JPS6221370A - Electrophotographic method - Google Patents

Electrophotographic method

Info

Publication number
JPS6221370A
JPS6221370A JP60159927A JP15992785A JPS6221370A JP S6221370 A JPS6221370 A JP S6221370A JP 60159927 A JP60159927 A JP 60159927A JP 15992785 A JP15992785 A JP 15992785A JP S6221370 A JPS6221370 A JP S6221370A
Authority
JP
Japan
Prior art keywords
exposure energy
light beam
photoreceptor
lines
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60159927A
Other languages
Japanese (ja)
Other versions
JPH0736605B2 (en
Inventor
Koji Miyagi
孝司 宮城
Koichi Takiguchi
滝口 孝一
Akio Okamura
岡村 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP60159927A priority Critical patent/JPH0736605B2/en
Publication of JPS6221370A publication Critical patent/JPS6221370A/en
Publication of JPH0736605B2 publication Critical patent/JPH0736605B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Fax Reproducing Arrangements (AREA)
  • Dot-Matrix Printers And Others (AREA)
  • Laser Beam Printer (AREA)

Abstract

PURPOSE:To improve the reproducibility of minute lines in the sub scanning direction while suppressing strip fog running in the main scanning direction by approximating the light discharge curve of a photosensitive body by two straight lines and using an exposure energy corresponding to a cross point of the straight lines as a reference exposure energy. CONSTITUTION:An electrostatic latent image is formed to the photosensitive body charged uniformly by using a light beam in response to a picture signal so as to expose a background part. In expressing the light discharge characteristic of the photosensitive body whose potential is lowered as the energy exposing the photosensitive body is increased as opproximate lines whose gradient is decreased at a point, the exposure energy corresponding to the point is used as the reference exposure energy and the background part is irradiated by using the light beam having the exposure energy being 1.1-1.4 time of that of the reference exposure energy. The edge density of a minute line is lowered at a portion where exposure energy I > 1.4 X (reference exposure energy) exists and the adhesion of a thin toner layer known as the scattered toner takes place in the vicinity of the edge.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主走査方向の帯状かぶりを抑え、副走査方向の
1ドツトライン等の細線の再現性を向上させた電子写真
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic method that suppresses band-like fog in the main scanning direction and improves the reproducibility of fine lines such as one-dot lines in the sub-scanning direction.

〔従来の技術〕[Conventional technology]

光ビームによる電子写真装置(背景部を露光するタイプ
とする。以下、同じ)として、例えば、第4図に示すも
のがある。この電子写真装置はレーザ光線1の光ビーム
2を画像信号に応じて変調器3によって変調し、変調光
ビーム4を回転多面鏡5で主走査方向に偏向し、レンズ
径6を介して回転する感光体7を露光するものである。
An example of an electrophotographic apparatus using a light beam (a type that exposes a background area; the same applies hereinafter) is shown in FIG. 4. This electrophotographic apparatus modulates a light beam 2 of a laser beam 1 with a modulator 3 according to an image signal, deflects the modulated light beam 4 in the main scanning direction with a rotating polygon mirror 5, and rotates it through a lens diameter 6. This is for exposing the photoreceptor 7.

この露光により感光体7上に静電潜像が形成され、現像
後記録紙8に転写される。
This exposure forms an electrostatic latent image on the photoreceptor 7, which is transferred to the recording paper 8 after development.

第5図は、感光体7に露光する光ビームのエネルギー密
度比を示し、各走査線S I+ S z、S 3上にお
いて最大値となり、各走査線S1.St、S、の中間点
位置G + 、 G tにおいて最大値の1/e”とな
るガウス分布の形状を有している。光ビームの径dは光
強度が光ビーム中心の1/e”となる値の点によって定
まると定義されていることから、各走査−線S、、S、
、S、の間隔Pと光ビームの径の比には、第5図の場合
において、k=d/P=1となる。
FIG. 5 shows the energy density ratio of the light beams exposing the photoreceptor 7, which has a maximum value on each scanning line S I + S z, S 3, and on each scanning line S1 . It has a Gaussian distribution shape with a maximum value of 1/e'' at the midpoint position G + and G t of St, S. The diameter d of the light beam is such that the light intensity is 1/e'' from the center of the light beam. Since it is defined as being determined by points with values, each scan-line S, , S,
, S, and the diameter of the light beam are k=d/P=1 in the case of FIG.

