment for interfacial adhesion. The solvent-soluble polyamide used in the present invention is a polyamide multi-component copolymer, such as 6/66/
6I, 6/66/610, 6/66/12, 6/66/PACM6
etc., which are water and lower alcohol soluble copolyamides. Water soluble copolyamides such as 6/66/6I/6SLPE can also be used. Here 6 is ε-
Caprolactam, 66 is a polycondensation component of hexamethylene diamine and adipic acid, 610 is a polycondensation component of hexamethylene diamine and sebacic acid, 6I is a polycondensation component of hexamethylene diamine and isophthalic acid,
12 is ω-laurolactam, PACM6 is bis(4-
6SIPE is a polycondensation component of methane (aminocyclohexyl) and adipic acid, and 6SIPE is a polycondensation product of mexamethylene diamine and 5
- Refers to the polycondensation component of sodium dimethyl sulfoisophthalate. The base polyamide resin used in the present invention is a polyamide resin whose main component is a homopolymer such as 6, 66, 610, 11, 12, MXDA-6, or a copolymer consisting of these monomers, and a nucleating agent is used. , various modifiers such as inorganic fillers, flame retardants, heat resistant agents, weathering agents, and antistatic agents, and/or coloring agents such as pigments and dyes. The melting point or softening point of the solvent-soluble polyamide for producing master pellets of the present invention is preferably lower than the melting point or softening point of the base polyamide resin, and if it is higher, good dispersion of glass fibers may occur during the mixing melt kneading process. is difficult to obtain. In the case of a base resin having a melting point of 200 to 260°C, good results can be obtained if a solvent-soluble polyamide of master pellet having a melting point of 180°C or lower is used. In the present invention, the solution of the solvent-soluble polyamide for producing master pellets is dissolved in a solvent such as water, lower alcohol, or a mixed solvent thereof in an amount of 20% by weight or more, and has a concentration of 0.5 to 50 poise at room temperature, more preferably 30% by weight or more. It is preferable to have a viscosity of ~10 poise; if the viscosity is too low, impregnation into the glass fiber bundle is good, but the cohesion after drying is insufficient, and if it is too high, impregnation will be poor, and the final composition will not have sufficient physical properties. I can't. Next, a process of introducing the glass fiber bundle into a resin liquid tank and impregnating it with resin liquid will be described. Diameter 7~
Glass fiber bundle (roving) consisting of 20μ single yarn
Untwist the fibers so that they are not twisted, introduce them into the resin liquid tank, and connect them to several bar guides (squeeze bars) on the premises.
After removing the excess resin liquid with a bar guide outside the tank if necessary, insert it into a squeeze bush with a hole of an appropriate diameter.
A final squeeze is performed or twice to retain the shape. The roving passes through a W-shaped path using a squeeze bar, but depending on the viscosity of the resin liquid and the line speed, extremely high tension may be required.
Adjust by the angle of the roving to the squeeze bar and the number of squeeze bars. If the tension is too high, single threads of the roving will break, and the apparent viscosity of the resin liquid in the tank will change, making stable and uniform production impossible, and the glass fibers will be concentrated in the center, making it difficult to maintain the shape. On the other hand, if the angle of the roving with respect to the bar is shallow and the number of squeeze bars is small, sufficient impregnation with the resin liquid cannot be obtained. In order to ensure sufficient impregnation, prevent damage to the roving, and improve shape retention, pass through at least two stages of squeeze bars with shallow angles, and final shape retention with a curvature on the inlet side and a length/diameter ratio of 3 or more. It is better to use Butsuyu. If the viscosity of the resin liquid is low and shape retention is difficult, the viscosity can be increased by adding inorganic fine powder, various synthetic resin powders, etc. to the resin liquid. Further, in order to strengthen the interfacial adhesion between the resin and the glass fibers, a soluble coupling agent can be dissolved in the resin solution. Conventionally, the surface of glass fibers has been treated with a coupling agent, but
