JPS62213927A - Machining method for thin wall cylindrical body made of fiber reinforced plastic - Google Patents

Machining method for thin wall cylindrical body made of fiber reinforced plastic

Info

Publication number
JPS62213927A
JPS62213927A JP5556886A JP5556886A JPS62213927A JP S62213927 A JPS62213927 A JP S62213927A JP 5556886 A JP5556886 A JP 5556886A JP 5556886 A JP5556886 A JP 5556886A JP S62213927 A JPS62213927 A JP S62213927A
Authority
JP
Japan
Prior art keywords
cylindrical body
pressure
core body
pipe
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5556886A
Other languages
Japanese (ja)
Other versions
JPH0616961B2 (en
Inventor
Yoichi Sasajima
洋一 笹島
Hirohisa Ito
博久 伊藤
Tadao Murayama
村山 忠男
Kenichi Kinoshita
木下 賢一
Shintaro Hayashi
真太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5556886A priority Critical patent/JPH0616961B2/en
Publication of JPS62213927A publication Critical patent/JPS62213927A/en
Publication of JPH0616961B2 publication Critical patent/JPH0616961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/24Chucks characterised by features relating primarily to remote control of the gripping means
    • B23B31/30Chucks characterised by features relating primarily to remote control of the gripping means using fluid-pressure means in the chuck
    • B23B31/305Chucks characterised by features relating primarily to remote control of the gripping means using fluid-pressure means in the chuck the gripping means is a deformable sleeve

Abstract

PURPOSE:To shorten working time and improve machining reliability by machining the external surface of a cylindrical body with a core body formed in double structure consisting of an elastically deformable external pipe and an internal pipe fitted to the external pipe concentrically and with pressure fluid introduced between both pipes to make the core body contact tightly with internal surface of a thin cylindrical body made of fiber reinforced plastics. CONSTITUTION:In order to form a core body 10, an external pipe 14 whose outer diameter is smaller than the inner diameter of a cylindrical body 1 made of fiber reinforced plastics (FRP) is fitted to the periphery of an internal pipe 11 elastically deformable and concentrically with the internal pipe 11, and a pressure adding chamber 15 is provided between both pipes 11 and 14, and a pressure keeping means 18 is inserted into a pressure fluid introducing passage 17. And the core body 10 is inserted into the FRP cylindrical body, and pressure fluid is introduced into the pressure adding chamber to expand the external pipe 14 radially for making it contact tightly with the internal surface of the cylindrical body 1 and the pressure in the chamber is kept constant by the pressure keeping means 18. The external surface of the cylindrical body 1 can, therefore, be machined using the core body 10 as reference and the core body 10 can be readily removed by relieving the pressure in the pressure adding chamber 15. Therefore, working time can be shorten, and machining reliability can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、連続繊維強化プラスチツク製円筒体(以下
ではFRP円筒体と云う)の加工方法、詳しくは、薄肉
円筒体の外表面を偏肉を減らす目的で機械加工する際の
作業性を向上させた方法に関する。
Detailed Description of the Invention [Industrial Application Field] This invention relates to a method for processing a continuous fiber-reinforced plastic cylinder (hereinafter referred to as an FRP cylinder). This invention relates to a method for improving workability during machining for the purpose of reducing.

〔従来の技術とその問題点〕[Conventional technology and its problems]

FRP円筒体は、樹脂含浸連続繊維を断面円形の金型に
巻き付け、樹脂を加熱硬化後、金型より脱型する方法で
製造されることが多いが、このような方法で得られる円
筒体は偏肉を生じ易いので、その除去加工が必要になる
。特に、高精度の要求されるFRP製耐圧容器の壁材用
円筒体やFRP高速回転円筒体等の場合その加工が不可
欠である。
FRP cylindrical bodies are often manufactured by wrapping resin-impregnated continuous fibers around a mold with a circular cross section, curing the resin by heating, and then removing the mold from the mold. Since uneven thickness tends to occur, it is necessary to remove it. In particular, processing is essential for FRP cylinders for wall materials of pressure-resistant containers that require high precision, FRP high-speed rotation cylinders, and the like.