図中81は単一の光ビームのエネルギー密度比を示し、
B2は合成されたエネルギー密度比を示す。
In the figure, 81 indicates the energy density ratio of a single light beam,
B2 indicates the synthesized energy density ratio.

感光体7を画像信号に応じて変調された光ビーム4で露
光すると、背景部に相当する領域は、曲線B2のエネル
ギーパターンを有した光ビームで露光されたことになっ
て主走査方向に走る帯状のかぶりを発生させる。
When the photoreceptor 7 is exposed to the light beam 4 modulated according to the image signal, the area corresponding to the background is exposed to the light beam having an energy pattern of curve B2, which runs in the main scanning direction. Causes a band-like fog.

走査線間隔Pは、例えば、解像度4,0O3PIのレー
ザプリンタで64μ、解像度800SPIのものでは3
2μとなる。このため、現像に直接きく電場では、この
露光むらが強調されるεとになる。
For example, the scanning line interval P is 64μ for a laser printer with a resolution of 4,003PI, and 3μ for a laser printer with a resolution of 800SPI.
It becomes 2μ. Therefore, in the electric field directly applied to the development, the exposure unevenness is accentuated at ε.

この帯状かぶりを抑えるために現像バイアス電圧を上げ
ることも考えられるが、帯状かぶりを消すほどまでにバ
イアス電圧を上げると、画像部の電位コントラストが不
足したり、現像剤中のキャリアまで感光体に付着する等
の不都合が生じる。
In order to suppress this band-like fog, it is possible to raise the developing bias voltage, but if the bias voltage is increased to the extent that the band-like fog disappears, the potential contrast in the image area may be insufficient, and even the carriers in the developer may be damaged by the photoreceptor. Inconveniences such as adhesion may occur.

このような不都合を伴わずに帯状のかぶりを抑えるもの
として、特開昭58−152269号公報に示される電
子写真法が提案されている。この電子写真法によれば、
前述の比を 1.3≦に=d/P≦1.9 になるように光ビームの径dと走査線間隔Pを設定する
と、前述した帯状のかぶりが抑えられると述べている。
An electrophotographic method disclosed in Japanese Patent Application Laid-open No. 152269/1983 has been proposed as a method for suppressing band-like fog without causing such inconveniences. According to this electrophotographic method,
It is stated that the band-like fog mentioned above can be suppressed by setting the diameter d of the light beam and the scanning line interval P so that the above-mentioned ratio is 1.3≦=d/P≦1.9.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の電子写真法によれば、ビーム径の最適化
によって帯状のかぶりを抑えるようにしているため、ビ
ーム径を大きくして帯状のかぶりを抑えようとすると副
走査方向1ドツトライン等の細線の再現性が低下する恐
れがある。
However, according to conventional electrophotography, the band-like fog is suppressed by optimizing the beam diameter. reproducibility may be reduced.

〔問題点を解決するための手段および作用〕本発明は上
記に鑑みてなされたものであり、主走査方向に走る帯状
かぶりを抑えながら副走査方向の細線の再現性を向上さ
せるため、感光体の光除電曲線を2本の直線で近似し、
この直線の交点に相当する露光エネルギーを基準露光エ
ネルギーとしたとき、この基準露光エネルギーの1.1
から1.4倍の範囲のエネルギーを有する光ビームによ
り背景部を光照射するようにした電子写真法を提供する
ものである。
[Means and effects for solving the problem] The present invention has been made in view of the above-mentioned problems, and in order to improve the reproducibility of thin lines in the sub-scanning direction while suppressing band-like fog running in the main-scanning direction, Approximate the optical static elimination curve of with two straight lines,
When the exposure energy corresponding to the intersection of these straight lines is taken as the standard exposure energy, 1.1 of this standard exposure energy
The present invention provides an electrophotographic method in which a background portion is irradiated with a light beam having an energy in a range of 1.4 times from .

