JPS62214010A - Heating device for vehicle - Google Patents

Heating device for vehicle

Info

Publication number
JPS62214010A
JPS62214010A JP5491986A JP5491986A JPS62214010A JP S62214010 A JPS62214010 A JP S62214010A JP 5491986 A JP5491986 A JP 5491986A JP 5491986 A JP5491986 A JP 5491986A JP S62214010 A JPS62214010 A JP S62214010A
Authority
JP
Japan
Prior art keywords
heat exchanger
flow
engine
warm water
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5491986A
Other languages
Japanese (ja)
Inventor
Takeaki Watanabe
渡辺 健明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5491986A priority Critical patent/JPS62214010A/en
Publication of JPS62214010A publication Critical patent/JPS62214010A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves

Abstract

PURPOSE:To reduce a feed amount to a heat exchanger with simple constitution at high engine speed by providing a flow control valve at the upstream of the heat exchanger in a circulation flow passage for a warm water type heating device so as to change a flow area inversely with a warm water flow amount. CONSTITUTION:When a heater cock 11 has been opened, warm water flows into a heat exchanger 1 from an engine 10 through a pump 'P' via a feed passage 8, thereby effectuating heating. In this case, when the number of revolutions of the engine 10 is small and a warm water flow quantity is small, the valve body 21 of a flow control valve 20 comes down due to the own weight thereof and gets in contact with a lower valve seat 30. Therefore, as warm water flows to an outlet port 'B' from an inlet port 'A' via a notch 32 and a valve chamber 23, a flow passage area is large enough to increase the inflow of warm water to the heat exchanger 1. On the contrary, when the number of revolutions of the engine 10 is large and a feed quantity increases, the valve body 21 becomes afloat, thereby reducing the flow passage area and the flow quantity. According to the aforesaid constitution, a heat exchange amount can be stabilized with simple constitution.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両用暖房装置、特に温水式暖房装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vehicle heating system, and particularly to a hot water type heating system.

(従来の技術) 従来、この種の暖房装置としては、たとえに第6図およ
び第7図に示すようなものがある(株式会社山海堂発行
の自動車工学全書第10巻[電装品、車体装備品、エン
ジン部品」第155頁参照)。
(Prior Art) Conventionally, there are heating devices of this type, such as those shown in Figures 6 and 7 (Automotive Engineering Complete Book Vol. (see page 155).

すなわち100は熱交換器であり、温水供給用のインレ
ットチューブ101および戻し用のアウトレットチュー
ブ102を介してエンジン103に接続され、エンジン
103内部を冷却して加熱された温水を熱交換器100
内に循環させるようになっている。インレットチューブ
101の熱交換器100の入O付近にはインレットチュ
ーブ101の水路を開閉するヒータコック104が配設
されている。この熱交換器100への温水の供給はエン
ジン103の回転によって駆動されるウォータポンプ1
05によって行なわれる。そのために温水の供給圧力は
エンジン1030回転数が高い場合に増大して熱交換器
100に過度の負荷がかかることになる。そこで従来は
インレットチューブ101とアウトレットチューブ10
2とを連結して熱交換器100をバイパスするバイパス
通路106を設け、このバイパス通路106に熱交換器
100の上流側と下流側の差圧が所定圧以上になると開
くバイパス弁107を設けていた。すなわちエンジン回
転数が増大して温水の供給圧力が過大になるとバイパス
弁107を開いて温水の−部をバイパス通路106に流
して熱交換器100に加えられる印加水圧を低減させ、
熱交換器1o。
That is, 100 is a heat exchanger, which is connected to the engine 103 via an inlet tube 101 for hot water supply and an outlet tube 102 for return, and is connected to the engine 103 to cool the inside of the engine 103 and transfer the heated hot water to the heat exchanger 100.
It is designed to circulate inside the body. A heater cock 104 that opens and closes the waterway of the inlet tube 101 is arranged near the inlet port of the heat exchanger 100 of the inlet tube 101 . The hot water is supplied to the heat exchanger 100 by a water pump 1 driven by the rotation of the engine 103.
This is done by 05. Therefore, the hot water supply pressure increases when the engine 1030 rotation speed is high, and an excessive load is placed on the heat exchanger 100. Therefore, conventionally, the inlet tube 101 and the outlet tube 10
2 is provided to bypass the heat exchanger 100, and a bypass valve 107 that opens when the differential pressure between the upstream side and the downstream side of the heat exchanger 100 exceeds a predetermined pressure is provided in the bypass path 106. Ta. That is, when the engine speed increases and the hot water supply pressure becomes excessive, the bypass valve 107 is opened to allow a portion of the hot water to flow into the bypass passage 106 to reduce the water pressure applied to the heat exchanger 100.
Heat exchanger 1o.