This was not sufficient because it was necessary to take into account post-processing performance such as convergence. In addition, with methods such as post-processing the glass fiber bundles into pieces or dry blending when blending with resin pellets, it was difficult to achieve uniform treatment over the entire interface and the effect was not sufficient, but in the present invention, Since it is dissolved, uniform treatment is possible as long as there is sufficient impregnation, and an unprecedented interfacial adhesion effect can be achieved. The rod-shaped body that has been impregnated with resin liquid and maintained its shape is introduced into a drying process. Methods such as heat, hot air, infrared rays, and far infrared rays can be used for drying, but drying using high frequency heating is the most efficient. After the dried rod-shaped body is cooled, it is taken out and sent to a cutter. As a pulling device, a roller pulling device consisting of a drive roller and a nip roller system can be used, but if you use a caterpillar press type pulling device with a large contact area and low contact pressure, there will be less cracking after cutting into small pieces, and the apparent specific gravity will be reduced. It can be kept constant. Also, for the same reason, it is better to use a push cutter with a sharp blade rather than a shear cutter. The apparent specific gravity of the master pellets is preferably in the range of 0.5 to 1.5; if it is too small, it will be blended with the base resin and it will be difficult to stably supply the material during remelting and kneading, requiring special measures in the supply section. If it is too large, separation from the resin pellets will occur at the hopper, making uniform kneading difficult. Strictly speaking, it is ideal that the apparent specific gravity of the master pellet is the same as that of the base resin pellet, but it is necessary that the difference in the apparent specific gravity between the two be at least 0.5 or less. Further, the particle shape is preferably a cylindrical shape close to a spherical shape. The glass fiber content of the master pellets of the present invention is
60 to 95% by weight is preferred; if the glass fiber content is low, not only can it not be used as a master pellet for highly filled glass fiber reinforcement, but the resin content of the final composition will contain too much solvent-soluble polyamide component. However, it is difficult to obtain sufficient physical properties, and the cost is generally high. In addition, if the glass fiber content of the master pellet is too high, it will be difficult to obtain uniform dispersion of the glass fibers during the melt-kneading process of mixing with the base polyamide resin, and if the kneading is strengthened to obtain dispersion, the glass fibers will be crushed and insufficient. Physical properties cannot be obtained, equipment wear becomes severe, and the effect of the present invention is reduced. In order to fully exhibit the effects of the present invention in the production of glass fiber reinforced polyamide resin, the ratio of the solvent-soluble polyamide component to the final composition should be 1 to 30% by weight, preferably 3 to 15% by weight. It is better to make it . If the ratio of solvent-soluble polyamide is too low, good dispersion of glass fibers will not be obtained and the performance of the molded product, especially the impact resistance, will not be improved sufficiently; if it is too high, moldability will deteriorate and rigidity will decrease. descend. When mixing and remelting the master pellets and the base resin, it is necessary to dry the materials sufficiently, and in particular, it is necessary for the master pellets to have a volatilization loss of 0.2% by weight or less at the melting temperature. When the amount of volatilization of master pellets is large, air bubbles may form in the glass fiber reinforced polyamide resin.
Physically, the result is also unsatisfactory. Next, the present invention will be explained in more detail based on Examples, but the present invention is not limited thereto. Example 1 ε-caprolactam (6 monomers) 60 mol%,