〔実施例〕〔Example〕

以下、本発明による電子写真法を詳細に説明する。 Hereinafter, the electrophotographic method according to the present invention will be explained in detail.

(A)帯状かぶりの発生防止について (1)  感光体のキャリア光生成の量子効率ηη=η
。X (E/E6 ) ’−・・・−・・・−・(1)
ここで、η。:ある電場E0における量子効率E :感
光体の内部電場 n :を子効率の電場依存性を表 わす定数。例えば、S、 − 有機複合感材では、n=%、 α−S、感材ではn=0 (2)感光体の光除電特性 (1)式の関係を満たすとき、感光体の光除電特性は次
のように表される。
(A) Prevention of band-like fogging (1) Quantum efficiency of carrier light generation of photoreceptor ηη=η
. X (E/E6) '−・・・−・・・−・(1)
Here, η. : Quantum efficiency E in a certain electric field E0 : Internal electric field of the photoreceptor n : A constant representing the electric field dependence of quantum efficiency. For example, n = % for S, - organic composite sensitive material, n = 0 for α - S, sensitive material (2) Optical static elimination characteristics of photoreceptor When the relationship of equation (1) is satisfied, the optical static elimination characteristic of the photoreceptor is expressed as follows.

y (+−111= y。(1−R)  −SX 1曲
(2)ここで、vo :感光体初期電位 S :感光体の感度定数 ■ :露光エネルギー (3)感光体の光除電特性の特徴的事項感光体として、
S、−有機複合感材を使用すると、(2)式は、n”%
とじて、 ET= 、f’i −s X I  −−−−−−−−
−−−−−−−(3)となる。ここで、露光エネルギー
Iを変化させて感光体の光除電特性に基づく電位■を測
定した。測定結果を第1図に示す。横軸は後述する2直
線り、、Lx、の交点Xにおける露光エネルギーを基準
光!(1,0) としたときの露光エネルギーの比を実
軸で示すものであり、縦軸は電位■をA乗に変換して示
すものである(縦軸は(1−n)乗軸であり、n==%
とすると、%乗軸となる)。
y (+-111= y. (1-R) -SX 1 song (2) where, vo: Initial potential of photoreceptor S: Sensitivity constant of photoreceptor ■: Exposure energy (3) Photoreceptor's photostatic charge removal characteristic CharacteristicsAs a photoreceptor,
S, - When an organic composite sensitive material is used, equation (2) becomes n''%
Then, ET= , f'i −s X I −−−−−−−
--------(3). Here, the exposure energy I was varied to measure the potential (2) based on the optical static elimination characteristics of the photoreceptor. The measurement results are shown in Figure 1. The horizontal axis represents the exposure energy at the intersection X of two straight lines, Lx, which will be described later, as the reference light! The real axis shows the ratio of exposure energy when (1, 0), and the vertical axis shows the potential ■ converted to the A power (the vertical axis is the (1-n) power axis). Yes, n==%
, it becomes the % power axis).

第1図より明らかな通り、横軸に露光エネルギーIを実
軸で示し、縦軸に感光体電位■を(1−n)乗の軸とし
て示せば、光除電特性は2本の直線Lt、Ltで近似的
に表されるという特徴的事項が判明した。直線L2は直
線り、より傾きが小さく、残留電位の部分に対応するも
のである。
As is clear from FIG. 1, if the horizontal axis shows the exposure energy I as a real axis, and the vertical axis shows the photoreceptor potential ■ as the (1-n) power axis, the photostatic charge removal characteristic can be expressed by two straight lines Lt, It has been found that a characteristic feature is approximately expressed by Lt. The straight line L2 is a straight line, has a smaller slope, and corresponds to the residual potential portion.