を保護していた。尚、図中108社ラソう−タである。was protecting. In addition, there are 108 companies in the figure.

(発明が解決しようとする問題点) しかし斯かる従来例の場合には、ヒータコック104を
閉じた状態では温水の水圧によってバイパス弁107が
常時開いた状態となっており、たとえば夏期等において
ヒータを使用しかい場合にも44757通路106を介
して温水が循環してい友。そのために、各チューブ10
1,102等の配管系の劣化が促進されてしまうという
欠点があった。またヒータコック104を閉じていてモ
バイパス通1i1s106を介して熱交換器100に背
圧が加わることになり、熱交換器1000強度を高める
必要があった。さらにバイパス通路106を設けた分配
管系統が複雑になるという欠点もあったO 本発明は上記し之従来技術の問題点を解決するためにな
されたもので、その目的とするところは、バイパス通路
を設けないで簡単な構成でエンジンの高回転時には熱交
換器への供給流量を低減し得る暖房装置を提供すること
にある。
(Problem to be Solved by the Invention) However, in the case of such a conventional example, when the heater cock 104 is closed, the bypass valve 107 is always open due to the water pressure of the hot water. Even if you are not using the 44757, hot water is circulated through the passage 106. To that end, each tube 10
There was a drawback that deterioration of piping systems such as No. 1 and 102 was accelerated. Furthermore, when the heater cock 104 is closed, back pressure is applied to the heat exchanger 100 via the Mobypass passage 1i1s 106, and it is necessary to increase the strength of the heat exchanger 1000. Furthermore, there is a drawback that the distribution piping system in which the bypass passage 106 is provided becomes complicated. It is an object of the present invention to provide a heating device that can reduce the supply flow rate to a heat exchanger when the engine is running at high speed with a simple configuration without providing a heating device.

(問題点を解決するための手段) 上記目的を達成するために、本発明にあっては。(Means for solving problems) In order to achieve the above object, the present invention has the following features.

エンノン内の温水を循環水路を介してヒータ部の熱交換
器に循環させる車両用暖房装置において、上記エンジン
の循環水路の取水口句近に上記温水の供給水蓋が増大す
ると流路面積を絞り、供給水量が減少すると流路面積を
拡げる流量制御弁を設けたものから成っている。
In a vehicle heating system that circulates hot water in the ennon to a heat exchanger in the heater section via a circulation waterway, when the hot water supply water cover increases near the water intake of the circulation waterway of the engine, the flow path area is reduced. , which is equipped with a flow control valve that expands the flow path area when the amount of water supplied decreases.

(作  用) 本発明にあってはエンジンの回転数が増大してエンジン
側から供給される温水の供給水量が増大すると、流量制
御弁によって流路面積が絞られて流路抵抗が高くなり、
熱交換器に送られる温水の流量は制限されて印加水圧は
低くなる。ま友エンジンの回転数が減少して供給水量が
少なくなると流量制御弁によって流路面積が増大して流
路抵抗が小さぐなり、熱交換器への送られる温水の流量
が増大される。したがって循環水路を流れる温水ノfr
t、量はエンジンの回転数の変化にそれ程影醤されず常
に適正流量が維持される。
(Function) In the present invention, when the engine speed increases and the amount of hot water supplied from the engine increases, the flow area is narrowed by the flow rate control valve and the flow path resistance increases.
The flow rate of hot water sent to the heat exchanger is restricted and the applied water pressure is reduced. When the rotational speed of the Mayu engine decreases and the amount of water supplied decreases, the flow area is increased by the flow control valve, the flow path resistance is reduced, and the flow rate of hot water sent to the heat exchanger is increased. Therefore, the hot water flowing through the circulation channel fr
t and the amount are not affected much by changes in engine speed, and a proper flow rate is always maintained.

