JPS62214265A - Multi-nozzle hole nozzle for injecting fuel for diesel engine - Google Patents

Multi-nozzle hole nozzle for injecting fuel for diesel engine

Info

Publication number
JPS62214265A
JPS62214265A JP5799586A JP5799586A JPS62214265A JP S62214265 A JPS62214265 A JP S62214265A JP 5799586 A JP5799586 A JP 5799586A JP 5799586 A JP5799586 A JP 5799586A JP S62214265 A JPS62214265 A JP S62214265A
Authority
JP
Japan
Prior art keywords
nozzle
combustion chamber
fuel
spray angle
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5799586A
Other languages
Japanese (ja)
Inventor
Masahiro Akeda
正寛 明田
Satoshi Fujii
聡 藤井
Seiji Kioka
木岡 精二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP5799586A priority Critical patent/JPS62214265A/en
Publication of JPS62214265A publication Critical patent/JPS62214265A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To prevent mist from adhesion to the side peripheral wall of a combustion chamber and to prevent production of blue while smoke, by a method wherein nozzle holes are formed in plural spots in the peripheral direction of the suck part of a multi-nozzle hole nozzle, and a spray angle enlarging groove is formed in a particular state. CONSTITUTION:Nozzle holes 3 are formed in plural spots in the peripheral direction of a suck part 2 of a multi-nozzle hole nozzle 1 for injecting fuel of a diesel engine E. A spray angle enlarging groove 6, enlarging the direction of the spray angle of fuel, is formed in an outer peripheral surface 7 of the suck part 2 in a state in that it is extended across an outlet 4 of the nozzle port 3. Since the bore of a combustion chamber 5 can be increased, fuel sprayed through the nozzle 1 is drawn in a swirl throughout a long distance until it approaches the side peripheral wall of the combustion chamber 5, and is diluted. This constitution enables prevention of adhesion of mist to the side peripheral wall of the combustion chamber, and prevention of the production of blue white smoke.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、主として小排気量のディーゼルエンノンに用
いるのに好適な燃料噴射用の多噴口ホールノズルに関し
、始動時に青白煙の発生をなくしながらも、稼動運忙時
にスツールによる燃料の混合撹拌における空×利用率を
向上するとともに、簡単な加工で噴霧角度を高精度に調
整できるものを提供する。
[Detailed Description of the Invention] <Field of Industrial Application> The present invention relates to a multi-hole nozzle for fuel injection suitable for use mainly in small-displacement diesel engines, which eliminates the generation of blue-white smoke during startup. However, to provide an apparatus that improves the efficiency of empty space utilization in mixing and stirring fuel using a stool during busy periods of operation, and allows the spray angle to be adjusted with high precision through simple machining.

く従来技術〉 従来の多噴口ホールノズルでは、噴口はサック部に断面
が円形で直径が1mm以下の微細な孔として単にあけら
れていたにとどまり、ここから噴出される噴霧燃料は断
面が円形になっていた。
Prior art> In conventional multi-nozzle hole nozzles, the nozzle is simply a fine hole with a circular cross section and a diameter of 1 mm or less in the sack part, and the atomized fuel ejected from this hole has a circular cross section. It had become.

〈発明が解決しようとする問題点〉 行程容積が例えば1000cc以下の小排気量の直噴デ
ィーゼルエンジンにおいては、ピストンヘッドに凹設さ
れた皿形またはトロイダルキャビティ形の燃焼室の容積
を充分に大きくできないため、燃料噴射の条件が悪べ、
始動時に青白煙が発生し易いという問題がある。
<Problems to be Solved by the Invention> In a small displacement direct injection diesel engine with a stroke volume of, for example, 1000 cc or less, the volume of the dish-shaped or toroidal cavity-shaped combustion chamber recessed in the piston head must be sufficiently large. If the fuel injection conditions are not good,
There is a problem in that blue and white smoke is likely to be generated when starting.

すなわち、周知のように、体積効率とスワールの流速と
は、吸気ボートの形状等によって決まり、両立させるこ
とが難しい。
That is, as is well known, volumetric efficiency and swirl flow velocity are determined by the shape of the intake boat, etc., and it is difficult to achieve both.