(4)感光体の光除電特性のモデル化 前述した残留電位の部分を考慮すると、(3)式は、次
のようにモデル化することができる。
(4) Modeling of photostatic charge removal characteristics of photoconductor Considering the residual potential mentioned above, equation (3) can be modeled as follows.

(4,1)  a領域(基準光量以下の領域)V = 
(yo(+−nl  (Vo(+−11>  9p+1
−n))XI) Wのモデル式において、n=Aとする
と、V=(冨−CF、−、Fj’i> X I ) ’
−−−−−−−−(4,1)(4,2)  b領域(基
準光量以上の領域)y  =   (VR(+−1’l
l     (ER(yo o−n)   VR(1−
11))XI)  7のモデル式において、n”%とす
ると、V= (珂Cci(JV;  JV’1)X(I
  1)) ”−−−−−−(4,2)ここで、 V :露光エネルギー■を与えられた 後の感光体電位 CER:2本の直線L + 、 L tの傾きの比■R
:交点Xの電位(一般に残留電位 呼ばれるもの) (5)副走査方向の電位むら Δ■ Δv=vI11..−v、、、I−=−−−−−−−−
−−−(5)ここで、 V 1llaX  ’露光エネルギー■の最小値11!
7を与えられたときの感光体電位V の最大値 V @in  :露光エネルギー■の最大値1.、、、
を与えられたときの感光体電位■ の最小値 (6)副走査方向の光量むら Δ■ 前述した(5)の電位むらΔ■は以下の光量むらΔ■に
よってもたらされるものである。
(4,1) Area a (area below the reference light amount) V =
(yo(+-nl (Vo(+-11> 9p+1
-n))
−−−−−−−(4,1)(4,2) b area (area with reference light amount or more) y = (VR(+-1'l
l (ER(yo o-n) VR(1-
11))XI) In the model formula of 7, if n”%, then V=
1)) ”−−−−−−−(4,2) Here, V: Photoreceptor potential after exposure energy ■CER: Ratio of slopes of two straight lines L + and L t ■R
: Potential at intersection X (generally called residual potential) (5) Potential unevenness in sub-scanning direction Δ■ Δv=vI11. .. −v,,,I−=−−−−−−−
--- (5) Here, V 1llaX 'minimum value of exposure energy ■ 11!
Maximum value of photoreceptor potential V when given 7 @in: Maximum value of exposure energy ■1. ,,,
Minimum value of photoreceptor potential ■ when given (6) Light amount unevenness Δ■ in the sub-scanning direction The potential unevenness Δ■ in (5) described above is caused by the following light amount unevenness Δ■.

I +++mx ここで、k p ” d p / Pであり、dp:副
走査方向の光ビーム径 P :走査線間隔 第1図に示した測定結果によれば、V o ” 800
(V) 、V R−200(V) 、CER=0.3が
得られた。
I +++mx Here, k p ” d p / P, dp: light beam diameter in sub-scanning direction P: scanning line interval According to the measurement results shown in FIG. 1, V o ” 800
(V), VR-200(V), and CER=0.3 were obtained.

いま、kp = d p / P = 1.6とし、(
4,1)、(4,2) 、(5)、(6)の各式を用い
て計算すると、露光エネルギー1 = (Ismx ”
 I +++i。)/2と電位むらΔVの関係が求めら
れる。その計算結果を第2図に示した。
Now, let kp = d p / P = 1.6, and (
4,1), (4,2), (5), and (6), exposure energy 1 = (Ismx ”
I +++i. )/2 and the potential unevenness ΔV is determined. The calculation results are shown in Figure 2.