(実 施 例) 以下に本発明を図示の災施例に基づいて説明する。本発
明の一実施例に係る車両用暖房装置の水路系の回路を示
す第4図において、1は熱交換器であり、この熱交換器
1はヒータ部20通風路3内に配設されている。通風路
3には、熱交換器1の上流側に送風機4が配設され、空
気導入口5に配設された切換えドア6によって外気ある
いは内気を選択し、送風機4によって熱交換器1側に送
風され、熱交換器1によって熱交換されて加熱された空
気を熱交換器1下流側の各吹出ロアから単室内に温風を
吹出すようになっている。
(Example) The present invention will be described below based on an illustrated example. In FIG. 4 showing a circuit of a waterway system of a vehicle heating device according to an embodiment of the present invention, 1 is a heat exchanger, and this heat exchanger 1 is arranged in a heater section 20 and a ventilation passage 3. There is. In the ventilation passage 3, a blower 4 is installed on the upstream side of the heat exchanger 1, and a switching door 6 installed in the air inlet 5 selects outside air or inside air. The heated air is blown, heat exchanged and heated by the heat exchanger 1, and hot air is blown into the single room from each blowout lower on the downstream side of the heat exchanger 1.

一方上記熱交換器1は温水供給用の供給流路8および戻
し流路9を介してエンジンの冷却系の°水路に接続され
、この供給流路8および戻し流路9によって循環水路が
1111成されている。供給流路8の熱交換器1の入O
付近には従来例と同様に供給流188を開閉制御するヒ
ータコック11が配設さレテイル。一方、供給流路8の
エンジン1oの取水口付近に扛、エンジンの回転数か増
大してエンノン側から送り出される温水の供給量が増大
すると流路面積を紋り、供給水量が減少すると流路面積
を拡げる流量制御9F20が設けられている。
On the other hand, the heat exchanger 1 is connected to a water channel of the engine cooling system via a supply channel 8 and a return channel 9 for hot water supply, and a circulation channel is formed by the supply channel 8 and the return channel 9. has been done. Inlet of heat exchanger 1 of supply channel 8
A heater cock 11 for controlling the opening and closing of the supply flow 188 is disposed nearby, as in the conventional example. On the other hand, if the supply flow path 8 is near the water intake of the engine 1o, and the engine rotation speed increases and the supply amount of hot water sent out from the Ennon side increases, the flow path area will be affected, and if the supply water amount decreases, the flow path area will increase. A flow rate control 9F20 is provided to expand the area.

