JPS62213627A - Control device for automatic ventilation fan - Google Patents

Control device for automatic ventilation fan

Info

Publication number
JPS62213627A
JPS62213627A JP5407086A JP5407086A JPS62213627A JP S62213627 A JPS62213627 A JP S62213627A JP 5407086 A JP5407086 A JP 5407086A JP 5407086 A JP5407086 A JP 5407086A JP S62213627 A JPS62213627 A JP S62213627A
Authority
JP
Japan
Prior art keywords
resistance value
change
circuit
time
microcomputer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5407086A
Other languages
Japanese (ja)
Other versions
JPH0586531B2 (en
Inventor
Takashi Sakahara
坂原 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP5407086A priority Critical patent/JPS62213627A/en
Publication of JPS62213627A publication Critical patent/JPS62213627A/en
Publication of JPH0586531B2 publication Critical patent/JPH0586531B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ventilation (AREA)

Abstract

PURPOSE:To reduce the number of component parts and decrease an electrical current in a circuit by a method wherein a concentration of reducing gas and a heat of atmosphere are detected by a gas detecting element and a thermal sensing element, and a modified wave sensed signal is outputted through a single non-stable multi-vibrator circuit in response to a change in these resistance values. CONSTITUTION:A change in resistance value of a gas sensing element 1 is converted into a change in DC current through a circuit 2, changed into ON time of a rectangular wave through a circuit 3 and then inputted into a computer 4. If a concentration of reducing gas is increased, a resistance value of an element 1 is decreased, and ON time of the rectangular wave is shortened. When this rate of change is increased to more than the desired value, the computer 4 may operate a switching element 5 so as to drive a motor 6. A change in of resistance value of a thermal sensing element 7 is changed into OFF time of rectangular wave through the circuit 3 and then inputted into the computer 4. As a temperature is increased, a resistance value of the element 7 is decreased, and OFF time of the computer 4 is shortened. As this rate of variation is increased more than the desired value, the computer 4 may operate the element 5 and drive the motor 6.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、還元性気体に感応して抵抗値が変化する検知
素子と、熱に感応して抵抗値が変化する検知素子とを利
用して換気扇を自動運転させる自動換気扇の制御装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a ventilation fan using a detection element whose resistance value changes in response to reducing gas and a detection element whose resistance value changes in response to heat. This invention relates to a control device for an automatic ventilation fan that automatically operates a ventilation fan.

従来の技術 従来、この種の換気扇における制御回路は、特定する文
献は挙げられないが、第2図に示すような構成であった
。すなわち図において、1o1は気体検知素子であり、
空気中の還元性気体の濃度の変化により、その抵抗値が
変化する。その抵抗値の変化を直流電圧変換回路102
によって直流電圧の変化に変換し、その直流電圧の変化
を無安定マルチバイブレータ回路103によって方形波
のオン時間の変化に変換し、方形波検知信号としてマイ
クロコンピュータ104に入力している。
2. Description of the Related Art Conventionally, a control circuit for this type of ventilation fan has a configuration as shown in FIG. 2, although no specific literature is cited. That is, in the figure, 1o1 is a gas detection element,
Its resistance value changes with changes in the concentration of reducing gas in the air. The change in resistance value is detected by the DC voltage conversion circuit 102.
The astable multivibrator circuit 103 converts the DC voltage change into a change in the on-time of a square wave, which is input to the microcomputer 104 as a square wave detection signal.

還元性気体の濃度が高くなると気体検知素子101の抵
抗値が小さくなり、無安定マルチバイブレータ回路10
3からマイクロコンピュータ104に入力される方形波
検知信号のオン時間が短くなる。
When the concentration of the reducing gas increases, the resistance value of the gas detection element 101 decreases, and the astable multivibrator circuit 10
3, the on time of the square wave detection signal input to the microcomputer 104 becomes shorter.

このオン時間の変化度合が所定の値以上に大きくなると
、マイクロコンピュータ104から出力信号が出され、
スイッチング素子105を操作し、換気扇のモータ10
6を駆動させる。
When the degree of change in this on-time increases beyond a predetermined value, an output signal is output from the microcomputer 104,
By operating the switching element 105, the ventilation fan motor 10
Drive 6.