そこで、稼動運転時に高出力を得るために高い体積効率
を確保する必要があり、この場合スワールの流速を充分
に速くすることができない。
Therefore, in order to obtain high output during operation, it is necessary to ensure high volumetric efficiency, and in this case, the flow velocity of the swirl cannot be made sufficiently high.

従って、この低速のスワールでノズルから燃焼室に噴霧
された燃料を充分に拡散させて空気利用率を高めるため
には、燃焼室の直径を小さくして角速度を速めることが
必要になる。
Therefore, in order to sufficiently diffuse the fuel sprayed into the combustion chamber from the nozzle with this low-velocity swirl and increase the air utilization rate, it is necessary to reduce the diameter of the combustion chamber and increase the angular velocity.

この小径の燃焼室では、稼動運転時には高い体積効率が
確保されるから高出力が得られる点で、そして、上記低
速スワールであっても空気利用率が高いから燃焼効率が
高まる点で優れている。
This small-diameter combustion chamber is superior in that it can obtain high output because it ensures high volumetric efficiency during operation, and that combustion efficiency increases because the air utilization rate is high even with the low-speed swirl mentioned above. .

なお、噴n燃料の一部が小径の燃焼室の周壁に多量に衝
突して付着しようとするが、燃焼室の周壁が燃焼熱で高
温に加熱されているので、衝突付着してくる燃料を速や
かに加熱して気化させるので、燃焼性能が低下すること
はない。
Note that a large amount of the injected fuel collides with the peripheral wall of the small-diameter combustion chamber and attempts to adhere to it, but since the peripheral wall of the combustion chamber is heated to a high temperature by the heat of combustion, the fuel that collides with and adheres to the surrounding wall of the combustion chamber is heated to a high temperature. Since it is quickly heated and vaporized, combustion performance does not deteriorate.

ところが、エンジンの始動時には、燃焼室の周壁がまだ
高温に加熱されていないので、多量に衝突付着してくる
燃料を加熱して気化する事ができず、そのまま付着が進
むため、燃焼不良を起し、青白煙を発生する点で問題が
ある。
However, when the engine is started, the peripheral wall of the combustion chamber has not yet been heated to a high temperature, so the large amount of fuel that collides with the fuel cannot be heated and vaporized, and the fuel continues to accumulate, resulting in poor combustion. However, there is a problem in that it generates blue-white smoke.

このため、燃焼室の口径を大きく形成し、ノズルから噴
霧されたミストの飛散距離を長くしてミストが燃焼室の
側周壁に付着する前に希薄化させてしまうことが考えら
れるが、この場合、ノズルからの噴霧角度を従来通りに
すれば、吸気ポートの形状が一定であることからスワー
ルの周速度も一定で増速できないので、一本の噴口から
噴nされた燃料をスツールの周方向に混合撹拌できる範
囲Pと、スワール方向に隣接する池の噴口から噴霧され
た燃料の混合撹拌範囲Qとの開に間隙Uができ(第3図
参照)、いわばスワールの一部が燃料と混合せず、空気
利用率を低下させてしまう。
For this reason, it is conceivable that the diameter of the combustion chamber may be made larger to increase the scattering distance of the mist sprayed from the nozzle, thereby diluting the mist before it adheres to the side peripheral wall of the combustion chamber, but in this case If the spray angle from the nozzle is the same as before, since the shape of the intake port is constant, the circumferential velocity of the swirl is also constant and cannot be increased, so the fuel injected from one nozzle is spread in the circumferential direction of the stool. A gap U is created between the range P where fuel can be mixed and stirred and the range Q where fuel is mixed and stirred sprayed from the nozzle of the pond adjacent in the swirl direction (see Figure 3), so that a part of the swirl is mixed with the fuel. Otherwise, the air utilization rate will decrease.

一方、上述のように、燃焼室の容積はそのエンジンの圧
縮比によって固定的に決まるので、燃焼室の口径を大き
く形成すると、これに反比例してその深さは浅くしなけ
ればならない。
On the other hand, as mentioned above, the volume of the combustion chamber is fixedly determined by the compression ratio of the engine, so if the diameter of the combustion chamber is made large, its depth must be made shallow in inverse proportion to this.

