JPS62214320A - Vortex flowmeter - Google Patents

Vortex flowmeter

Info

Publication number
JPS62214320A
JPS62214320A JP61057766A JP5776686A JPS62214320A JP S62214320 A JPS62214320 A JP S62214320A JP 61057766 A JP61057766 A JP 61057766A JP 5776686 A JP5776686 A JP 5776686A JP S62214320 A JPS62214320 A JP S62214320A
Authority
JP
Japan
Prior art keywords
vortex
generating element
vortex generating
upstream
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61057766A
Other languages
Japanese (ja)
Inventor
Katsuo Misumi
勝夫 三角
Koji Atsumi
浩司 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Engineering Co Ltd
Original Assignee
Oval Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Engineering Co Ltd filed Critical Oval Engineering Co Ltd
Priority to JP61057766A priority Critical patent/JPS62214320A/en
Priority to US07/024,294 priority patent/US4838092A/en
Priority to DE3750965T priority patent/DE3750965T2/en
Priority to CA000532031A priority patent/CA1306120C/en
Priority to EP87103713A priority patent/EP0240772B1/en
Priority to KR1019870002350A priority patent/KR920004100B1/en
Publication of JPS62214320A publication Critical patent/JPS62214320A/en
Priority to US07/283,656 priority patent/US4891989A/en
Priority to US07/398,197 priority patent/US4977781A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3209Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices
    • G01F1/3218Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices bluff body design

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To stabilize instrumental error characteristics within a wide flowmeter measurement range by obtain mutual operation in which an upstream-side vortex generating element and a downstream-side vortex generating element which has a slightly low frequency that is compensate each other as to a Reynolds number characteristics. CONSTITUTION:The vortex generating body composed of vortex generating elements 2a and 2b arranged at right angle to a flow is provided in a flow passage 1 and a flat plate 2c is arranged between the upstream-side vortex generating element 2a and down-stream vortex generating element 2b. The representative length of the elements 2a and 2b is the breadth (d) of the opposite surfaces of the element 2a and 2b. The plate thickness tb of the flat plate 2c is preferably tb=0.1-0.4d and the gap (t) between the elements 2a and 2b is about t=0.1-0.9d. Further, a vortex frequency ratio generated when the elements 2a and 2b are arranged at those positions independently is set to 0.7-0.9 on the basis of the element 2a. Consequently, the instrumental error characteristics are improved.

Description

【発明の詳細な説明】 技術分野 本発明は、渦流量計、より詳細には、渦流量計における
渦発生体の構造に関する。
TECHNICAL FIELD The present invention relates to vortex flowmeters, and more particularly to the structure of vortex generators in vortex flowmeters.

従来技術 本出願人は特公昭55−40804号公報において流体
の流れ方向に対して渦発生素子を設け。
Prior Art The applicant provided a vortex generating element in the fluid flow direction in Japanese Patent Publication No. 55-40804.

この渦発生素子の後方に所望の厚さを有するカルマン渦
発生素子板を一体的に設け、さらにこのカルマン渦発生
素子板の後方に少なくとも1若しくは2以上の前記と同
様のカルマン渦発生素子板を所望の間隔をおいて、かつ
それぞれ独立して配設するカルマン渦形成装置を提案し
た。上記の渦発生素子は流れ軸上に頂点をもち鋭角な二
等辺三角形状をした断面形状をしており、ここで発生し
た渦を後部に配設された1若しくは2以上のカルマン渦
発生素子板(以下、単に平板と呼ぶ)により渦を最適な
強さに発達させ、最終段の平板より渦を剥離させるもの
である。このようにしてカルマン渦発生素子で発生した
渦は充分強い渦として発達させることができるので安定
した渦発生体を得ることができた。
A Karman vortex generating element plate having a desired thickness is integrally provided behind this vortex generating element, and at least one or more Karman vortex generating element plates similar to the above are further provided behind this Karman vortex generating element plate. We proposed Karman vortex forming devices that are arranged independently at desired intervals. The above-mentioned vortex generating element has an acute isosceles triangular cross-sectional shape with an apex on the flow axis, and the vortex generated here is transferred to one or more Karman vortex generating element plates disposed at the rear. (hereinafter simply referred to as a flat plate), the vortex is developed to an optimal strength, and the vortex is separated from the final stage flat plate. In this way, the vortex generated by the Karman vortex generating element could be developed into a sufficiently strong vortex, and a stable vortex generator could be obtained.