また、1oアは熱検知素子であり、空気の温度の変化に
より、その抵抗値が変化する0その抵抗値の変化を無安
定マルチバイブレータ回路10Bによって方形波のオフ
時間の変化に変換し、方形波検知信号としてマイクロコ
ンピュータ104に入力している。空気の温度が高くな
ると熱検知素子107の抵抗値が小さくなり、無安定マ
ルチバイブレータ回路108からマイクロコンピュータ
104に入力される方形波検知信号のオフ時間が短くな
る。このオフ時間の変化度合が所定の値以上に大きくな
ると、マイクロコンピュータ104から出力信号が出さ
れ、スイッチング素子106を操作し、換気扇のモータ
106を駆動するものであった。
In addition, 1oA is a heat detection element whose resistance value changes with changes in air temperature.The change in resistance value is converted into a change in off time of a square wave by an astable multivibrator circuit 10B, and a square wave is generated. The signal is input to the microcomputer 104 as a wave detection signal. As the temperature of the air increases, the resistance value of the heat detection element 107 becomes smaller, and the off time of the square wave detection signal input from the astable multivibrator circuit 108 to the microcomputer 104 becomes shorter. When the degree of change in the off time becomes greater than a predetermined value, an output signal is output from the microcomputer 104 to operate the switching element 106 and drive the motor 106 of the ventilation fan.

91発明が解決しようとする問題点 このような従来の構成では、気体検知素子101の抵抗
値の変化を時間変換する無安定マルチバイブレータ回路
103と、熱検知素子107の抵抗値の変化を時間変換
する無安定マルチパイブレーク回路108とがあるため
部品点数が多くなり、またマイクロコンピュータ104
に入力する信号が多くなり、さらに回路電流が多くなる
という問題があった。
91 Problems to be Solved by the Invention In such a conventional configuration, the astable multivibrator circuit 103 converts the change in resistance value of the gas detection element 101 into time, and the change in resistance value of the heat detection element 107 converts the change in resistance value into time. Since there is an astable multi-pie break circuit 108, the number of parts increases, and the microcomputer 104
There was a problem in that the number of signals input to the circuit increased, and the circuit current also increased.

本発明は、このような問題点を解決するもので、気体検
知素子と、熱検知素子を有し、マイクロコンピュータに
入力する信号を減らし、また部品点数を減らし、さらに
は回路電流を減らすことを目的とするものである。
The present invention solves these problems by having a gas detection element and a heat detection element, reducing the number of signals input to the microcomputer, reducing the number of parts, and further reducing the circuit current. This is the purpose.

問題点を解決するだめの手段 この問題点を解決するために本発明は、還元性気体に感
応して抵抗値が変化する気体検知素子と、熱に感応して
抵抗値が変化する熱検知素子と、前記のそれぞれの検知
素子の抵抗値の変化に応じて変化する方形波検知信号を
出力する無安定マルチバイブレータ回路と、この方形波
検知信号の変化度合が所定の値以上に大きくなったとき
に出力信号を出すマイクロコンピュータと、このマイク
ロコンピュータの出力信号にもとづいて換気扇を運転さ
せるスイッチング素子とから構成されたものである。
Means for Solving the Problem In order to solve this problem, the present invention provides a gas detection element whose resistance value changes in response to reducing gas, and a heat detection element whose resistance value changes in response to heat. and an astable multivibrator circuit that outputs a square wave detection signal that changes according to a change in the resistance value of each of the detection elements, and when the degree of change of this square wave detection signal becomes greater than a predetermined value. The device is composed of a microcomputer that outputs an output signal to the fan, and a switching element that operates the ventilation fan based on the output signal of the microcomputer.

作  用 この構成により、気体検知素子の抵抗値の変化をマイク
ロコンピュータに入力する無安定マルチバイブレータ回
路と、熱検知素子の抵抗値の変化をマイクロコンピュー
タに入力する無安定マルチバイブレータ回路とが共通と
なり、したがってマイクロコンピュータに入力する検知
信号が一つとなり、また部品点数が減り、さらに回路電
流が減ることとなる。
Function: With this configuration, the astable multivibrator circuit that inputs the change in the resistance value of the gas detection element to the microcomputer and the astable multivibrator circuit that inputs the change in the resistance value of the heat detection element to the microcomputer are common. Therefore, only one detection signal is input to the microcomputer, the number of parts is reduced, and the circuit current is further reduced.

実施例 以下、本発明の一実施例を第1図にもとづき説明する。Example Hereinafter, one embodiment of the present invention will be described based on FIG.