第1図乃至第3図には上記N、童制御弁の一実施例が示
されている。すなわち21は球状の弁体で、円筒状のハ
ウジング22内に設けられた弁室23に上下方向に移動
自在に配設されている。ハウジング22はその中心軸線
を上下方向に向けて配置されており、その上下両端の開
口部24,2511m縮径され小径となってお夛、この
小径の開口s24゜25にそれぞれ円筒状の接続管26
.27が挿入されて固着されている。而して下部の接続
Ir27が上流側の配管に接続されて流入ボートAとな
り、上部接続管26が下流側の配管に接続されて流出ボ
ートBを構成する。上記ハウジング22の大径部221
に内側は中空の弁室23となっており、上記弁体21が
収容′aれている。一方、接続管26゜27の弁室23
側の端部はそれぞれ弁室23内に突出していて、上部弁
座29および下部弁座30を構成している。このうち上
部9ffi29の周壁29alC11流出ポートBと弁
室23とを連通する小径の孔31が穿設されており、弁
体21が上部弁座29に当接して弁座開口部29bが閉
塞しても孔31を介して弁室23内の温水が流出ポート
Bに流出し得るようになっている。また下部弁座30に
は周方向に複数の切欠き32.・・・が設けられており
、弁体21が下部弁座30に当接しても切欠き32を介
して流入ポートAから一*ff123内に温水が流入し
得るようになっている。この下部弁座30の切欠き32
.・・・の開口面積は充分大きく、流入ポートAから弁
室23内に流入する温水の流路抵抗を可及的に小さくし
ている。また弁体21の直径はハウソング220大径部
22凰内径よりも小さく球状弁体21と大径部221L
内周面との隙間が温水の流路となる。
FIGS. 1 to 3 show an embodiment of the above-mentioned N-type control valve. That is, 21 is a spherical valve body, which is disposed in a valve chamber 23 provided in a cylindrical housing 22 so as to be movable in the vertical direction. The housing 22 is arranged with its center axis facing in the vertical direction, and the openings 24, 2511m at both the upper and lower ends are reduced in diameter to a small diameter, and cylindrical connecting pipes are inserted into the small diameter openings s24 and 25, respectively. 26
.. 27 is inserted and fixed. The lower connection Ir 27 is connected to the upstream pipe to form the inflow boat A, and the upper connection pipe 26 is connected to the downstream pipe to form the outflow boat B. Large diameter portion 221 of the housing 22
The inside thereof is a hollow valve chamber 23, in which the valve body 21 is housed. On the other hand, the valve chamber 23 of the connecting pipe 26°27
The side ends project into the valve chamber 23 and form an upper valve seat 29 and a lower valve seat 30, respectively. Among these, a small diameter hole 31 that communicates the outflow port B of the peripheral wall 29alC11 of the upper part 9ffi29 and the valve chamber 23 is bored, and the valve body 21 comes into contact with the upper valve seat 29 and the valve seat opening 29b is closed. The hot water in the valve chamber 23 can flow out to the outflow port B through the hole 31. Further, the lower valve seat 30 has a plurality of notches 32 in the circumferential direction. ... is provided, so that even if the valve body 21 abuts the lower valve seat 30, hot water can flow into the 1*ff123 from the inflow port A through the notch 32. Notch 32 of this lower valve seat 30
.. The opening area of . Also, the diameter of the valve body 21 is smaller than the inner diameter of the large diameter portion 221L of the spherical valve body 220.
The gap with the inner peripheral surface becomes a flow path for hot water.

尚、第4図中40はラソエータ、41はサーモスタット
、さらにPはウオータポンゾである。
In FIG. 4, 40 is a lassoator, 41 is a thermostat, and P is a water ponzo.

上記構成の暖房装置にあっては、ヒータコック11を開
くとウォータボンfpによりエンソン内部を循環する温
水がエンジン10側から供給流路8を通って熱交換器1
内に流入し、上記したようにヒータ部2の通風路3内を
流れる空気に熱交換されて温風が生成され各吹出ロアか
ら車堅内に温風が吹出される。熱交換器1を通った温水
は、戻し流路9を通ってエンシン10側に戻される。
In the heating device having the above configuration, when the heater cock 11 is opened, the hot water circulating inside the Enson is supplied from the engine 10 side through the supply channel 8 to the heat exchanger 1.
As described above, heat is exchanged with the air flowing in the ventilation passage 3 of the heater section 2 to generate warm air, which is then blown out from each blow-off lower into the car stiffness. The hot water that has passed through the heat exchanger 1 is returned to the engine 10 side through a return flow path 9.

ここでエンジン10の回転数が低くエンジン10側から
流量制御弁20側への供給水量が少ない場合には、弁体
21はその自重によって下部弁座30に当接しておp、
、流入ボー)Aから流入した温水は切欠き32を通って
弁室23内に流入し、さらに流出ボートBから流出する
。この場合流路は下部弁座30の切欠き32を通るので
流路面8iiは大きく流路抵抗は小さい。したがって流
量側@9f20を通過して熱交換器1に流入する温水の
ikは多くなる0%にウオータポンゾPの能力が小さい
場合に極力多量の温水を熱交換器1側に流すことができ
る。
Here, when the rotational speed of the engine 10 is low and the amount of water supplied from the engine 10 side to the flow control valve 20 side is small, the valve body 21 contacts the lower valve seat 30 due to its own weight.
, inflow boat) A flows into the valve chamber 23 through the notch 32, and further flows out from the outflow boat B. In this case, the flow path passes through the notch 32 of the lower valve seat 30, so the flow path surface 8ii is large and the flow path resistance is small. Therefore, the ik of the hot water that passes through the flow rate side @9f20 and flows into the heat exchanger 1 increases to 0%.When the capacity of the water ponzo P is small, as much hot water as possible can flow to the heat exchanger 1 side.

