JPS6221338B2 - - Google Patents

Info

Publication number
JPS6221338B2
JPS6221338B2 JP57142591A JP14259182A JPS6221338B2 JP S6221338 B2 JPS6221338 B2 JP S6221338B2 JP 57142591 A JP57142591 A JP 57142591A JP 14259182 A JP14259182 A JP 14259182A JP S6221338 B2 JPS6221338 B2 JP S6221338B2
Authority
JP
Japan
Prior art keywords
weight
catalyst
parts
rhodium
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57142591A
Other languages
Japanese (ja)
Other versions
JPS5933240A (en
Inventor
Yoshio Hironaka
Takashi Kumazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP57142591A priority Critical patent/JPS5933240A/en
Publication of JPS5933240A publication Critical patent/JPS5933240A/en
Publication of JPS6221338B2 publication Critical patent/JPS6221338B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はブテンからカルボニル化合物を製造す
る方法に関し、詳しくは特定の触媒の存在下にブ
テンを酸化して効率よくカルボニル化合物を製造
する方法に関するものである。 オレフインの酸化によるカルボニル化合物の製
造方法としては、いわゆるヘキスト・ワツカー法
が知られている(特公昭36−7869号)。しかし、
この方法は可成りの量のハロゲン化物が副生する
ほか、炭素数4個以上のオレフインを酸化する場
合、転化率が低い等の欠点があつた。さらに、従
来のワツカー型触媒では内部オレフインの反応性
が未端オレフインに比べて極端に悪かつた。その
後、カルボニル化合物の製造に用いる触媒として
種々の提案がなされており、たとえばパラジウム
あるいはロジウムと鉄、コバルト、ニツケルもし
くはマンガンとを組合せた触媒があり、この触媒
を使用すると塩化物等のハロゲン化物の副生は少
ないが活性が低い(特公昭51−6643号、特開昭53
−43686号)という欠点がある。 本発明者らはオレフイン、特に工業的製造法と
して問題点が少なく、しかも反応性の低いブテン
の接触酸化によるメチルエチルケトンの製造法に
関して種々の触媒あるいは担体について研究を重
ねて来た。その結果、ロジウム化合物を含む特定
の触媒を用いることによつて再酸化剤を必要とせ
ずにメチルエチルケトンを効率よく製造できるこ
とを既に見出したが、本発明はこの方法をさらに
改良してカルボニル化合物を一層効率よく製造す
る方法の提供を目的としている。 本発明は、ブテン、水および酸素または酸素含
有ガスを触媒の存在下で反応させてカルボニル化
合物を製造する方法において、触媒として(a)ロジ
ウム、(b)マンガンおよび(c)コバルト、鉄、ニツケ
ル、ビスマスおよびスズの中から選ばれた少なく
とも1種類の元素を、γ−アルミナに担持した接
媒を用いることを特徴とするカルボニル化合物の
製造方法である。 本発明に用いる触媒は、ロジウムとマンガンの
系に第3成分としてコバルト、鉄、ニツケル、ビ
スマス、スズ、亜鉛などの金属を加えたものであ
る。(a)成分のロジウムとしては各種の化合物を原
料として用い得るが、たとえばハロゲン化物、硫
酸塩、塩素酸塩、ギ酸塩、酢酸塩、モノクロル酢
酸塩、安息香酸塩、ナフテン酸塩、酸化物、水酸
化物などがある。この(a)成分は担体のγ−アルミ
ナ100重量部当り元素として0.2〜5重量部となる
ように用いる。 次に、(b)成分のマンガンについても各種のもの
を原料として用い得るが、たとえばハロゲン化
物、硫酸塩、硝酸塩、炭酸塩、酢酸塩、シユウ酸
塩、水酸化物などがある。この(b)成分は担体100
重量部当り元素として0.5〜30重量部となるよう
に用いる。 また、(c)成分については上記金属のハロゲン化
物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、シユウ酸
塩、過塩素酸塩、水酸化物、酸化物などを挙げる
ことができる。この(c)成分は担体100重量部当り
元素として0.5〜30重量部となるように用いる。 担体のγ−アルミナとしては塩酸処理したもの
が好ましい。 触媒成分を担体に担持させるには、通常の含浸
法、吸着法などの方法や触媒成分の水溶液とコロ
イド状の担体を混ぜて濃縮固化したのち成形する
方法等を適用することができ、一段階もしくは数
段階に分けて担持させる。 触媒成分を担持した担体は、乾燥後100〜800
℃、好ましくは200〜600℃の温度で空気中もしく
は不活性ガス、窒素ガスなどの雰囲気下で1〜10
時間、好ましくは3〜8時間焼成することによつ
て活性が高く、かつ安定した触媒を得ることがで
きる。ここで触媒調製法の1例を示すと、担体と
してγ−アルミナを用い、これに(c)成分の金属の
溶液を加えて含浸し、乾燥後、空気中で200〜500
℃で3〜5時間焼成し、次いで(a)成分のロジウム
と(b)成分のマンガンの各溶液を加えて含浸、乾燥
後、200〜500℃で3〜5時間加熱処理する。 本発明において、ブテンとしてはブテン−1、
ブテン−2およびこれらの混合物を用いることが
できる。 本発明では上記ブテンを酸素もしくは酸素含有
気体と水の存在下に反応させるが、これらの配合
割合はオレフイン:酸素:水=1:1〜40:1〜
40(容量比)とする。反応温度は50〜400℃、好
ましくは80〜300℃であり、反応圧力は特に制限
がなく通常は大気圧〜50Kg/cm2で行ない、ブテン
−2を反応させるには1〜5Kg/cm2Gが好まし
い。接触時間についても制限はないが一般的に
0.5〜20秒間で十分である。また、この反応は固
定床、流動床、移動床のいずれの方式でも行なう
ことができ、気相法、気液混合法、液相法を用い
て行なうが、好ましくは気相反応にて流通式で行
なうことにより生成物の分離、精製が容易とな
る。ここで酸素含有ガスとしては空気のほかに酸
素と不活性ガス(窒素など)との混合ガスなどが
あり、水については予熱層を通して気化し水蒸気
として反応系に導入することが望ましい。 本発明によれば、ブテンのような反応性の低い
オレフインからメチルエチルケトンを高収率で製