第1図において、無安定マルチパイプレーク回路3は、
気体検知素子1の還元性気体に感応して変化する抵抗値
に応じて方形波のオン時間を、そして、熱検知素子7の
熱に感応して変化する抵抗値に応じて方形波のオフ時間
を変化させる方形波検知信号を出力し、マイクロコンピ
ュータ4に接続されている。2は直流電圧変換回路であ
り、気体検知素子1の抵抗値の変化を直流電圧の変化に
変換する回路である。5はマイクロコンピュータ4の出
力部と換気扇のモータ6との間に接続されたスイッチン
グ素子である。
In FIG. 1, the astable multi-pipe break circuit 3 is
The on time of the square wave is determined according to the resistance value of the gas detection element 1 that changes in response to reducing gas, and the off time of the square wave is determined according to the resistance value of the heat detection element 7 that changes in response to heat. It outputs a square wave detection signal that changes the current, and is connected to the microcomputer 4. 2 is a DC voltage conversion circuit, which converts a change in the resistance value of the gas detection element 1 into a change in DC voltage. 5 is a switching element connected between the output section of the microcomputer 4 and the motor 6 of the ventilation fan.

上記構成における自動換気扇の動作を以下に説明する。The operation of the automatic ventilation fan in the above configuration will be explained below.

気体検知素子1の抵抗値の変化は、直流電圧変換回路2
によって直流電圧の変化に変換され、無安定マルチバイ
ブレータ回路3によって方形波のオン時間に変化させら
れ、方形波検知信号となってマイクロコンピュータ4に
入力される。還元性気体の濃度が高くなると気体検知素
子1の抵抗値が小さくなり、無安定マルチバイブレータ
回路3からマイクロコンピュータ4に入力される方形波
のオン時間が短くなる。このオン時間の変化度合が所定
の値以上に大きくなると、マイクロコンピュータ4から
出力信号が出され、スイッチング素子Sを操作し、換気
扇のモータ6を駆動させる。
The change in the resistance value of the gas detection element 1 is determined by the DC voltage conversion circuit 2.
The signal is converted into a DC voltage change by the astable multivibrator circuit 3, and is changed into a square wave on time by the astable multivibrator circuit 3, which is input to the microcomputer 4 as a square wave detection signal. As the concentration of the reducing gas increases, the resistance value of the gas detection element 1 becomes smaller, and the on-time of the square wave input from the astable multivibrator circuit 3 to the microcomputer 4 becomes shorter. When the degree of change in the on-time increases beyond a predetermined value, the microcomputer 4 outputs an output signal to operate the switching element S and drive the motor 6 of the ventilation fan.

また、熱検知素子7の抵抗値の変化は、無安定マルチバ
イブレータ回路3によって方形波のオフ時間に変化させ
られ、方形波検知信号となってマイクロコンピュータ4
に入力される。温度が高くなると熱検知素子7の抵抗値
が小さくなり、無安定マルチバイブレータ回路3からマ
イクロコンピュータ4に入力される方形波のオフ時間が
短くなる。このオフ時間の変化度合が所定の値以上に大
きくなると、マイクロコンピュータ4から出力信号が出
され、スイッチング素子5を操作し、換気扇のモータ6
を駆動させる。
Further, the change in the resistance value of the heat detection element 7 is changed during the off time of the square wave by the astable multivibrator circuit 3, and becomes a square wave detection signal, which is sent to the microcomputer 4.
is input. As the temperature rises, the resistance value of the heat detection element 7 becomes smaller, and the off time of the square wave input from the astable multivibrator circuit 3 to the microcomputer 4 becomes shorter. When the degree of change in the OFF time becomes greater than a predetermined value, an output signal is output from the microcomputer 4, which operates the switching element 5 to operate the ventilation fan motor 6.
drive.

以上のように本実施例によれば、気体検知素子1と熱検
知素子7の抵抗値の変化を単一の無安定マルチバイブレ
ータ回路3によって処理することができ、したがってマ
イクロコンピュータへの入力信号は一つとなり、また部
品点数も減り、さらには回路電流が減少することとなる
As described above, according to this embodiment, changes in the resistance values of the gas detection element 1 and the heat detection element 7 can be processed by the single astable multivibrator circuit 3, and therefore the input signal to the microcomputer is In addition, the number of parts is reduced, and the circuit current is also reduced.

なお、実施例では、気体検知素子1の抵抗値の変化を方
形波検知信号のオン時間の変化に、熱検知素子子の抵抗
値を方形波検知信号のオフ時間の変化に変換してへるが
、反対の場合でも可能であることはいうまでもない。
In the embodiment, a change in the resistance value of the gas detection element 1 is converted into a change in the on time of the square wave detection signal, and a change in the resistance value of the heat detection element is converted into a change in the off time of the square wave detection signal. However, it goes without saying that the opposite case is also possible.