これに対し、軽量かつ高強度、高弾性であると云うFR
Pの特性を生かすためには、成形後の繊維の切断を極力
少なくすることが要求される。特に薄肉円筒体の場合、
その要求が強い。従って、上記の方法で得られるFRP
円筒体は、一般に、内面は脱型時の姿をそのまま残し、
外表面のみを機械加工して偏肉をとることが多い。
On the other hand, FR is said to be lightweight, high strength, and high elasticity.
In order to take advantage of the properties of P, it is required to minimize the amount of fiber breakage after molding. Especially in the case of thin-walled cylinders,
That demand is strong. Therefore, the FRP obtained by the above method
Generally, the inner surface of the cylindrical body remains as it was when it was removed from the mold.
In many cases, only the outer surface is machined to remove uneven thickness.

この外表面の機械加工において従来採られている方法は
、第4図に示すように、FRP円筒体1の内部に、その
円筒体に対して摩擦力の生じるように芯体2を挿入し、
これを旋盤や研削盤等の加工機に装着して外表面を切削
或いは研削するのが一般的である。
As shown in FIG. 4, the conventional method for machining the outer surface is to insert the core body 2 into the inside of the FRP cylindrical body 1 so as to generate a frictional force against the cylindrical body.
It is common to attach this to a processing machine such as a lathe or grinder to cut or grind the outer surface.

ところが、この方法によると、FRP円筒体と芯体との
間に隙間を生じ易く、偏肉除去率を高め難い。かと云っ
て、隙間を小さくするために芯体を無理に押し込むと円
筒体の内面に傷がつく。
However, according to this method, a gap is likely to be formed between the FRP cylindrical body and the core body, making it difficult to increase the uneven thickness removal rate. On the other hand, if the core is forcefully pushed in to reduce the gap, the inner surface of the cylinder will be damaged.

また、これ等の問題対策として芯体を挿入時に冷却し、
挿入後に常温に戻す冷却嵌め法を採用することも考えら
れるが、この方法は、芯体の着脱に時間がかかり、冷熱
の使用により経済的にも不利になる。しかも、芯体の抜
き取り時にFRP円筒体が一緒に冷却されるため、その
円筒体が熱膨張係数の比較的大きなのである場合、加工
後の芯体の抜き取りが困難になることもある。
In addition, as a countermeasure for these problems, the core body is cooled when inserted,
Although it is possible to adopt a cooling fitting method in which the temperature is returned to room temperature after insertion, this method takes time to attach and detach the core and is economically disadvantageous due to the use of cold energy. Moreover, since the FRP cylindrical body is cooled together when the core is extracted, if the cylindrical body has a relatively large coefficient of thermal expansion, it may be difficult to extract the core after processing.

この発明は、これ等の問題解決に存効なFRP薄肉円筒
体の加工方法を提供することを目的としている。
The purpose of the present invention is to provide a method for processing a thin-walled FRP cylinder that is effective in solving these problems.

〔問題点を解決するための手段〕 この発明は、上記の目的を達成するため、使用する芯体
を、弾性変形可能な外パイプとその内側に同心配置した
外パイプから成る二重構造とし、かつ、両パイプ間には
圧力付加室を設け、この部屋への加圧流体の導入により
、外径をFRP円筒体の内径よりも小に定めた上記外パ
イプを拡径してFRP円筒体の内面に密着させ、この状
態下で芯体を基準にFRP円筒体の内面を機械加工する
ようにしたのである。
[Means for Solving the Problems] In order to achieve the above object, the present invention uses a core body having a double structure consisting of an elastically deformable outer pipe and an outer pipe arranged concentrically inside the core body, In addition, a pressure chamber is provided between both pipes, and by introducing pressurized fluid into this chamber, the diameter of the outer pipe, whose outer diameter is smaller than the inner diameter of the FRP cylinder, is expanded, thereby increasing the diameter of the FRP cylinder. The inner surface of the FRP cylindrical body was machined in close contact with the inner surface, and under this condition, the inner surface of the FRP cylinder was machined using the core as a reference.