ここで、主走査方向に走る帯状のかぶりを抑えるための
考え方として、「露光むらΔIがあっても、電位むらΔ
Vを出にくくするjこととし、その条件として、「通常
のバイアス電圧設定値Vm(Vs=背景背景値電位+1
00V) ”)では、電位むらΔ■は±15(V)(コ
ントラスト30(V))以下でなければならない。1と
した。
Here, as a concept for suppressing the band-like fog running in the main scanning direction, ``Even if there is exposure unevenness ΔI, potential unevenness ΔI
We decided to make it difficult to output V, and the conditions for this were: ``Normal bias voltage setting value Vm (Vs = background background value potential + 1
00V)''), the potential unevenness Δ■ must be less than ±15 (V) (contrast 30 (V)). It was set as 1.

第2図よりこの条件を満足するためには、露光エネルギ
ー■が基準露光エネルギーの1.1倍以上にならなけれ
ばならないことになる。
From FIG. 2, in order to satisfy this condition, the exposure energy (2) must be 1.1 times or more the reference exposure energy.

他の感材、例えば、α−S、感材を使用して同様の検討
を試みたが、同じような結果が得られた。
Similar studies were attempted using other photosensitive materials, such as α-S, but similar results were obtained.

〔B〕 1ドツトライン等の細線の再現性についてこの
1ドツトラインの再現性とビーム径の関係を把握するた
めに、本発明者はまず現像電場解析によるシミュレーシ
ョン計算を実施した。
[B] Regarding the reproducibility of thin lines such as one-dot lines, in order to understand the relationship between the reproducibility of one-dot lines and the beam diameter, the inventors first performed simulation calculations using development electric field analysis.

計算に用いた値(感材、露光エネルギー)は前述した(
A)の値と同じである。その結果、良好な1ドツトライ
ンの再現が可能な露光エネルギーの範囲は、 ■≦1.4 X (基準露光エネルギー)で再現される
線巾Wは走査ヒツチpに対しW/ p =o、ss〜0
.88 と安定しており、値自体も問題ないものであった。逆に
、! >1.4 X (基準露光エネルギー)では細線
のエツジ部濃度が低下し、かつ、エツジ部近傍に飛散ト
ナーと一般に呼ばれるうすいトナ一層の付着が発生する
ことが分かった。第3図の(イ)、(U)はこれを示し
、 のときであり、(ロ)においては、1.6のときである
。(ロ)では、飛散トナーtが見られる。
The values used in the calculation (sensitivity material, exposure energy) are as described above (
The value is the same as A). As a result, the range of exposure energy in which a good one-dot line can be reproduced is: ■≦1.4 X (standard exposure energy) The line width W that is reproduced is W/ p = o, ss ~ for the scanning hit p. 0
.. It was stable at 88, and the value itself was not a problem. vice versa,! >1.4X (standard exposure energy), it was found that the density at the edge of the thin line decreased and a thin layer of toner, generally called scattered toner, was deposited near the edge. Figure 3 (a) and (U) show this when , and in (b) it is 1.6. In (b), scattered toner t can be seen.

以上の解析結果から本発明者は最適光量範囲として ■ を得た。Based on the above analysis results, the inventor determined that the optimum light amount range was ■ I got it.

〔C〕実験による検証結果について 以上の解析結果を発明者は実験により検証した。用いた
実験機は、主副両方向についてビームエキスパンダーを
備えていて、主副両方向のビーム径を独立に変えられ、
また書き込み解像度も400〜14003 P Iまで
変えられるレーザー走査光学径を持つレーザプリンター
である。実験は800SPIにて行った。まず、d/p
=1.6にて背景部帯状かぶりの発生について調べた。
[C] Experimental Verification Results The above analysis results were verified by the inventors through experiments. The experimental machine used was equipped with beam expanders in both the main and sub-directions, and the beam diameter in both directions could be changed independently.
It is also a laser printer with a laser scanning optical diameter that can change the writing resolution from 400 to 14003 PI. The experiment was conducted at 800 SPI. First, d/p
= 1.6, the occurrence of band-like fog in the background area was investigated.