造でき、2−クロルエチルメチルケトンなどのハ
ロゲン化物の副生が少ないことは従来法にない本
発明の大きな特色である。さらに、本発明の方法
に使用する触媒は強度や安定性にすぐれており、
工業的に非常に有利である。 次に、本発明を実施例によつて詳しく説明す
る。 実施例 1 無水塩化鉄(FeCl3)2.3gを蒸留水80mlに溶か
し、この溶液にγ−Al2O3(比表面積200m2
g、3mmφ×3mm)78.2gを浸漬し、次いで蒸発
乾固させた。これを空気流通下500℃にて4時間
焼成した。次に、塩化マンガン(MnCl2
4H2O)2.8gおよび塩化ロジウム(RhCl3
3H2O)2.0gを蒸留水80mlに溶かし、この溶液を
上記担持物に含浸させたのち乾燥し、その後空気
流通下200℃で3時間加熱処理した。これにより
担体100重量部当りロジウム、マンガンおよび鉄
がそれぞれ1重量部担持された触媒を得た。 上記触媒30mlを直径25mmのガラス製反応管に充
填し、ブテン−17.5容量%、酸素5容量%および
水87.5容量%からなる混合ガスを135℃、常圧、
接触時間9秒の条件で流して反応させた。結果を
第1表に示す。 実施例 2 塩化マンガン(MnCl2・4H2O)2.8gと塩化コ
バルト(CoCl2・6H2O)9.5gを80mlの蒸留水に
溶解し、γ−Al2O3(実施例1と同じ)78.2gに
含浸後、乾燥した。次いで、塩化ロジウム
(RhCl3・3H2O)2gを蒸留水80mlに溶解し、上
記担持物に含浸せしめたのち空気流通下200℃で
4時間焼成し、担体100重量部当りロジウム1重
量部、マンガン1重量部およびコバルト3重量部
が担持された触媒を得た。 この触媒30mlを用いて実施例1と同様にして
160℃にて反応させた。結果を第1表に示す。 比較例 1 無水塩化鉄(FeCl3)2.3gを蒸留水80mlに溶か
し、これをγ−Al2O3(実施例1と同じ)78.2g
に含浸、乾燥後、空気流通下500℃で4時間焼成
した。次いで、塩化ロジウム(RhCl3・3H2O)
2gを蒸留水80mlに溶かし、この溶液を上記担持
物に含浸せしめ、乾燥したのち空気流通下200℃
で3時間焼成して担体100重量部当りロジウムお
よび鉄がそれぞれ1重量部担持された触媒を得
た。 このようにして得た触媒30mlを用いて実施例1
と同様に反応させた。結果を第1表に示す。 比較例 2〜4 無水塩化鉄の代りに塩化マンガン(MnCl2
4H2O)2.8g(比較例2)または塩化コバルト
(CoCl2・6H2O)9.5g(比較例3)またはシユウ
酸バナジル7.8g(比較例4)を用いたこと以外
は比較例1と同様に行なつた。結果を第1表に示
す。 比較例 5 塩化第2銅(CuCl2)4.1gを蒸留水80mlに溶解
し、γ−Al2O3(実施例1と同じ)78.2gに含浸
し乾燥した後、空気流通下200℃にて4時間焼成
した。次いで、塩化ロジウム(RhCl3・3H2O)
2gを蒸留水80mlに溶かし、これを上記担持物に
含浸、乾燥後、空気流通下200℃で3時間焼成
し、担体100重量部当りロジウム1重量部、銅2.5
重量部が担持された触媒を得た。 この触媒30mlを用いて実施例1と同様に反応さ
せた。結果を第1表に示す。 比較例 6 塩化ロジウムの代りに塩化パラジウム
(PdCl2)1.3gを用い、かつ塩化第二銅
(CuCl2)の量を9.9gとしたこと以外は比較例5と
同様に行ない担体100重量部当りパラジウム1重
量部、銅6重量部を担持した触媒を得た。 この触媒30mlを用いて実施例1と同様に反応さ
せた。結果を第1表に示す。
The present invention relates to a method for producing a carbonyl compound from butene, and more particularly to a method for efficiently producing a carbonyl compound by oxidizing butene in the presence of a specific catalyst. As a method for producing carbonyl compounds by oxidizing olefins, the so-called Hoechst-Watzker process is known (Japanese Patent Publication No. 7869/1983). but,
This method has drawbacks such as a considerable amount of halides being produced as by-products and a low conversion rate when oxidizing olefins having 4 or more carbon atoms. Furthermore, in conventional Watzker type catalysts, the reactivity of internal olefins was extremely poor compared to that of unterminated olefins. Since then, various proposals have been made as catalysts for use in the production of carbonyl compounds. For example, there are catalysts that combine palladium or rhodium with iron, cobalt, nickel, or manganese. There are few by-products, but the activity is low (Japanese Patent Publication No. 51-6643, Japanese Patent Publication No. 53