そこで、ノズルからの噴霧角度を適宜拡げて燃焼室周方
向への燃料の拡がりを大きくすると、空気利用率を上げ
ることができるのであるが、その反面、浅く形成した燃
焼室の底壁やシリングヘッドの燃焼室に臨む端面に燃料
が付着して燃焼効率を低下させたり、青白煙の原因にな
ったりする。
Therefore, by appropriately widening the spray angle from the nozzle to increase the spread of fuel in the circumferential direction of the combustion chamber, it is possible to increase the air utilization rate. Fuel adheres to the end face facing the combustion chamber, reducing combustion efficiency and causing blue-white smoke.

本発明は、始動時における青白煙の発生をな(すととも
に、燃料とスワールの混合攪拌における空気利用率を向
上することを技術的課題とする。
The technical object of the present invention is to prevent the generation of blue-white smoke at the time of startup, and to improve the air utilization efficiency in mixing and stirring fuel and swirl.

く問題点を解決するための手段〉 上記課題を達成するための手段を、実施例に対応する第
1図乃至第11図を用いて以下に説明する。
Means for Solving the Problems> Means for achieving the above problems will be described below with reference to FIGS. 1 to 11, which correspond to embodiments.

即ち、本発明は、ディーゼルエンジンEの燃料噴射用の
多噴ロホール/ズル1のサック部2の周方向の複数箇所
にそれぞれ噴口3を空け、複数本の噴口3のうちの少な
くとも1つの噴口3の出口4の部分において、噴口3か
ら燃料が噴霧されるときの燃焼室5の軸心方向Sに沿う
噴霧角度aよりもその周方向Tに沿う噴霧角度βの方向
を大きくする噴霧角度拡大溝6を、サック部2の外周面
7に噴口3の出口4を横切る状態に形成したことを特徴
とするものである。
That is, the present invention provides injection ports 3 at a plurality of locations in the circumferential direction of the sack portion 2 of a multi-injection hole/zuru 1 for fuel injection of a diesel engine E, and at least one injection port 3 among the plurality of injection ports 3. At the outlet 4 of the nozzle 3, a spray angle enlarging groove makes the spray angle β along the circumferential direction T larger than the spray angle a along the axial direction S of the combustion chamber 5 when fuel is sprayed from the nozzle 3. 6 is formed on the outer circumferential surface 7 of the sack portion 2 so as to cross the outlet 4 of the spout 3.

く作 用〉 ノズル1からの噴霧の拡がり、即ち、噴霧角度は噴口3
の長さと口径によって規定され、長さが短くなるほど、
また、口径が細くなるほど噴霧角度は大きくなる。
Effect> The spread of the spray from nozzle 1, that is, the spray angle is
determined by the length and diameter of the
Moreover, the spray angle becomes larger as the diameter becomes smaller.

従って、噴口3の出口4にこれを横切る状態に噴霧角度
拡大溝6を形成すると当該横断方向に直交する面での噴
口出口4の切すロはその中央が内方に四人する形状をと
り、この中央部を含む横断平面における噴口径路の長さ
は最も短くなるので、噴口から出た燃料噴霧は上記横断
方向、即ち、燃焼室5の周方向Tに拡がることになる。
Therefore, if a spray angle expanding groove 6 is formed across the outlet 4 of the nozzle 3, the cut corner of the nozzle outlet 4 in a plane orthogonal to the transverse direction will have a shape in which the center of the groove extends inward. Since the length of the nozzle path in the transverse plane including this central portion is the shortest, the fuel spray emitted from the nozzle spreads in the above-mentioned transverse direction, that is, in the circumferential direction T of the combustion chamber 5.

これに対して、切り口の上下端縁部での径路長さは、溝
の形成前のそれを維持するので、上記横断方向に直交す
る縦断面における噴口径路の長さは元の噴口の長さに等
しくなり、横断平面における噴口径路の長さに比べて長
くなって、上記縦断方向、即ち、燃焼室5の軸心方向S
への噴霧角度aは前記燃焼室5の周方向Tへの角度βに
比べて小さくなる。
On the other hand, since the path length at the upper and lower edges of the cut remains the same as before the groove was formed, the length of the nozzle path in the longitudinal section perpendicular to the above-mentioned transverse direction is the original length of the nozzle. is equal to the length of the nozzle path in the transverse plane, and is longer than the length of the nozzle path in the transverse plane, and is
The spray angle a toward the combustion chamber 5 is smaller than the angle β toward the circumferential direction T of the combustion chamber 5.