Hexamethylene diammonium adipate (66
salt) 20 mol% and equimolar salt of hexamethylene diamine and dimethyl isophthalate (6I salt) 20 mol%
was placed in an autoclave with a small amount of water and stirred at 130°C for 2 hours under normal pressure in a nitrogen stream for initial condensation, and then continued heating at 270°C for 5 hours to form a polyamide with an intrinsic viscosity of 1.1 and a softening point of 155°C. A copolymer resin (6/66/6I) was obtained. This resin was pulverized and dissolved in methanol to obtain a stable resin solution with a concentration of 33% by weight and a viscosity of 7 poise at 20°C (as measured by a BH type viscometer manufactured by Tokyo Keiki Co., Ltd.). Next, three commercially available glass rovings with a single yarn diameter of 13 μm and a basis weight of 2.3 g/m were each introduced into the resin solution without twisting and unwinding, and the rovings were placed in a tank so that they passed through a W-shaped path. Impregnation and shape retention were carried out at a speed of 6 m/min by passing through a book bar guide through a squeeze bush having a hole of 2.5 mm in diameter and 10 mm in length with a curvature at the entrance. Although the roving was immersed in the resin solution for a distance of approximately 50 cm, the shape-retaining rod-like body became translucent, confirming that the resin solution was sufficiently impregnated between the single fibers. This rod-shaped material was introduced into a hot air drying furnace with a furnace length of 5 m and an atmospheric temperature set in stages from 80°C to 130°C, and after drying, it was cooled by blowing cold air, and then introduced into a caterpillar press type take-up machine with a contact length of 70 cm. The pellets were taken up and fed to a rotary cutter placed behind the pellets, and cut into approximately 3 mm length to produce master pellets. The resulting pellets had a glass content of 90% by weight, a volatilization loss at 255°C of 0.1%, and an apparent specific gravity of 0.68. This master pellet was mixed with nylon 6 resin pellets (diameter 2.2 mm, length 2.0 mm) having an intrinsic viscosity of 1.2.
Double diluted blend, cylinder diameter 65mm, L/
The material is put into the hopper of a D25 vented extruder, melt-extruded at a cylinder temperature of 270°C, and re-pelletized using a conventional method to obtain a glass fiber-reinforced polyamide resin molding material with a glass content of 30% by weight in a stable and highly efficient manner. Ta. The obtained molding material was molded into various test pieces using an injection molding machine with a cylinder diameter of 40 mm and a L/D of 15.
The physical properties were evaluated based on. In addition, a part of the molded product was dissolved in formic acid and photographed using a microscope to measure the average fiber length of the glass fibers in the molded product. Table 1 shows the results.
Shown below. Example 2 The master pellet obtained in Example 1 was diluted 3 times and blended with nylon 6 resin pellets with an intrinsic viscosity of 1.2, and a test piece was molded using the same molding machine as in Example 1 without re-pelletizing. , similarly evaluated. The results are shown in Table 1. Comparative Example A commercially available 6 mm cut roving (chopped strand) for FRTP and the same nylon 6 resin used in the example were mixed at a weight ratio of 3:7, and melt-extruded using the same extruder as in Example 1. A molding material with a glass fiber content of 30% by weight was made. A ribbon blender was used for mixing, but when blended for more than 10 minutes, the chopped strands turned into single fibers and became fluffy, making uniform blending difficult. In addition, during extrusion re-pelletization, the material was not stably fed into the extruder, causing irregularities and breakage of the strands. The same evaluation as in Examples 1 and 2 was also performed for the comparative example. Further, the molded pieces of Examples 1 and 2 and Comparative Example were decomposed with sulfuric acid and nitric acid, and trace amounts of iron contained in the resins were measured by atomic absorption spectrometry. Both results are also listed in Table 1.