従来技術の問題点 叙述の従来技術においては渦発生体の後流側に平板を併
置することにより渦の増幅効果があるため、適当な平板
の数を選択することにより最終段の平板から剥離する場
合、それまでに充分に発達した渦が生成されているので
剥離に要する時間も短くなり周波数の極めて安定した渦
が生成される特徴があるが、低レイノルズ数域で渦流量
計の器差はプラスに暫増する特性を持つという問題点が
あった。
Problems with the Prior Art In the conventional technology described above, the vortex is amplified by placing a flat plate on the downstream side of the vortex generator, so by selecting an appropriate number of flat plates, separation from the final stage flat plate can be achieved. In this case, a sufficiently developed vortex has been generated by then, so the time required for separation is shortened, and a vortex with an extremely stable frequency is generated.However, in the low Reynolds number region, the instrumental error of the vortex flowmeter is There was a problem in that it had the characteristic of increasing temporarily in a positive manner.

問題点を解決するための手段 上記問題点に対し、本出願人は渦発生素子が流路内に配
設された状態においての発生渦周波数比に着目して実験
した結果、従来技術における平板は単に渦増幅としての
機能を与えて、最終段は平板に替え、渦周波数が、上記
上流側発生素子のもつ渦周波数に対して0.7〜0.9
の比率の渦周波数をもった渦発生素子を対向して配設し
た場合に、器差のレイノルズ数特性、特に、低レイノル
ズ数域で改善されることを発見した。なお、上記実験に
よると、渦発生素子間に平板がない場合では、渦の安定
性は劣るが、渦発生素子間の間隔と渦周波数比を上記値
に設定することにより器差特性が改善される。
Means for Solving the Problems Regarding the above problems, the present applicant conducted experiments focusing on the frequency ratio of generated vortices in a state where the vortex generating element is disposed in the flow path, and found that the flat plate in the prior art Simply provide the function of vortex amplification, replace the final stage with a flat plate, and set the vortex frequency to 0.7 to 0.9 with respect to the vortex frequency of the upstream generation element.
We have discovered that when vortex generating elements with a vortex frequency ratio of According to the above experiment, when there is no flat plate between the vortex generating elements, the stability of the vortex is poor, but by setting the spacing between the vortex generating elements and the vortex frequency ratio to the above values, the instrumental error characteristics are improved. Ru.

実施例 第1図(A)は、本発明による渦流量計の側断面図、(
B)は平断面図で、流路1内には渦発生素子2a+ 2
bが流れ方向Aに垂直に対向して併置され、これら渦発
生素子2a、2bの中間には平板2oが各々の渦発生素
子2a、2bに平行して配設されている。これら渦発生
素子2a、2b。
Embodiment FIG. 1(A) is a side sectional view of a vortex flowmeter according to the present invention, (
B) is a plan cross-sectional view, in which there is a vortex generating element 2a+2 in the flow path 1.
b are placed side by side, facing each other perpendicularly to the flow direction A, and a flat plate 2o is arranged parallel to each vortex generating element 2a, 2b between these vortex generating elements 2a, 2b. These vortex generating elements 2a, 2b.

平板2cは協働して渦発生体を構成している。また、渦
発生素子の代表長さdは上流側および下流側の渦発生素
子2a、2bの対向する面における幅員である。平板2
cの板FX tbはtl =0.1d〜0.4dが最適
であり、各々の渦発生素子との間隙tはt =0.1d
〜0.9dが必要である。渦信号は図示しない渦検出器
により電気信号に変換され、プリアンプ3で整形増幅し
て信号処理される。なお、図においては、平板2Cは説
明のため一枚のみ図示したが、複数でもよく、必要に応
じて除いてもよい。従来技術における渦流量計の特性に
ついて循環の面からみると、まず、最終段の平板から渦
が剥離する瞬間における渦の循環は各々の平板廻りの循
環の和と平板間で生ずる渦の循環の和としてあられされ
る。渦周波数はストロ−ハル数が一定であれば流速に比
例するが、流速が一定でストロ−ハル数が変化すると、
当然ながらストロ−ハル数に比例する。流体力学の示す
ところによるとストロ−ハル数は循環の大きさの逆関数
として与えられる。従って、従来技術における渦周波数
は平板における渦の増幅作用をもった上記循環によって
決定されるため、増幅作用の及ぶ高いレイノルズ数域で
は渦周波数は低くなるが、低レイノルズ数域では平板側
の渦増幅作用は小さくなり、上流側渦発生素子の循環が
支配的となり、しかも循環は小さいため渦周波数は高く
なりプラス器差に移行する。即ち、大流量域では平坦で
少流量域でプラスに向かう総合器差特性となる。
The flat plates 2c cooperate to form a vortex generator. Further, the representative length d of the vortex generating element is the width of the upstream and downstream vortex generating elements 2a and 2b on opposing surfaces. flat plate 2
The optimal value for plate FX tb of c is tl = 0.1d to 0.4d, and the gap t with each vortex generating element is t = 0.1d.
~0.9d is required. The vortex signal is converted into an electric signal by an eddy detector (not shown), and is shaped and amplified by a preamplifier 3 for signal processing. In addition, in the figure, only one flat plate 2C is shown for explanation, but a plurality of flat plates 2C may be used, and they may be removed as necessary. Looking at the characteristics of conventional vortex flowmeters from the perspective of circulation, firstly, the vortex circulation at the moment when the vortex separates from the final plate is the sum of the circulation around each plate and the vortex circulation occurring between the plates. He will appear as peace. The vortex frequency is proportional to the flow velocity if the Strouhal number is constant, but when the Strouhal number is constant and the Strouhal number changes,
Naturally, it is proportional to the Strouhal number. Fluid mechanics shows that the Strouhal number is given as an inverse function of the magnitude of circulation. Therefore, in the conventional technology, the vortex frequency is determined by the above-mentioned circulation that has an amplifying effect on the vortices on the flat plate, so the vortex frequency becomes low in the high Reynolds number region where the amplifying effect is applied, but in the low Reynolds number region, the vortex on the flat plate side The amplification effect becomes smaller and the circulation of the upstream vortex generating element becomes dominant, and since the circulation is small, the vortex frequency increases and shifts to a positive instrumental difference. That is, the overall instrumental error characteristic is flat in the large flow rate region and becomes positive in the small flow rate region.