即ち、芯体の径を可変とならしめてFRP円筒体への挿
抜を容易化し、かつ、機械加工時の芯体のFRP円筒体
への密着性を向上させたのがこの発明である。
That is, the present invention makes the diameter of the core body variable to facilitate insertion into and removal from the FRP cylindrical body, and improves the adhesion of the core body to the FRP cylindrical body during machining.

〔実施例〕〔Example〕

第1図に、この発明で使用する芯体の一例を示す。図の
10が芯体の全体を示している。11は断面円形の内パ
イプであって、その両端部には、中心に回転シャフト1
2を備える端板13が止着されている。
FIG. 1 shows an example of the core used in this invention. 10 in the figure indicates the entire core body. Reference numeral 11 denotes an inner pipe with a circular cross section, and a rotary shaft 1 is provided at both ends of the inner pipe.
An end plate 13 with 2 is fastened thereto.

上記内バイブ11の外周には、弾性変形可能で、しかも
、外径がFRP円筒体の内径よりも小さな外バイブ14
が同心的に取付けられている。また、2つのパイプ11
.14間には、両端の気密シールされた圧力付加室15
が設けられている。16は、加圧流体の導入口で、ここ
に接続される流体導入路17中には、圧力保持手段(こ
れはストップパルプ等でよい)18が挿入される。
On the outer periphery of the inner vibrator 11, there is provided an outer vibrator 14 which is elastically deformable and whose outer diameter is smaller than the inner diameter of the FRP cylindrical body.
are installed concentrically. Also, two pipes 11
.. 14, there is a pressure adding chamber 15 which is hermetically sealed at both ends.
is provided. Reference numeral 16 denotes a pressurized fluid introduction port, and a pressure holding means (this may be stop pulp or the like) 18 is inserted into a fluid introduction path 17 connected thereto.

なお、圧力付加室15の半径方向寸法Sは、10龍以下
、より好ましくは0.5〜1.0fl程度と極力小さく
するのが望ましい、101以上あると、加圧流体、例え
ば油や水の熱膨張による外バイブ14の外径変化が大き
くなって、FRP円筒体に、外パイプの密着後に無理な
拡径力が作用すると云った問題が生じてくるからである
It is desirable that the radial dimension S of the pressure adding chamber 15 be as small as possible, less than 10 fl, more preferably about 0.5 to 1.0 fl. This is because the change in the outer diameter of the outer vibrator 14 due to thermal expansion becomes large, causing the problem that an unreasonable diameter expanding force is applied to the FRP cylindrical body after the outer pipe is brought into close contact with the FRP cylinder.

また、芯体製造時には、拡径時の外パイプ14の真円度
を上げるために、FRP円筒体の機械加工時に加える圧
力に近似した圧力を付加室15内に付加した状態下で、
外バイ゛プ14の外面加工を行っておくのがよい。同じ
理由から、外パイプの肉圧のバラツキも±20%以下に
抑えておくのがよい。このバラツキが大きいと、流体圧
の変動による芯体の円筒度低下が大きくなる。
In addition, when manufacturing the core, in order to increase the roundness of the outer pipe 14 during diameter expansion, a pressure similar to the pressure applied during machining of the FRP cylindrical body is applied in the additional chamber 15.
It is preferable to process the outer surface of the outer pipe 14 in advance. For the same reason, it is also good to keep the variation in the wall pressure of the outer pipe within ±20%. If this variation is large, the decrease in cylindricity of the core due to fluctuations in fluid pressure becomes large.