従って、噴射方向に直交する方向での噴霧燃料の断面は
、第4図に示すように水平な長軸を持つ楕円形状、ひし
形状、長方形状又はその池の任意の横長形状に拡がる。
Therefore, the cross section of the atomized fuel in the direction perpendicular to the injection direction expands into an elliptical shape, a rhombus shape, a rectangular shape, or any horizontally elongated shape having a horizontal long axis as shown in FIG.

そこで、燃焼室5の口径を拡げ、その底壁を浅く設定し
たうえで、ノズル1がら燃焼室5に噴射した場合の燃料
噴霧の状態を説明する。
Therefore, a description will be given of the state of fuel spray when the diameter of the combustion chamber 5 is increased, the bottom wall thereof is set shallow, and fuel is injected into the combustion chamber 5 from the nozzle 1.

まず、燃料の噴霧状態を平面視すると、噴霧角度βが大
きくなって、一つの出口4から噴霧された燃料はスクー
ルの方向Rに混合撹拌されてゆき、スツール方向に隣接
する他の噴口がらの燃料の噴n領域Kに達する(第3図
参照)。
First, when looking at the fuel spray state in plan, the spray angle β increases, and the fuel sprayed from one outlet 4 is mixed and stirred in the direction R of the school, and the fuel sprayed from other nozzles adjacent to the stool direction is mixed and stirred. The fuel injection region K is reached (see FIG. 3).

その結果、高い体積効率を確保するため低速とならざる
を得ないスワールでも、噴霧燃料は狭い燃料同土間の開
角のほぼ全域に亘って充分に拡散される。
As a result, even in the case of a swirl that must be kept at a low velocity in order to ensure high volumetric efficiency, the sprayed fuel is sufficiently diffused over almost the entire opening angle of the narrow fuel dome.

一方、燃料の噴霧状態を側面視すると、噴霧角度aは小
さいので、燃焼室が浅くともその底壁に燃料が付着する
ことはなく、また、シリンダヘッドの端面に対しても同
様である。
On the other hand, when the fuel spray state is viewed from the side, the spray angle a is small, so even if the combustion chamber is shallow, the fuel does not adhere to the bottom wall of the combustion chamber, and the same applies to the end surface of the cylinder head.

〈発明の効果〉 燃焼室の口径を大きくできるので、ノズルから噴霧され
た燃料は燃焼室の側周壁に近づくまでに長い距離に亘り
久ツールに巻き込まれて希薄化され、ミストがこの側周
壁に付着することをなくせる。 また、燃焼室の口径を
大きくし、その分、底壁を浅く形成しても、燃焼室の軸
心方向に沿う噴霧角度は小さいので、浅い底壁やシリン
ダヘッドの端面にミストが付着することもないので、全
体として始動時における青白煙の発生を円滑に防止でき
る。
<Effects of the Invention> Since the diameter of the combustion chamber can be increased, the fuel sprayed from the nozzle is drawn into the tool over a long distance before it approaches the side wall of the combustion chamber, becoming diluted, and the mist is spread onto this side wall. Eliminates adhesion. In addition, even if the diameter of the combustion chamber is increased and the bottom wall is made shallower, the spray angle along the axis of the combustion chamber is small, so mist may adhere to the shallow bottom wall or the end face of the cylinder head. Therefore, the generation of blue-white smoke at the time of starting can be smoothly prevented as a whole.

一方、燃焼室の周方向に沿う噴霧角度は大きいので、噴
霧燃料とスワールの混合撹拌を効率的に行なうことがで
き、スツールの空気利用率を向上して稼動運転時の燃焼
効率を高くできる。
On the other hand, since the spray angle along the circumferential direction of the combustion chamber is large, the sprayed fuel and swirl can be mixed and stirred efficiently, improving the air utilization rate of the stool and increasing the combustion efficiency during operation.