【表】【table】

【表】 表1より明らかなように、本発明によるマスタ
ーペレツトを使用した成形品はその性能において
従来法に比べて著しく優れており、実施例2のよ
うにマスターチツプのドライブレンド物を直接成
形する方法においてもその効果を十分発揮してい
ることがわかる。なお当然のことであるが、比較
例で使用したチヨツプドストランドとナイロン6
樹脂ペレツトのブレンド物を直接成形材料として
射出成形すると、材料喰込不良による成形トラブ
ルを起こすだけでなく、成形品中にガラス繊維束
のまま分散しないで残つていることが確認され、
ガラス繊維強化効果が認められなかつた。また、
各成形片中に含まれる鉄分から判断して本発明に
よる方法では装置摩耗が著しく少ないことが理解
できよう。 実施例 3 市販のアルコール可溶ポリアミド樹脂(東レ(株)
製CM8000)をメタノール9、水1の混合溶媒に
加熱溶解せしめ、濃度20重量%、20℃における粘
度4poiseのポリアミド樹脂液を得た。この樹脂液
を使用して実施例1と同じロービング、同じ工程
からガラス含量93.5重量%、270℃における加熱
減量0.1%、見掛比重0.71のペレツトを得た。得
られたペレツトをマスターとして固有粘度1.3の
ナイロン66樹脂ペレツトで2.8倍に稀釈ブレンド
し、その混合ペレツトを直接射出成形してガラス
繊維含量33%の成形片を作つた。成形性は良好で
あり、成形片の表面は滑らかで、ガラス繊維束は
全く見られず均一に分散していた。実施例1と同
様にASTMに基づいて性能を測定し、また成形
品中の平均ガラス繊維長を測定した。結果を表2
に示す。
[Table] As is clear from Table 1, the performance of the molded product using the master pellets of the present invention is significantly superior to that of the conventional method. It can be seen that the molding method also fully exhibits its effects. Of course, the chopped strands and nylon 6 used in the comparative example
It has been confirmed that when a blend of resin pellets is directly injection molded as a molding material, not only does it cause molding problems due to poor material penetration, but also that glass fiber bundles remain undispersed in the molded product.
No glass fiber reinforcement effect was observed. Also,
It can be seen that, judging from the iron content in each molded piece, the process according to the invention results in significantly less equipment wear. Example 3 Commercially available alcohol-soluble polyamide resin (Toray Industries, Inc.)
CM8000) was heated and dissolved in a mixed solvent of 9 parts methanol and 1 part water to obtain a polyamide resin liquid having a concentration of 20% by weight and a viscosity of 4 poise at 20°C. Using this resin liquid, pellets having a glass content of 93.5% by weight, a loss on heating at 270°C of 0.1%, and an apparent specific gravity of 0.71 were obtained through the same roving and the same steps as in Example 1. The obtained pellets were diluted 2.8 times and blended with nylon 66 resin pellets having an intrinsic viscosity of 1.3 as a master, and the mixed pellets were directly injection molded to produce molded pieces with a glass fiber content of 33%. The moldability was good, the surface of the molded piece was smooth, and no glass fiber bundles were observed and they were uniformly dispersed. Performance was measured based on ASTM in the same manner as in Example 1, and the average glass fiber length in the molded product was also measured. Table 2 shows the results.
Shown below.