以上の芯体を用いたこの発明の方法は、第2図に示すよ
うに、FRP円筒体1内に芯体10を挿入する工程、圧
力付加室15内に加圧流体を導入して外パイプ14を、
第3図に示すように、円筒体1の内面に充分に密着する
迄拡径する工程、この後の圧力付加室内圧力を保持手段
18により保持する工程、芯体を加工機に装着して芯体
を基準に円筒体1の外表面を機械加工し偏肉を除去する
工程、圧力付加室内圧力の解除により外バイブ14を本
来の大きさに縮径して芯体を取外す工程を順に経て完了
する。なお、拡径工程における外パイプ14の拡径量は
極く僅かでよい0例えば、芯体のFRP円筒体に対する
挿入は、両者間に0.1鶴程度の隙間があれば問題なく
行え、この場合、外パイプ14を0.15w程度拡径さ
せれば、そのパイプが円筒体の内面に充分に密着する。
As shown in FIG. 2, the method of the present invention using the above-mentioned core includes a step of inserting the core 10 into the FRP cylindrical body 1, introducing pressurized fluid into the pressure applying chamber 15, and introducing the pressurized fluid into the outer pipe. 14,
As shown in FIG. 3, there is a step of expanding the diameter until it comes into close contact with the inner surface of the cylindrical body 1, a subsequent step of retaining the pressure in the pressurized chamber by the holding means 18, and a step of attaching the core body to a processing machine and The process is completed by sequentially completing the steps of machining the outer surface of the cylindrical body 1 based on the body and removing uneven thickness, and reducing the diameter of the outer vibrator 14 to its original size by releasing the pressure in the pressurized chamber and removing the core body. do. Note that the amount of diameter expansion of the outer pipe 14 in the diameter expansion process may be extremely small. For example, the core body can be inserted into the FRP cylindrical body without any problem if there is a gap of about 0.1 mm between the two. In this case, if the diameter of the outer pipe 14 is expanded by about 0.15w, the pipe will come into close contact with the inner surface of the cylindrical body.

〔効果〕〔effect〕

以上述べた、この発明の方法によれば、作業時間の短縮
効果、加工の信頬性向上効果が得られる。
According to the method of the present invention described above, the effect of shortening the working time and the effect of improving the reliability of processing can be obtained.

即ち、FRP円筒体への挿入時には芯体の外径が円筒体
の内径よりも小さいため、円筒体を傷付けたりせずに節
単に芯体を挿入することができる。
That is, when inserting into the FRP cylinder, the outer diameter of the core is smaller than the inner diameter of the cylinder, so the core can be easily inserted without damaging the cylinder.

また、流体圧の変化に伴って径の変化する外パイプをF
RP円筒体に隙間無く密着させることができるので、機
械加工時の偏肉除去率を高めることも可能になる。
In addition, the outer pipe whose diameter changes with changes in fluid pressure is
Since it can be brought into close contact with the RP cylindrical body without any gaps, it is also possible to increase the uneven thickness removal rate during machining.

さらに、圧力付加室内の圧力を開放すれば、FRP円筒
体の熱膨張係数に関係なく、芯体と円筒体との間に隙間
ができるので、芯体の取外しも容易になる。
Furthermore, if the pressure in the pressure application chamber is released, a gap is created between the core and the cylinder regardless of the coefficient of thermal expansion of the FRP cylinder, so that the core can be easily removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の方法に採用する芯体の一例を示す
断面図、第2図及び第3図は、この発明の方法による作
業工程の一部を示す線図、第4図は従来の加工方法を示
す線図である。 1・・・・・・FRP円筒体、10・・・・・・芯体、
11・・・・・・内バイブ、14・・・・・・外バイブ
、15・・・・・・圧力付加室、18・・・・・・圧力
保持手段。
FIG. 1 is a sectional view showing an example of a core body adopted in the method of the present invention, FIGS. 2 and 3 are diagrams showing a part of the working process according to the method of the present invention, and FIG. 4 is a conventional FIG. 3 is a diagram showing a processing method. 1... FRP cylindrical body, 10... Core body,
11...Inner vibe, 14...Outer vibe, 15...Pressure addition chamber, 18...Pressure holding means.

Claims (1)