ノズルの噴口出口を、例えば切削共で横断状に切削加工
するなどして、簡単な加工で当該出口に噴霧角度拡大溝
を形成することができ、しかも、この拡大溝の形状を変
形させることに五り噴霧の拡がり角度を高精度に調整で
きる。
It is possible to form a spray angle enlarging groove at the outlet of the nozzle by a simple process such as cutting the outlet of the nozzle into a transverse shape, and furthermore, it is possible to change the shape of this enlarged groove. The spread angle of the spray can be adjusted with high precision.

また、高速エンジン用の場合には、当該噴霧角度拡大溝
を浅く形成して噴霧角度を小さく設定してやれば充分で
あり、逆に、低速エンジン用の場合には、拡大溝を深く
形成して噴霧角度を大きくしなければならないが、この
画形式のエンジンともに、噴霧角度拡大溝の深さをかえ
ることで対応できるので、所定深さの拡大溝を形成した
多噴口ホールノズルを装着すれば、高速用エンジンと低
速用エンジンに、シリンダヘッド及びピストンを共通部
品化できる。
In addition, in the case of a high-speed engine, it is sufficient to form the spray angle enlargement groove shallowly and set the spray angle small; on the other hand, in the case of a low-speed engine, it is sufficient to form the spray angle enlargement groove deeply and set the spray angle small. Although the angle must be increased, this can be achieved by changing the depth of the spray angle expansion groove for both engines of this type, so if a multi-nozzle hole nozzle with an expansion groove of a predetermined depth is installed, high speeds can be achieved. The cylinder head and piston can be made into common parts for both low-speed and low-speed engines.

〈実 施 例〉 以下、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

mi図はシリンダ周辺の直噴式ディーゼルエンジンの要
部縦断正面図、第2図は多噴口ホールノズルのサック部
の一部縦断正面図、第3図は燃焼室の概略平面図であっ
て、ディーゼルエンジンEのシリンダブロック8の中央
にシリンダ1oを形mL、当、tシリンダ10にピスト
ン11九L−τ憚勤自在に内嵌する。
The mi diagram is a longitudinal sectional front view of the main part of the direct injection diesel engine around the cylinder, Fig. 2 is a partial longitudinal sectional front view of the sack part of the multi-nozzle hole nozzle, and Fig. 3 is a schematic plan view of the combustion chamber. In the center of the cylinder block 8 of the engine E, a cylinder 1o is fitted into a cylinder 10 of mL, t, and t positions so that a piston 119L-τ can be freely rotated.

シリンダブロック8の上方にシリンダヘッド12を組み
付け、その中央部にノズル嵌合孔13を空ける。
A cylinder head 12 is assembled above the cylinder block 8, and a nozzle fitting hole 13 is formed in the center thereof.

上記ピストン11の上端部中央にトロイグル式のスワー
ル促進用穴5を形成しく即ち、この促進穴5が燃焼室に
なる)、シリンダへシト12の下端面14の当該スワー
ル促進用穴5に臨む部分に燃焼四部45を設けろ。
A Troigle type swirl promoting hole 5 is formed at the center of the upper end of the piston 11 (that is, this promoting hole 5 becomes a combustion chamber), and the portion of the lower end surface 14 of the cylinder seat 12 facing the swirl promoting hole 5 Install a combustion section 45 in the combustor.

そして、前記ノズル嵌挿孔13に多噴口ホールノズル1
を嵌挿し、その先端のサック部2を燃焼凹部45に突出
するとともに、スワール促進用穴5に臨ませる。
Then, the multi-nozzle hole nozzle 1 is inserted into the nozzle insertion hole 13.
is inserted so that the sack portion 2 at the tip thereof protrudes into the combustion recess 45 and faces the swirl promotion hole 5.

多噴口ホールノズル1のサック部2に4本の噴口3を、
互いに等距離を離して先端に行くほど下り傾斜するよう
に空ける。
Four nozzles 3 are installed in the sack part 2 of the multi-nozzle hole nozzle 1.
Space them out at equal distances from each other, sloping downward toward the tip.