第1図においては上流側渦発生素子2aを二等辺三角形
状とし、下流側渦発生素子2bを矩形とした例を示した
が、第2図に代表的な断面形状をあげ、流れ方向Aによ
って発生する渦周波数の変化傾向を示した。ここで円弧
2丁字形等は除いたが、各々二等辺三角形、矩形と共通
している傾向である。第2図においてはI、TIIの梯
形、 n、 vの三角形、■の矩形を示しているが、各
々の断面形状において(a)が最も高い渦周波数を発生
し、(c)が最も低い渦周波数となり、(b)がその中
間となる。同一形状でも代表長さdが上流側か下流側か
により渦周波数は異なり、前者は低く。
Although FIG. 1 shows an example in which the upstream vortex generating element 2a has an isosceles triangular shape and the downstream vortex generating element 2b has a rectangular shape, FIG. The change trend of the generated eddy frequency is shown. Here, we have excluded the circular-arc 2-C shape, etc., but these tend to be common to the isosceles triangle and rectangle. Figure 2 shows the trapezoidal shapes of I and TII, the triangular shapes of n and v, and the rectangular shapes of frequency, and (b) is in the middle. Even with the same shape, the vortex frequency differs depending on whether the representative length d is on the upstream or downstream side, and is lower in the former.

後者は高い渦周波数を発生する。従って1本発明を実現
するには、第2図を基本的構成要素として組合せするこ
とができる。具体例として、第3図に、渦発生体の断面
形状を示す。(a)、(b) 。
The latter generates high vortex frequencies. Therefore, in order to realize the present invention, the basic components shown in FIG. 2 can be combined. As a specific example, FIG. 3 shows the cross-sectional shape of the vortex generator. (a), (b).

(c)、(d)、(e)、(f)は上流側渦発生素子2
aを二等辺三角形状として下流渦発生素子2bを各々梯
形2円弧、矩形、三角形を組合せたもので、第2図に示
した渦周波数の傾向から寸法諸元を選択することにより
、流れ方向A、またはB何れの方向からでも流入するよ
う構成することも可能である。(g)は梯形と三角形、
(h)は三角形と丁字形とを組み合わせたもので、この
場合は流入方向はAに限定される。
(c), (d), (e), and (f) are upstream vortex generating elements 2
The downstream vortex generating element 2b is a combination of a trapezoidal arc, a rectangle, and a triangle, with a being an isosceles triangular shape, and by selecting the dimensions from the trend of the vortex frequency shown in Fig. 2, the flow direction A , or B. It is also possible to configure the structure so that the water flows in from either direction. (g) is a trapezoid and a triangle;
(h) is a combination of a triangle and a T-shape, and in this case, the inflow direction is limited to A.

効−一一農 上述のように、本発明の渦流量計によれば、上流側渦発
生素子と、これより僅かに低い渦周波数の下流側渦発生
素子とがレイノルズ数特性において互いに補完するよう
な相互作用を得ることにより、従来は1:2C1度の流
量範囲であったものが、1:50以上の広範囲な流量計
測が可能となり、しかも、渦の増幅作用も付加されるの
で安定な渦流量計を提供することができる6
As described above, according to the vortex flow meter of the present invention, the upstream vortex generating element and the downstream vortex generating element having a slightly lower vortex frequency are complementary to each other in Reynolds number characteristics. By obtaining a strong interaction, it is now possible to measure a wide range of flow rate of 1:50 or more, whereas the conventional flow rate range was 1:2C1 degree.Moreover, the amplification effect of the vortex is added, so a stable vortex can be measured. 6. Can provide flow meter