その結果、現像バイアス−背景部電位+100(V)と
しておけば、 ■ では、帯状かぶりの発生のないことを確認した。
As a result, it was confirmed that when the developing bias was set to -background potential +100 (V), band-like fog did not occur in case (2).

次に、1ドツトラインの再現を調べたが、■ では、主走査方向、副走査方向どちらかの1ドツトライ
ンもw/p”:o、94〜0.98と安定かつ良好な細
線再現性を得た。W/Pが解析結果より大きな値となっ
ているのは定着により線巾が太ったためであり、これは
かえって好ましい結果となった。
Next, we investigated the reproduction of one-dot lines, and found that stable and good fine line reproducibility was obtained for one-dot lines in either the main scanning direction or the sub-scanning direction with w/p":o of 94 to 0.98. The reason why the W/P was larger than the analysis result was because the line width became thicker due to fixing, and this was actually a favorable result.

では、主副貴方向どちらの1ドツトラインとも線巾は変
わらないまでも、特に、副走査方向に走るラインで細線
のエツジ部のきれの悪い再現であった。
In this case, although the line width was the same for both the main and sub-scanning one-dot lines, the edges of the thin lines were particularly poorly reproduced in the lines running in the sub-scanning direction.

両者の再現ラインの良否は、プリントサンプルをオリジ
ナルとして通常の複写機でコピーしたサンプル同志を比
較したときより明瞭となった。
The quality of the reproduction lines between the two became clearer when comparing samples made by using a print sample as the original and copying it with a normal copying machine.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明の電子写真法によれば、感光
体の光除電曲線を2本の直線で近似し、この直線の交点
に相当する露光エネルギーを基準露光エネルギーとした
とき、この基準露光エネルギーの1.1から1.4倍の
範囲のエネル、ギーを有する光ビームにより背景部を光
照射するようにしたため、主走査方向に走る帯状かぶり
を抑えながら副走査方向の細線の再現性を向上させるこ
とができる。
As explained above, according to the electrophotographic method of the present invention, when the optical static elimination curve of the photoreceptor is approximated by two straight lines and the exposure energy corresponding to the intersection of these straight lines is set as the reference exposure energy, this reference exposure By irradiating the background area with a light beam with energy in the range of 1.1 to 1.4 times the energy, the reproducibility of fine lines in the sub-scanning direction is improved while suppressing band-like fog running in the main scanning direction. can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は感光体の光除電特性を示す説明図。第2図は感
光体上の電位むらを示す説明図。第3図(() 、 (
tl)は副走査方向の細線の再現性を示し、(イ)は本
発明によるもの、(0)は本発明の範囲を外れたものを
示す説明図。第4図は従来のレーザプリンターを示す説
明図。第5図はガウス分布光ビームの露光エネルギーを
示す説明図。 符号の説明 V−・−・感光体電位 ■ −・・−・露光エネルギー ΔV−感光体電位むら 特 許 出 願人  冨士ゼロックス株式会社代理人 
弁理士  松 原 伸 2 同 同 村木清司 同 同 平田忠雄 同 同 上島淳− 第1図 一一一1 第3図 cつ (D) 第4図 第5図
FIG. 1 is an explanatory diagram showing the optical static elimination characteristics of a photoreceptor. FIG. 2 is an explanatory diagram showing potential unevenness on a photoreceptor. Figure 3 ((), (
tl) shows the reproducibility of thin lines in the sub-scanning direction, (A) is an explanatory diagram showing what is according to the present invention, and (0) is what is out of the scope of the present invention. FIG. 4 is an explanatory diagram showing a conventional laser printer. FIG. 5 is an explanatory diagram showing the exposure energy of a Gaussian distributed light beam. Explanation of symbols V-・-・Photoconductor potential■ −・・・・Exposure energy ΔV-Photoconductor potential unevenness Patent Applicant Agent: Fuji Xerox Co., Ltd.
Patent Attorney Shin Matsubara 2 Same as Seiji Muraki Same Same as Tadao Hirata Same Same as Jun Ueshima - Figure 1 111 Figure 3 c (D) Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 均一に帯電した感光体へ、画像信号に応じた光ビームに
より背景部を露光して静電潜像を形成する電子写真法に
おいて、 感光体を露光するエネルギー量の増加に応じて電位低下
する感光体の光除電特性を1点で傾きが減少する近似直
線で表わしたとき、前記1点に対応した露光エネルギー
を基準露光エネルギーとして該基準露光エネルギーの1
.1倍から1.4倍の露光エネルギーの光ビームによっ
て前記背景部を光照射することを特徴とする電子写真法
[Claims] In an electrophotographic method in which an electrostatic latent image is formed by exposing a uniformly charged photoreceptor to a background part with a light beam according to an image signal, an electrophotographic method is used to increase the amount of energy used to expose the photoreceptor. When the optical static elimination characteristic of a photoreceptor whose potential decreases in response to a change in potential is expressed by an approximate straight line whose slope decreases at one point, the exposure energy corresponding to the one point is set as the reference exposure energy, and 1 of the reference exposure energy.
.. An electrophotographic method characterized in that the background portion is irradiated with a light beam having an exposure energy of 1 to 1.4 times.
JP60159927A 1985-07-19 1985-07-19 Electrophotography Expired - Lifetime JPH0736605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60159927A JPH0736605B2 (en) 1985-07-19 1985-07-19 Electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60159927A JPH0736605B2 (en) 1985-07-19 1985-07-19 Electrophotography