発明の効果 以上の実施例の説明より明らかなように本発明によれば
、還元性気体の濃度と雰囲気の熱を、気体検知素子と熱
検知素子で検知し、これらの抵抗値の変化に応じて単一
の無安定マルチバイブレータ回路で方形波検出信号を出
力することにより、マイクロコンピュータに入力する検
知信号を一つにし、また部品点数を減らし、回路電流を
減らすことができ、その実用的効果は大きい。
Effects of the Invention As is clear from the above description of the embodiments, according to the present invention, the concentration of reducing gas and the heat of the atmosphere are detected by the gas detection element and the heat detection element, and the By outputting a square wave detection signal with a single astable multivibrator circuit, the detection signal input to the microcomputer can be unified, the number of parts can be reduced, and the circuit current can be reduced, which has practical effects. is big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例による自動換気扇の制御装置
の回路図、第2図は従来の自動換気扇の制御装置の回路
図である。 1・・・・・・気体検知素子、3・・・・・・無安定マ
ルチバイブレータ回路、4・・・・・・マイクロコンピ
ュータ、6・・・・・・スイッチング素子、6・・・・
・・モータ、7・・・・・・熱検知素子。
FIG. 1 is a circuit diagram of an automatic ventilation fan control device according to an embodiment of the present invention, and FIG. 2 is a circuit diagram of a conventional automatic ventilation fan control device. 1... Gas detection element, 3... Astable multivibrator circuit, 4... Microcomputer, 6... Switching element, 6...
...Motor, 7...Heat detection element.

Claims (1)

【特許請求の範囲】[Claims] 還元性気体に感応して抵抗値が変化する気体検知素子と
、熱に感応して抵抗値が変化する熱検知素子と、前記の
それぞれの検知素子の抵抗値の変化に応じて変化する方
形波検知信号を出力する単一の無安定マルチバイブレー
タ回路と、この方形波検知信号の変化度合が所定の値以
上に大きくなったときに出力信号を出すマイクロコンピ
ュータと、このマイクロコンピュータの出力信号にもと
づいて換気扇を運転させるスイッチング素子とを具備し
てなる自動換気扇の制御装置。
A gas detection element whose resistance value changes in response to reducing gas, a heat detection element whose resistance value changes in response to heat, and a square wave that changes in response to changes in the resistance value of each of the above-mentioned detection elements. A single astable multivibrator circuit that outputs a detection signal, a microcomputer that outputs an output signal when the degree of change of this square wave detection signal becomes greater than a predetermined value, and an output signal based on the output signal of this microcomputer. An automatic ventilation fan control device comprising a switching element for operating a ventilation fan.
JP5407086A 1986-03-12 1986-03-12 Control device for automatic ventilation fan Granted JPS62213627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5407086A JPS62213627A (en) 1986-03-12 1986-03-12 Control device for automatic ventilation fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5407086A JPS62213627A (en) 1986-03-12 1986-03-12 Control device for automatic ventilation fan

Publications (2)

Publication Number Publication Date
JPS62213627A true JPS62213627A (en) 1987-09-19
JPH0586531B2 JPH0586531B2 (en) 1993-12-13

Family

ID=12960357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5407086A Granted JPS62213627A (en) 1986-03-12 1986-03-12 Control device for automatic ventilation fan

Country Status (1)

Country Link
JP (1) JPS62213627A (en)

Also Published As

Publication number Publication date
JPH0586531B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
KR840007640A (en) Air conditioner
JPS62213627A (en) Control device for automatic ventilation fan
JP2002345147A (en) Motor controller
JPS62119338A (en) Control device for automatic ventilating fan
JPS6241543A (en) Automatic operation device for range hood
JPS62294949A (en) Gas detector
JPS62198435U (en)
JPH0645221Y2 (en) Temperature detector
JPS5887611A (en) Variable clock oscillator
JP2692135B2 (en) Load control device
JPH0752595Y2 (en) Failure detection device for heat generation detection device
JPH01107698A (en) Control circuit for rotational temperature of fan
JPS5855635A (en) Smoke detector for ventillating fan
JPH01157286A (en) Driving device of dc motor
JP2002044982A (en) Motor control device
JPS6077298U (en) Motor actuator drive control device
JPS5839494U (en) Automatic control device for grain drying equipment
JPH07311225A (en) Current conduction detector for switching power supply
JPS61288794A (en) Inverter
JPS63171167A (en) Conduction interval detector for interrupted current
JPS59116789U (en) Refrigerator temperature control circuit
JPS6269040A (en) Control device for automatic ventilation fan
JPS6118830A (en) Temperature monitoring apparatus
JPS62172122A (en) Controlling device for automatic ventilating fan
JPS6293194U (en)