-43686). The present inventors have repeatedly conducted research on various catalysts or supports for the production of olefins, particularly methyl ethyl ketone by catalytic oxidation of butene, which has few problems as an industrial production method and has low reactivity. As a result, it has already been found that methyl ethyl ketone can be efficiently produced without the need for a reoxidizing agent by using a specific catalyst containing a rhodium compound, but the present invention further improves this method to further produce carbonyl compounds. The purpose is to provide an efficient manufacturing method. The present invention provides a method for producing a carbonyl compound by reacting butene, water, and oxygen or an oxygen-containing gas in the presence of a catalyst, in which the catalysts include (a) rhodium, (b) manganese, and (c) cobalt, iron, and nickel. , bismuth, and tin, as a catalyst in which γ-alumina supports at least one element selected from the group consisting of bismuth and tin. The catalyst used in the present invention is a system of rhodium and manganese to which metals such as cobalt, iron, nickel, bismuth, tin, and zinc are added as a third component. Component (a) rhodium can be made from various compounds, including halides, sulfates, chlorates, formates, acetates, monochloroacetates, benzoates, naphthenates, oxides, There are hydroxides, etc. Component (a) is used in an amount of 0.2 to 5 parts by weight as an element per 100 parts by weight of γ-alumina of the carrier. Next, various types of manganese can be used as raw materials for the component (b), such as halides, sulfates, nitrates, carbonates, acetates, oxalates, and hydroxides. This (b) component is carrier 100
The element is used in an amount of 0.5 to 30 parts by weight per part by weight. Further, as for component (c), halides, nitrates, sulfates, carbonates, acetates, oxalates, perchlorates, hydroxides, oxides, etc. of the above metals can be mentioned. Component (c) is used in an amount of 0.5 to 30 parts by weight as an element per 100 parts by weight of the carrier. The γ-alumina of the carrier is preferably treated with hydrochloric acid. To support the catalyst component on the carrier, methods such as ordinary impregnation method and adsorption method, or method of mixing an aqueous solution of the catalyst component with a colloidal carrier, concentrating and solidifying it, and then forming it, can be applied. Or carry it in several stages. The carrier supporting the catalyst component has a molecular weight of 100 to 800 after drying.
℃, preferably 200 to 600℃ in air or under an atmosphere of inert gas, nitrogen gas, etc. 1 to 10
By calcining for a period of time, preferably 3 to 8 hours, a highly active and stable catalyst can be obtained. Here, an example of a catalyst preparation method is shown in which γ-alumina is used as a carrier, impregnated with a solution of the metal of component (c), and after drying, 200 to 500
C. for 3 to 5 hours, then impregnated with solutions of rhodium as component (a) and manganese as component (b), dried, and then heat treated at 200 to 500 DEG C. for 3 to 5 hours. In the present invention, butenes include butene-1,
Butene-2 and mixtures thereof can be used. In the present invention, the above-mentioned butene is reacted with oxygen or an oxygen-containing gas in the presence of water, and the mixing ratio of these is olefin:oxygen:water=1:1 to 40:1.