7 一 つぎにエンジン回転数が高い場合には、エンジン10側
から流量制御弁20の流入ボー)Aに流入する温水の流
量が増大し、流入ボートA側の水圧PW1と流出ボート
B側の水圧PWsの差圧ΔW(PWI  PW2 )が
大きくなって、この差圧が所定圧(弁体21の重量より
も大)以上になると、弁体21が第1図中点線で示すよ
うに上方に移動して下部弁座29に尚接し、上部弁座2
9の弁座開口部29bが閉基される。その結果臨入ボー
)Aから弁室23V3に席入した温水は上部弁座29周
壁29aの孔31から流出ボー)B4C流出することに
なる。したがって温水の流路面積が絞られて流路抵抗が
高くなる。而して流出ポートBから熱交換器1に送られ
る温水の流量の増大が低減され、熱交換器1、各流路8
,9等の水路系に印加される圧力上昇は流量制御弁20
の圧力損失によって抑制される。
7 First, when the engine speed is high, the flow rate of hot water flowing from the engine 10 side to the inflow boat A of the flow control valve 20 increases, and the water pressure PW1 on the inflow boat A side and the water pressure on the outflow boat B side increase. When the differential pressure ΔW (PWI PW2) of PWs increases and this differential pressure exceeds a predetermined pressure (greater than the weight of the valve body 21), the valve body 21 moves upward as shown by the dotted line in FIG. and is still in contact with the lower valve seat 29, and the upper valve seat 2
No. 9 valve seat opening 29b is closed. As a result, the hot water that has entered the valve chamber 23V3 from the inlet port A flows out from the hole 31 in the circumferential wall 29a of the upper valve seat 29 B4C. Therefore, the area of the hot water flow path is reduced and the flow resistance increases. Therefore, the increase in the flow rate of hot water sent from the outflow port B to the heat exchanger 1 is reduced, and the increase in the flow rate of hot water sent from the outflow port B to the heat exchanger 1 is reduced.
, 9 etc., the pressure increase applied to the waterway system is controlled by the flow control valve 20.
pressure loss.

このようにエンジン回転数の変動によってエンシン10
側からの供給水量が変化しても、流量制御弁20の開度
が弁体21の自重と上記差圧△Wとのバランスによって
自動的に調整され、熱交換器1への通水量が所定量に保
持されて熱交換器1の熱交換量を安定させることができ
る。
In this way, engine 10
Even if the amount of water supplied from the side changes, the opening degree of the flow control valve 20 is automatically adjusted based on the balance between the weight of the valve body 21 and the differential pressure ΔW, and the amount of water flowing to the heat exchanger 1 is adjusted to the desired level. The amount of heat exchanged by the heat exchanger 1 can be stabilized by being kept constant.

第5図には上記流量制御弁20の%注を示しており、実
線が弁体21が下部弁座30に着座した状態での循環水
量と各ボー)A、B間の差圧の関係を示し、破線が上部
弁座29に着座した状態の特性を示す。すなわち上部弁
座29着座時の方が下部弁座3ON座時よシも差圧(圧
力損失)が大きくなっている。この弁特性は弁体21の
1L上部弁座29の孔31および下部弁@S30の切欠
き32等の開口面積を変えることにより調整可能でるる
Fig. 5 shows the percentage of the flow rate control valve 20, and the solid line shows the relationship between the amount of circulating water and the differential pressure between each bow A and B when the valve body 21 is seated on the lower valve seat 30. The broken line indicates the characteristics when the valve is seated on the upper valve seat 29. That is, the differential pressure (pressure loss) is larger when the upper valve seat 29 is seated than when the lower valve seat 3 is seated. This valve characteristic can be adjusted by changing the opening area of the hole 31 of the 1L upper valve seat 29 of the valve body 21, the notch 32 of the lower valve @S30, etc.