当該サック部2の外周面7に噴口3の出口4を横切る状
態で円弧状の周溝16を連続的に形成し、4本の噴口出
口4の全てに同一の曲率半径を有する円弧状の噴霧角度
拡大溝6を設けるー前記スワール促進用穴5の容積をエ
ンジンの所定の圧縮比に対応するように設定し、促進用
穴5の口径を大きく、また、深さを浅く形成する。
An arc-shaped circumferential groove 16 is continuously formed on the outer circumferential surface 7 of the sack part 2 in a state that crosses the outlet 4 of the nozzle 3, and all four nozzle outlets 4 have the same radius of curvature. Providing the angle enlargement groove 6 - The volume of the swirl promoting hole 5 is set to correspond to a predetermined compression ratio of the engine, and the diameter of the promoting hole 5 is made large and the depth is made shallow.

この場合、ノズルのサック部2はスワールの促進用穴5
の中央頂部の上方に位置し、噴口3から噴射された燃料
は、スワール促進用穴5の周方向Tに拡がる(即ち、第
3図示すように、噴霧角度βは大きい)が、促進用穴5
の細心方向Sには余り拡がらない(即ち、第2図に示す
ように、噴霧角度aは小さい)。
In this case, the suck part 2 of the nozzle is the hole 5 for promoting swirl.
The fuel injected from the nozzle 3 spreads in the circumferential direction T of the swirl promotion hole 5 (that is, the spray angle β is large as shown in FIG. 3), but the fuel injected from the nozzle 3 spreads in the circumferential direction T of the swirl promotion hole 5
The spray does not spread much in the narrow direction S (that is, the spray angle a is small, as shown in FIG. 2).

拡大溝6が横断する方向に直交する面での噴口出口4の
切り口はその中央部が内方に四人する形状であれば良い
ので、当該噴霧角度拡大溝6は、第1図に示す円弧状に
限らず、第5図の直線的な山形状や第6図の湾曲した山
形状に形成しても良(ゝ。
The cut end of the nozzle outlet 4 in the plane orthogonal to the direction that the enlarged groove 6 crosses may have a shape in which the central part of the nozzle outlet 4 is inward, so the spray angle enlarged groove 6 has the shape of a circle shown in FIG. It is not limited to an arc shape, but may be formed into a linear mountain shape as shown in Figure 5 or a curved mountain shape as shown in Figure 6.

また、第7図に示すように、噴口3の口径より噴霧角度
拡大溝6の上下幅を狭くしても良いし、第8図に示すよ
うに拡大溝6の上下幅を拡くしても差し支えない。
Further, as shown in FIG. 7, the vertical width of the spray angle expanding groove 6 may be made narrower than the diameter of the nozzle 3, or as shown in FIG. 8, the vertical width of the expanding groove 6 may be widened. do not have.

池方、吸・排気ポートを避けるために、燃料噴射ノズル
1を斜めからスワール促進用穴5に臨ませ、1nl1図
に示すように促進用穴5の中央から偏心させて配置する
ことがある。
In order to avoid the intake/exhaust ports, the fuel injection nozzle 1 is sometimes arranged to face the swirl promoting hole 5 obliquely and eccentrically from the center of the swirl promoting hole 5 as shown in Figure 1nl1.

この場合でも、各噴口3から促進用穴5の側周壁17に
拡がる燃料噴霧の幅18は同じでなければならないので
、例えば、4噴ロホールノズルの場合、各噴口3がらの
噴霧角度βをβ1、β2・・・・・・のように変化させ
てやる必要があるが、本発明によれば、第9図に示すよ
うに、一つの噴口3には拡大溝6を形成せずに噴霧角度
を小さくし、他の噴口3には拡大溝6を形成して、当該
拡大溝を付けない噴口3に比べて噴霧角度を適宜大きく
することにより、所期の条件を簡単に満たすことができ
る。
Even in this case, the width 18 of the fuel spray spreading from each nozzle 3 to the side peripheral wall 17 of the promoting hole 5 must be the same, so for example, in the case of a 4-hole nozzle, the spray angle β from each nozzle 3 is It is necessary to change β1, β2, etc., but according to the present invention, as shown in FIG. The desired conditions can be easily met by making the spray angle smaller, forming enlarged grooves 6 in other nozzles 3, and appropriately increasing the spray angle compared to the nozzles 3 without the enlarged grooves. .