Publications (2)

Publication Number Publication Date
JPS6221370A true JPS6221370A (en) 1987-01-29
JPH0736605B2 JPH0736605B2 (en) 1995-04-19

Family

ID=15704189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60159927A Expired - Lifetime JPH0736605B2 (en) 1985-07-19 1985-07-19 Electrophotography

Country Status (1)

Country Link
JP (1) JPH0736605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63300257A (en) * 1987-05-29 1988-12-07 Minolta Camera Co Ltd Two-color printer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152269A (en) * 1982-03-04 1983-09-09 Fujitsu Ltd Optical recording system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152269A (en) * 1982-03-04 1983-09-09 Fujitsu Ltd Optical recording system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63300257A (en) * 1987-05-29 1988-12-07 Minolta Camera Co Ltd Two-color printer

Also Published As

Publication number Publication date
JPH0736605B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
US6330405B1 (en) Image forming apparatus
JPS6221370A (en) Electrophotographic method
JPS6219881A (en) Electrophotographing method
JPH11196277A (en) Image forming device
JPH0761036A (en) Aligner
US6282393B1 (en) Developing apparatus with alternating bias voltage
JP2693422B2 (en) Image forming method and apparatus
JPS63279278A (en) Electrophotographic device
JP3675146B2 (en) Image forming apparatus
JPH0473658A (en) Electrophotographic copier
JP3018446B2 (en) Image forming device
JP3050400B2 (en) Electrophotographic image forming apparatus
JPS6080871A (en) Device for controlling electrifying potential of electrophotographic device
JPH05107885A (en) Image forming device
JP3160060B2 (en) Multicolor image forming method and apparatus
JP2747065B2 (en) Image forming device
JP2730779B2 (en) Image forming device
JPH01263665A (en) Digital image forming device
JPH0255373A (en) Color electrophotographic copying device
JPS6341874A (en) Dichromatic electrophotographic method
JPH0256566A (en) Color electrophotographic device
JPH0519601A (en) Image formation
JPH04336552A (en) Electronic photograph device
JPH08262849A (en) Developing method of image forming device
Zwadlo et al. Liquid Toner Conductivity Effects on Laser Exposed Color Halftone Dots