向上記実施例では球状の弁体21を用いたが、球状に限
るものではなく、円板状等の他の形状としてもよい。さ
らに流lllIIIJIll升としてはエンシン10側
からの供給水量が増大すると流路面積が絞られ、供給水
量が減少すると流路面積が拡がるものであればよく、不
実施例のものに限定されない。
Although the valve body 21 is spherical in the above embodiment, it is not limited to a spherical shape, and may have another shape such as a disk shape. Furthermore, the flow IllIIIJIll square is not limited to those in the examples, as long as the flow area is narrowed when the amount of water supplied from the engine 10 side increases, and the area of the flow path is expanded when the amount of water supplied is decreased.

(発明の効果) 本発明はエンジンの回転数が高くなってエンジンからの
供給水量が増大しても流速制御弁によって熱交換器への
供給水量が制御されるので、熱交換器および循環水路V
cA大な圧力が加わることがなく耐久上有利となる。さ
らにエンジンの低回転時にj、・いてエンジンからの供
給水量が減小した場合はに址制御升の流路が開いて熱交
換器への供給水titを増大させるので、エンジン回転
数の変動に起因する熱交換器への供給水量の変動を可及
的に小さくすることができ、走行状態に拘らず熱交換器
からの加熱蓋を安定させることができる。また従来のよ
うにパイ・セス通路を設ける必要は無くなりスペース上
有利になると共に、ヒータコックを閉じた状態では循環
水路に温水が流れないので配管系の耐久性が向上する等
の種々の効呆が得られる0
(Effects of the Invention) According to the present invention, even if the engine speed increases and the amount of water supplied from the engine increases, the amount of water supplied to the heat exchanger is controlled by the flow rate control valve.
cA It is advantageous in terms of durability because no large pressure is applied. Furthermore, when the amount of water supplied from the engine decreases when the engine is running at low speeds, the flow path of the control chamber opens and increases the amount of water supplied to the heat exchanger. The resulting fluctuation in the amount of water supplied to the heat exchanger can be made as small as possible, and the heating lid from the heat exchanger can be stabilized regardless of the running condition. In addition, there is no need to provide a piping/cess passage as in the past, which is advantageous in terms of space, and the durability of the piping system is improved because hot water does not flow into the circulation channel when the heater cock is closed. is obtained 0

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本々呵の一実施例に係る車両用暖房装置の流電
制御弁のm断面図、第2図は第1図の■−n線断面図、
鴇3図は第1図のI −IN!断面図、第4図は本実施
例の車両用暖房装置の循環水路系の回路図、第5図は第
1図の#LW制御弁の特性図、第6図は従来の車両用暖
房装置の似略構成図、第7図VJ、第6図のバイパス通
路近傍の概略構成−である。 符号の説明 1・・・熱交換器     2・・・ヒータ部8・・・
供給流路(循環水路) 9・・・戻し流18(循環水路
)10・・・エンジン     11・・・ヒータコッ
ク20・・・装置制御弁    21・・・弁体22・
・・ハウソング   23・・・弁室29・・・上部弁
座     30・・・下部九座31・・・孔    
    32・・・切欠き。 N 102      toy fof        104
Fig. 1 is a cross-sectional view of a current control valve of a vehicle heating system according to one embodiment of Honhon-Kan, and Fig. 2 is a cross-sectional view taken along the line ■-n of Fig. 1.
Figure 3 is I-IN! of Figure 1! 4 is a circuit diagram of the circulation channel system of the vehicle heating system of this embodiment, FIG. 5 is a characteristic diagram of the #LW control valve of FIG. 1, and FIG. 6 is a diagram of the conventional vehicle heating system. FIG. 7 is a schematic configuration diagram, and FIG. 7 is a schematic configuration diagram of the vicinity of the bypass passage in FIG. 6. Explanation of symbols 1...Heat exchanger 2...Heater part 8...
Supply flow path (circulation waterway) 9... Return flow 18 (circulation waterway) 10... Engine 11... Heater cock 20... Device control valve 21... Valve body 22.
... How song 23 ... Valve chamber 29 ... Upper valve seat 30 ... Lower nine seat 31 ... Hole
32...notch. N 102 toy fof 104