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は、本発明になる渦流量計の側断面図、第
1図(B)は平断面図、第2図は、基本的な対称形断面
の渦周波数の傾向図、第3図は、他の実施例としての渦
発生体を示す断面図である。 1・・・流路、2a、2b・・・渦発生素子、2c・・
・平板。 第1図 第2図 r      rl    m      vv第 3 Cσン 図
FIG. 1(A) is a side sectional view of the vortex flow meter according to the present invention, FIG. 1(B) is a plan sectional view, and FIG. FIG. 3 is a sectional view showing a vortex generator as another embodiment. 1... Channel, 2a, 2b... Vortex generating element, 2c...
・Flat plate. Figure 1 Figure 2 r rl m vv 3rd Cσ diagram

Claims (1)

【特許請求の範囲】[Claims]  流路内に流れと垂直に対向して配設された複数の渦発
生素子からなる渦発生体を有し、上流側渦発生素子と下
流側渦発生素子とが所定間隔をおいて流れ方向に併置さ
れるとともに、前記上流側渦発生素子と下流側渦発生素
子との間に零乃至複数の平板が等間隔に併置され、各々
の渦発生素子の代表長さが対向する面上にあり、かつ、
各々の渦発生素子が上記位置に単独に配設されたとき発
生する渦周波数比が上流側渦発生素子を基準として0.
7〜0.9であることを特徴とする渦流量計。
The vortex generator includes a plurality of vortex generators disposed perpendicularly to the flow in the flow path, and the upstream vortex generator and the downstream vortex generator are arranged at a predetermined interval in the flow direction. and zero to a plurality of flat plates are placed side by side at equal intervals between the upstream vortex generating element and the downstream vortex generating element, and the representative length of each vortex generating element is on the opposing surface, and,
When each vortex generating element is individually arranged at the above position, the vortex frequency ratio generated is 0.0 with respect to the upstream vortex generating element.
A vortex flow meter characterized in that the flow rate is 7 to 0.9.
JP61057766A 1986-03-15 1986-03-16 Vortex flowmeter Pending JPS62214320A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP61057766A JPS62214320A (en) 1986-03-16 1986-03-16 Vortex flowmeter
US07/024,294 US4838092A (en) 1986-03-15 1987-03-10 Vortex flow meter
DE3750965T DE3750965T2 (en) 1986-03-15 1987-03-13 Vortex flow meter.
CA000532031A CA1306120C (en) 1986-03-15 1987-03-13 Vortex flow meter
EP87103713A EP0240772B1 (en) 1986-03-15 1987-03-13 A vortex flow meter
KR1019870002350A KR920004100B1 (en) 1986-03-15 1987-03-16 The eddy water meter
US07/283,656 US4891989A (en) 1986-03-15 1988-12-13 Vortex flow meter
US07/398,197 US4977781A (en) 1986-03-15 1989-08-24 Vortex flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61057766A JPS62214320A (en) 1986-03-16 1986-03-16 Vortex flowmeter

Publications (1)

Publication Number Publication Date
JPS62214320A true JPS62214320A (en) 1987-09-21

Family

ID=13064995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61057766A Pending JPS62214320A (en) 1986-03-15 1986-03-16 Vortex flowmeter

Country Status (1)

Country Link
JP (1) JPS62214320A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523497A (en) * 1979-07-23 1980-02-19 Oval Eng Co Ltd Karman vortex flow meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523497A (en) * 1979-07-23 1980-02-19 Oval Eng Co Ltd Karman vortex flow meter

Similar Documents

Publication Publication Date Title
ES8206021A1 (en) Vortex-shedding flowmeter and method of measuring fluid flow.
KR920004100B1 (en) The eddy water meter
US4782710A (en) Karman vortex flow meter
US20020020225A1 (en) Vortex flow meter
EP0868652B1 (en) Fluidic flowmeter
JPS62214320A (en) Vortex flowmeter
JP3119782B2 (en) Flowmeter
JPS6048687B2 (en) Flowmeter
EP0106881A1 (en) Narrow profile vortex shedding body.
JPH0620972Y2 (en) Vortex flowmeter
JPH01299416A (en) Converting apparatus of flow rate
JPH053944Y2 (en)
JPH053945Y2 (en)
JP3113946B2 (en) Vortex flow meter
JP3029665B2 (en) Ring vortex flow meter
JPH01250023A (en) Vortex flowmeter
GB2225638A (en) Karman vortex flow meter
JPS61253424A (en) Vortex flowmeter
JPH04262209A (en) Fluidic flowmeter having micro-flow sensor
JP3153752B2 (en) Vortex flow meter
JP2925058B2 (en) Fluidic flow meter
SU561870A1 (en) Vortex Flowmeter
JPH05240674A (en) Vortex flowmeter
JP2591637Y2 (en) Fluidic flow meter
JP3050865U (en) Symmetric column estimation flow meter