【特許請求の範囲】[Claims] 弾性変形可能な外パイプと、その内側に同心配置した内
パイプとの間に圧力付加室の形成された芯体を、内径が
上記外パイプの外径よりも若干大きな繊維強化プラスチ
ックス製薄肉円筒体の内部に挿入した後、上記圧力付加
室内に加圧流体を導入して外パイプを上記薄肉円筒体の
内面に密着する迄拡径し、次に、この密着状態での圧力
付加室内圧力を圧力保持手段により保持し、この状態下
で芯体を基準に薄肉円筒体の外表面を機械加工すること
から成る繊維強化プラスチックス製薄肉円筒体の加工方
法。
A core body in which a pressure applying chamber is formed between an elastically deformable outer pipe and an inner pipe arranged concentrically inside the outer pipe is a thin-walled fiber-reinforced plastic cylinder whose inner diameter is slightly larger than the outer diameter of the outer pipe. After inserting it into the body, pressurized fluid is introduced into the pressure application chamber to expand the diameter of the outer pipe until it comes into close contact with the inner surface of the thin-walled cylindrical body, and then the pressure inside the pressure application chamber in this state of close contact is A method for processing a thin cylindrical body made of fiber reinforced plastics, which comprises holding the thin cylindrical body by a pressure holding means and machining the outer surface of the thin cylindrical body with reference to the core body under this condition.
JP5556886A 1986-03-11 1986-03-11 Processing method of thin-walled cylinder made of fiber reinforced plastics Expired - Lifetime JPH0616961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5556886A JPH0616961B2 (en) 1986-03-11 1986-03-11 Processing method of thin-walled cylinder made of fiber reinforced plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5556886A JPH0616961B2 (en) 1986-03-11 1986-03-11 Processing method of thin-walled cylinder made of fiber reinforced plastics

Publications (2)

Publication Number Publication Date
JPS62213927A true JPS62213927A (en) 1987-09-19
JPH0616961B2 JPH0616961B2 (en) 1994-03-09

Family

ID=13002317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5556886A Expired - Lifetime JPH0616961B2 (en) 1986-03-11 1986-03-11 Processing method of thin-walled cylinder made of fiber reinforced plastics

Country Status (1)

Country Link
JP (1) JPH0616961B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245328A (en) * 1988-03-28 1989-09-29 Matsushita Electric Ind Co Ltd Floating-point normalization rounding device
CN104588682A (en) * 2014-11-24 2015-05-06 湖北三江航天红阳机电有限公司 Turning method of long thin wall composite shell body formed by metal and glass fiber reinforced plastics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245328A (en) * 1988-03-28 1989-09-29 Matsushita Electric Ind Co Ltd Floating-point normalization rounding device
CN104588682A (en) * 2014-11-24 2015-05-06 湖北三江航天红阳机电有限公司 Turning method of long thin wall composite shell body formed by metal and glass fiber reinforced plastics

Also Published As

Publication number Publication date
JPH0616961B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
CN102126140B (en) Combined clamp and clamping method for small-mouth large-cavity thin-walled part
CZ297507B6 (en) Process for producing permanent magnet-excited rotor for high-speed electric motor
US4991292A (en) Method of producing elastomeric stators for eccentric helical pumps
JPS629842A (en) Method of working cylinder made of fiber reinforced plastics and having thin wall thickness
US4759116A (en) Method of applying containment shroud on permanent magnet rotors
CN109622990A (en) Control ultra-thin-wall aluminium alloy high-precision ozzle seal groove turning deformation method and fixture
US5435868A (en) Method of winding a fiber-resin composite pressure fluid cylinder
US6174484B1 (en) Apparatus and method for producing a compression molded product
CN201768932U (en) Fixture for finish turning excircle of thin-wall cylinder liner
JPS62213927A (en) Machining method for thin wall cylindrical body made of fiber reinforced plastic
JPH0588180B2 (en)
CA2087631A1 (en) Apparatus, insert and method for forming curing envelope
CN112008476B (en) Machining deformation control method for thin-wall shaft part
US20030177800A1 (en) Method for the plastic moulding of the hub recess for fast running turbine component
CN213438497U (en) Tool for machining cylindrical thin-wall parts
CN209520643U (en) It is a kind of to process the novel clamp used applied to thin-wall sleeve parts
JPH0214895B2 (en)
WO1997013606A1 (en) Procedure for sealing fastening sleeves and for improving accuracy of grinding
JPH0380617B2 (en)
KR100551204B1 (en) Precise internal machining apparatus of fiber reinforced composites sabots object
JPH0541413B2 (en)
JPS6122927A (en) Manufacture of tube body made of fiber strengthened plastics
JPH01199705A (en) Method for mechanically machining ceramic rotor for pressure wave type supercharger
JPH07148835A (en) Bending processing of thermoplastic resin pipe
JPS59171613A (en) Bonding method of fiber reinforced plastic pipe