Claims (1)

【特許請求の範囲】[Claims]  エンジン円の温水を循環水路を介してヒータ部の熱交
換器に循環させる車両用暖房装置において上記循環水路
の熱交換器の上流側に上記温水の供給水量が増大すると
流路面積を絞り、供給水量が減少すると流路面積を拡げ
る流量制御弁を設けたことを特徴とする車両用暖房装置
In a vehicle heating system that circulates hot water around the engine to a heat exchanger in the heater section through a circulation channel, when the amount of hot water supplied increases to the upstream side of the heat exchanger in the circulation channel, the flow path area is narrowed and the supply is carried out. A vehicle heating device characterized by being provided with a flow control valve that expands the flow path area when the amount of water decreases.
JP5491986A 1986-03-14 1986-03-14 Heating device for vehicle Pending JPS62214010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5491986A JPS62214010A (en) 1986-03-14 1986-03-14 Heating device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5491986A JPS62214010A (en) 1986-03-14 1986-03-14 Heating device for vehicle

Publications (1)

Publication Number Publication Date
JPS62214010A true JPS62214010A (en) 1987-09-19

Family

ID=12984019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5491986A Pending JPS62214010A (en) 1986-03-14 1986-03-14 Heating device for vehicle

Country Status (1)

Country Link
JP (1) JPS62214010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167273A (en) * 1991-12-23 1992-12-01 Ford Motor Company Aspirator tube check valve assembly and method of continuously sensing vehicular interior compartment air temperature
CN114590890A (en) * 2020-12-04 2022-06-07 中国石油天然气集团有限公司 Coupling oxidation ditch denitrification process device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911908A (en) * 1982-07-12 1984-01-21 Nissan Motor Co Ltd Hot water circuit of automobile heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911908A (en) * 1982-07-12 1984-01-21 Nissan Motor Co Ltd Hot water circuit of automobile heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167273A (en) * 1991-12-23 1992-12-01 Ford Motor Company Aspirator tube check valve assembly and method of continuously sensing vehicular interior compartment air temperature
CN114590890A (en) * 2020-12-04 2022-06-07 中国石油天然气集团有限公司 Coupling oxidation ditch denitrification process device
CN114590890B (en) * 2020-12-04 2023-06-30 中国石油天然气集团有限公司 Coupled oxidation ditch denitrification process device

Similar Documents

Publication Publication Date Title
US5975031A (en) Cooling system for an internal combustion engine, particularly for motor vehicles
JP4457848B2 (en) Cooling device for on-vehicle power unit
US2200318A (en) Valve, self-closing against pressure
US3568760A (en) Optimization system
US5970927A (en) Apparatus for circulating cooling water for internal combustion engine
US5957377A (en) Flow control valve and hot-water type heater apparatus employing the same
JPS62214010A (en) Heating device for vehicle
JPH0538931A (en) Warm water type heat exchanger
JP2004511384A (en) Heating, ventilation or air conditioning
JP2827208B2 (en) Hot water heating system for vehicles
JPH08178093A (en) Flow control valve and hot water type heating device using it
JP2705389B2 (en) Engine cooling system
JP5999162B2 (en) Engine cooling system
JPS6018413A (en) Car room heater
JP2988718B2 (en) Heater core structure
JPS61237820A (en) Coolant temperature controller for panel radiator
JP2001280132A (en) Cooling water controller
US3937197A (en) Heating means for the intake system of a water-cooled combustion engine
JPH0544514Y2 (en)
JPH1162579A (en) Cooling device for internal combustion engine
KR101082471B1 (en) Heat exchanger
JP2006037874A (en) Engine cooling device
JPS6131286B2 (en)
JP3596181B2 (en) Hot water heating system
US3323583A (en) Refrigeration system valve