【表】 実施例 4〜7 実施例1で使用したポリアミド樹脂液を使用し
て、目付2.3g/mのロービングを2本使用する
他は全て実施例1と同条件にてマスターペレツト
を製造した。得られたペレツトはガラス含量80
%、見掛比重0.65、255℃における加熱減量0.1%
であつた。 このペレツトをマスターとして固有粘度1.2の
ナイロン6樹脂ペレツトで稀釈ブレンドし、ブレ
ンド物からの直接射出成形法で各種ガラス含量の
試験片を成形し、実施例1と同様に性能を評価し
た。成形性およびガラス繊維の分散はガラス繊維
含量15%、30%、45%、60%の各条件で良好であ
つた。結果を表3に示す。
[Table] Examples 4 to 7 Master pellets were produced under the same conditions as in Example 1, except for using the polyamide resin liquid used in Example 1 and using two rovings with a basis weight of 2.3 g/m. did. The resulting pellets have a glass content of 80
%, apparent specific gravity 0.65, heating loss 0.1% at 255℃
It was hot. Using these pellets as a master, they were diluted and blended with nylon 6 resin pellets having an intrinsic viscosity of 1.2, and test pieces with various glass contents were molded from the blend by direct injection molding, and their performance was evaluated in the same manner as in Example 1. The moldability and glass fiber dispersion were good at glass fiber contents of 15%, 30%, 45%, and 60%. The results are shown in Table 3.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 溶剤可溶型ポリアミド樹脂によつて固着され
たガラス繊維束(ロービング)をほぼ同寸法に細
かく切断してなるガラス繊維強化ポリアミド樹脂
製造用マスターペレツト。 2 ガラス繊維含量が60〜95重量%である特許請
求の範囲第1項記載のマスターペレツト。 3 見掛比重が0.5〜1.5である特許請求の範囲第
1項記載のマスターペレツト。 4 ナイロン6、ナイロン66、ナイロン610およ
びナイロン12の各原料モノマーより選ばれた1種
を含み共重合されたポリアミド樹脂で、メタノー
ルを主体とする溶剤系に対し20重量%以上溶解せ
しめた樹脂溶液が安定して得られる溶剤可溶型ポ
リアミド樹脂によつて固着された特許請求の範囲
第1項記載のガラス繊維強化ポリアミド樹脂製造
用のマスターペレツト。 5 軟化点が180℃以下の溶剤可溶型ポリアミド
樹脂であることを特徴とする特許請求の範囲第1
項記載のマスターペレツト。 6 ガラス繊維束(ガラスロービング)に溶剤可
溶型ポリアミド樹脂の溶液を連続的に含浸せし
め、スクイズブツシユを通して余剰の樹脂溶液を
除くとともに棒状に保形し、張力下に溶剤成分を
飛散せしめて繊維を固着結束せしめ、しかる後カ
ツターでほぼ同寸法に細かく切断して粒状となす
ことを特徴とするガラス繊維強化ポリアミド樹脂
製造用マスターペレツトの製造方法。 7 溶剤可溶型ポリアミド溶液は加温して単一円
筒回転粘度計による見掛粘度が0.5〜50poiseであ
ることを特徴とする特許請求の範囲第6項記載の
マスターペレツトの製造方法。 8 少なくとも2段以上のスクイズ装置を経て、
入口側に曲率を有する長さ/直径の比が3以上の
最終保形ブツシユを通すことを特徴とする特許請
求の範囲第6項記載のマスターペレツトの製造方
法。 9 樹脂溶液の溶剤に可溶なカツプリング剤を添
加した樹脂溶液を使用する特許請求の範囲第6項
記載のマスターペレツトの製造方法。 10 ガラス繊維束(ガラスロービング)に撚り
がかからないように樹脂含浸工程へ供給すること
を特徴とする特許請求の範囲第6項記載のマスタ
ーペレツトの製造方法。
[Scope of Claims] 1. A master pellet for producing a glass fiber reinforced polyamide resin, which is obtained by cutting glass fiber bundles (rovings) fixed by a solvent-soluble polyamide resin into approximately the same size. 2. The master pellet according to claim 1, having a glass fiber content of 60 to 95% by weight. 3. The master pellet according to claim 1, having an apparent specific gravity of 0.5 to 1.5. 4 Polyamide resin copolymerized with one selected from the raw material monomers nylon 6, nylon 66, nylon 610, and nylon 12, and a resin solution in which 20% by weight or more is dissolved in a solvent system mainly consisting of methanol. A master pellet for producing a glass fiber-reinforced polyamide resin according to claim 1, wherein the master pellet is fixed with a solvent-soluble polyamide resin that can be stably obtained. 5 Claim 1 characterized in that it is a solvent-soluble polyamide resin with a softening point of 180°C or less
Master pellets as described in section. 6. A glass fiber bundle (glass roving) is continuously impregnated with a solution of a solvent-soluble polyamide resin, the excess resin solution is removed through a squeeze bushing, the shape is maintained in a rod shape, and the solvent component is scattered under tension. A method for producing master pellets for producing glass fiber-reinforced polyamide resin, which comprises binding fibers together and then cutting them finely into particles of approximately the same size using a cutter. 7. The method for producing master pellets according to claim 6, wherein the solvent-soluble polyamide solution is heated to have an apparent viscosity of 0.5 to 50 poise as measured by a single cylinder rotational viscometer. 8 After passing through at least two stages of squeezing equipment,
7. The method for producing master pellets according to claim 6, wherein the pellets are passed through a final shape-retaining bush having a length/diameter ratio of 3 or more and having a curvature on the inlet side. 9. The method for producing master pellets according to claim 6, which uses a resin solution in which a coupling agent soluble in the solvent of the resin solution is added. 10. The method for producing master pellets according to claim 6, characterized in that the glass fiber bundles (glass rovings) are fed to the resin impregnation step so as not to be twisted.
JP16531278A 1978-12-29 1978-12-29 Master pellets for manufacturing glass-fiber reinforced polyamide resin and their preparation Granted JPS5592740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16531278A JPS5592740A (en) 1978-12-29 1978-12-29 Master pellets for manufacturing glass-fiber reinforced polyamide resin and their preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16531278A JPS5592740A (en) 1978-12-29 1978-12-29 Master pellets for manufacturing glass-fiber reinforced polyamide resin and their preparation