しかも、第10図に示すように、4つの噴口3の全てに
円弧状の拡大溝6を形成し、その各々の拡大溝6の曲率
半径を変化させれば、噴霧角度を自在に変化させること
ができ、例えば、曲率半径の大きな(即ち、浅い円弧状
の)拡大溝6を形成すれば噴霧角度βを小さく、逆に、
曲率半径の小さな(即ち、深い円弧状の)拡大溝6を形
成すれば噴霧角度βを大きくできる。
Moreover, as shown in FIG. 10, by forming arc-shaped enlarged grooves 6 in all four nozzles 3 and changing the radius of curvature of each enlarged groove 6, the spray angle can be freely changed. For example, if an enlarged groove 6 with a large radius of curvature (that is, a shallow arc shape) is formed, the spray angle β can be reduced, and conversely,
By forming the enlarged groove 6 with a small radius of curvature (that is, deep arc shape), the spray angle β can be increased.

尚、拡大溝6は、サック部2の周方向に連続的に形成し
ても良いが、m12図に示すように噴口3毎に断続的に
形成しても差し支えない。
The enlarged grooves 6 may be formed continuously in the circumferential direction of the sack portion 2, but may also be formed intermittently for each nozzle port 3 as shown in Fig. m12.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図はシリング
周辺の直噴式ディーゼルエンジンの要部縦断正面図、第
2図は多噴口ホールノズルのサック部の一部縦断正面図
、第3図は燃焼室の概略平面図、l@4図は噴霧の縦断
面図、第5図〜第10図は各々本発明の池の実施例を示
す噴口周辺の要部拡大縦断面図、第11図はノズルを偏
心させた燃焼室を示す第3図相当図、第12図は拡大溝
を噴口毎に断続形成した場合を示すノズルのサック部の
横断平面図である。 1・・・多噴口ホールノズル、  2・・・1のサック
部、3・・・噴口、 4・・・3の出口、 5・・・燃
焼室、6・・・噴霧角度拡大溝、 7・・・2の外周面
、E・・・ディーゼルエンジン、 S・・・5の軸心方
向、T・・・5の周方向、 a・・・Sに沿う噴霧角度
、β・・・Tに沿う噴霧角度。 特許出願人  久保田鉄工株式会社 感110 感91!1 土
The drawings show an embodiment of the present invention, and FIG. 1 is a longitudinal sectional front view of the main part of a direct injection diesel engine around Schilling, FIG. 2 is a partial longitudinal sectional front view of the sack part of a multi-hole nozzle, and The figure is a schematic plan view of the combustion chamber, Figure 1@4 is a vertical cross-sectional view of the spray, Figures 5 to 10 are enlarged vertical cross-sectional views of the main parts around the nozzle showing an embodiment of the pond of the present invention, and Figure 11 is a schematic plan view of the combustion chamber. This figure is a view corresponding to FIG. 3 showing a combustion chamber with an eccentric nozzle, and FIG. 12 is a cross-sectional plan view of the sack portion of the nozzle showing the case where enlarged grooves are formed intermittently at each nozzle. DESCRIPTION OF SYMBOLS 1...Multi-nozzle hole nozzle, 2...Sack portion of 1, 3...Nozzle port, 4...Outlet of 3, 5...Combustion chamber, 6...Spray angle expansion groove, 7. ...outer peripheral surface of 2, E...diesel engine, S...axial direction of 5, T...circumferential direction of 5, a...spray angle along S, β...along T spray angle. Patent applicant Kubota Iron Works Co., Ltd. Kan110 Kan91!1 Sat

Claims (1)