Publications (2)

Publication Number Publication Date
JPS5592740A JPS5592740A (en) 1980-07-14
JPS6221608B2 true JPS6221608B2 (en) 1987-05-13

Family

ID=15809930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16531278A Granted JPS5592740A (en) 1978-12-29 1978-12-29 Master pellets for manufacturing glass-fiber reinforced polyamide resin and their preparation

Country Status (1)

Country Link
JP (1) JPS5592740A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU554594B2 (en) * 1981-01-21 1986-08-28 Imperial Chemical Industries Plc Fibre re-inforced
CN113910487A (en) * 2021-10-08 2022-01-11 江苏长海复合材料股份有限公司 Granulation process of high-strength glass fiber reinforced nylon particles

Also Published As

Publication number Publication date
JPS5592740A (en) 1980-07-14

Similar Documents

Publication Publication Date Title
US4037011A (en) Glass fiber reinforced thermoplastic composition and process for its preparation
US3834980A (en) Glass-filled thermoplastic pellets suitable for blending with thermoplastic
CA2560349C (en) Manufacturing process for hybrid organic and inorganic fibre-filled composite materials
US3164563A (en) Process for the production of moulding compositions
US5227238A (en) Carbon fiber chopped strands and method of production thereof
US20090176923A1 (en) Glass-fiber reinforced thermoplastic resin composition and molded article thereof
US20020000683A1 (en) Methods of making composites containing cellulosic pulp fibers
EP0875351A1 (en) Fibre-reinforced moulded articles
EP0102158A2 (en) Method of producing fibre-reinforced composition
KR20070083584A (en) Flowable pellets based on cellulose textile fibres, a method for the production thereof, and use thereof
NZ211186A (en) Process for making fibre-reinforced thermoplastics
CN1962732A (en) Continuous long glass fiber reinforced profax resin granular material preparation method
AU2015371082A1 (en) Polyamide mixture having improved fluidity
JP2001172399A (en) Colored filament reinforced polyolefin structure and molded article
EP0368312B1 (en) Carbon fiber chopped strands and method of production thereof
EP0170245B1 (en) Pellets of fibre-reinforced compositions and methods for producing such pellets
JPS6221608B2 (en)
CN110305469A (en) A kind of polyamide compoiste material and its preparation method and application for gas assisted molding
JPH0416309A (en) Manufacture of glass fiber reinforced thermoplastic resin forming material
JPS61146814A (en) Matte nylon fiber containing sectionalized wire of polypropylene
JPH0365311A (en) Carbon fiber chop
JP3352121B2 (en) Long fiber reinforced polyamide resin composition and molded article thereof
CN106009542A (en) Glass fiber reinforced terephthalic acid butanediol composite material and preparation method thereof
JPH05124036A (en) Production of fiber-reinforced resin body
JP2564559B2 (en) Aromatic polysulfone resin composition