【特許請求の範囲】[Claims]  1.ディーゼルエンジンEの燃料噴射用の多噴口ホー
ルノズル1のサック部2の周方向の複数箇所にそれぞれ
噴口3を空け、複数本の噴口3のうちの少なくとも1つ
の噴口3の出口4の部分において、噴口3から燃料が噴
霧されるときの燃焼室5の軸心方向Sに沿う噴霧角度α
よりもその周方向Tに沿う噴霧角度βの方向を大きくす
る噴霧角度拡大溝6を、サック部2の外周面7に噴口3
の出口4を横 切る状態に形成したことを特徴とするディーゼルエンジ
ンの燃料噴射用の多噴口ホールノズル。
1. Nozzles 3 are provided at a plurality of locations in the circumferential direction of the sack portion 2 of a multi-nozzle hole nozzle 1 for fuel injection of a diesel engine E, and at the outlet 4 of at least one of the multiple nozzles 3, Spray angle α along the axial direction S of the combustion chamber 5 when fuel is sprayed from the nozzle 3
A spray angle enlarging groove 6 that increases the direction of the spray angle β along the circumferential direction T is formed on the outer circumferential surface 7 of the sack portion 2 at the nozzle 3.
A multi-hole nozzle for fuel injection of a diesel engine, characterized in that the hole nozzle is formed to cross an outlet 4 of a diesel engine.
JP5799586A 1986-03-14 1986-03-14 Multi-nozzle hole nozzle for injecting fuel for diesel engine Pending JPS62214265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5799586A JPS62214265A (en) 1986-03-14 1986-03-14 Multi-nozzle hole nozzle for injecting fuel for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5799586A JPS62214265A (en) 1986-03-14 1986-03-14 Multi-nozzle hole nozzle for injecting fuel for diesel engine

Publications (1)

Publication Number Publication Date
JPS62214265A true JPS62214265A (en) 1987-09-21

Family

ID=13071587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5799586A Pending JPS62214265A (en) 1986-03-14 1986-03-14 Multi-nozzle hole nozzle for injecting fuel for diesel engine

Country Status (1)

Country Link
JP (1) JPS62214265A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227157A (en) * 1988-07-18 1990-01-29 Hino Motors Ltd Fuel injection nozzle
KR100482712B1 (en) * 1999-12-15 2005-04-13 가부시키가이샤 히타치세이사쿠쇼 Direct injection fuel injector and internal combustion engine mounting the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537727U (en) * 1978-09-05 1980-03-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537727U (en) * 1978-09-05 1980-03-11

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227157A (en) * 1988-07-18 1990-01-29 Hino Motors Ltd Fuel injection nozzle
KR100482712B1 (en) * 1999-12-15 2005-04-13 가부시키가이샤 히타치세이사쿠쇼 Direct injection fuel injector and internal combustion engine mounting the same

Similar Documents

Publication Publication Date Title
JP2009103004A (en) Direct injection internal combustion engine
US4522172A (en) Direct injection internal combustion engine of compression ignition type
CA1329900C (en) Swirl chamber type combustion chamber for diesel engine
JPS62214265A (en) Multi-nozzle hole nozzle for injecting fuel for diesel engine
JPH01200012A (en) Combustion chamber for vortex current chamber type diesel engine
JPH11190217A (en) Direct injection type diesel engine
JPH1082322A (en) Divided combustion chamber of diesel engine
JP2002195133A (en) Method of manufacturing fuel injection valve, fuel injection valve and internal combustion engine having the same installed
JPH0826769B2 (en) The nozzle of the swirl chamber combustion chamber of the diesel engine
KR910002897B1 (en) Swirl chamber type combustion chamber diesel engine
JPH09303149A (en) Combustion chamber for direct injection diesel engine
JP2596430B2 (en) Vortex chamber diesel engine piston
JPH04292525A (en) Direct injection type internal combustion engine
JPS6287665A (en) Fuel injection nozzle for direct injection type diesel-engine
JPH108965A (en) Combustion chamber for diesel engine
JPH0144789Y2 (en)
JP3295260B2 (en) Vortex chamber combustion chamber for diesel engine
JPH1054243A (en) Volute chamber type combustion chamber for diesel engine
JP2921322B2 (en) Engine with swirl chamber
JP2002061515A (en) Combustion device for swirl chamber type diesel engine
JP2007239720A (en) Direct injection type diesel engine
JP2001214742A (en) Direct injection type combustion chamber for diesel engine
JPH0343618A (en) Combustion chamber of vortex chamber diesel engine
JPS5848711A (en) Direct injection type diesel engine
JPH0110411Y2 (en)