40 (capacity ratio). The reaction temperature is 50 to 400°C, preferably 80 to 300°C, and the reaction pressure is not particularly limited and is usually carried out at atmospheric pressure to 50 Kg/cm 2 , and for reacting butene-2, it is 1 to 5 Kg/cm 2 G is preferred. There are no restrictions on contact time, but in general
0.5-20 seconds is sufficient. Further, this reaction can be carried out using any fixed bed, fluidized bed, or moving bed method, and is carried out using a gas phase method, a gas-liquid mixing method, or a liquid phase method, but preferably a gas phase reaction is carried out using a flow-through method. By doing so, it becomes easy to separate and purify the product. Here, the oxygen-containing gas includes, in addition to air, a mixed gas of oxygen and an inert gas (such as nitrogen), and water is desirably vaporized through a preheating layer and introduced into the reaction system as water vapor. According to the present invention, methyl ethyl ketone can be produced in high yield from an olefin with low reactivity such as butene, and a major advantage of the present invention, which is not found in conventional methods, is that methyl ethyl ketone can be produced in high yield, and there is little by-product of halides such as 2-chloroethyl methyl ketone. It is a special feature. Furthermore, the catalyst used in the method of the present invention has excellent strength and stability,
It is industrially very advantageous. Next, the present invention will be explained in detail using examples. Example 1 2.3 g of anhydrous iron chloride (FeCl 3 ) was dissolved in 80 ml of distilled water, and γ-Al 2 O 3 (specific surface area 200 m 2 /
78.2 g (3 mm φ x 3 mm) was immersed and then evaporated to dryness. This was baked at 500° C. for 4 hours under air circulation. Next, manganese chloride (MnCl 2
4H 2 O) and 2.8 g of rhodium chloride (RhCl 3 .
2.0 g of 3H 2 O) was dissolved in 80 ml of distilled water, and the above support was impregnated with this solution, dried, and then heated at 200° C. for 3 hours under air circulation. As a result, a catalyst was obtained in which 1 part by weight of each of rhodium, manganese and iron was supported per 100 parts by weight of the carrier. A glass reaction tube with a diameter of 25 mm was filled with 30 ml of the above catalyst, and a mixed gas consisting of 17.5% by volume of butene, 5% by volume of oxygen, and 87.5% by volume of water was heated at 135°C and normal pressure.
The reaction was carried out under conditions of a contact time of 9 seconds. The results are shown in Table 1. Example 2 2.8 g of manganese chloride (MnCl 2 4H 2 O) and 9.5 g of cobalt chloride (CoCl 2 6H 2 O) were dissolved in 80 ml of distilled water, and γ-Al 2 O 3 (same as Example 1) was dissolved. After impregnating 78.2g, it was dried. Next, 2 g of rhodium chloride (RhCl 3 .3H 2 O) was dissolved in 80 ml of distilled water, impregnated into the above support, and then calcined at 200°C for 4 hours under air circulation to dissolve 1 part by weight of rhodium per 100 parts by weight of the support. A catalyst was obtained in which 1 part by weight of manganese and 3 parts by weight of cobalt were supported. Using 30 ml of this catalyst, the same procedure as in Example 1 was carried out.
The reaction was carried out at 160°C. The results are shown in Table 1. Comparative Example 1 2.3 g of anhydrous iron chloride (FeCl 3 ) was dissolved in 80 ml of distilled water, and this was dissolved in 78.2 g of γ-Al 2 O 3 (same as Example 1).
After impregnation and drying, it was baked at 500°C for 4 hours under air circulation. Then rhodium chloride (RhCl 3.3H 2 O)
Dissolve 2g in 80ml of distilled water, impregnate the above support with this solution, dry and heat at 200°C under air circulation.
The catalyst was calcined for 3 hours to obtain a catalyst in which 1 part by weight of each of rhodium and iron was supported per 100 parts by weight of the carrier. Example 1 Using 30 ml of the catalyst thus obtained
reacted in the same way. The results are shown in Table 1. Comparative Examples 2 to 4 Manganese chloride (MnCl 2 .
4H 2 O) (Comparative Example 2), cobalt chloride (CoCl 2 6H 2 O) 9.5 g (Comparative Example 3), or vanadyl oxalate 7.8 g (Comparative Example 4). I did the same thing. The results are shown in Table 1. Comparative Example 5 4.1 g of cupric chloride (CuCl 2 ) was dissolved in 80 ml of distilled water, impregnated with 78.2 g of γ-Al 2 O 3 (same as in Example 1), dried, and then heated at 200°C under air circulation. It was baked for 4 hours. Then rhodium chloride (RhCl 3.3H 2 O)
2 g was dissolved in 80 ml of distilled water, impregnated with the above support, dried, and fired at 200°C for 3 hours under air circulation to obtain 1 part by weight of rhodium and 2.5 parts by weight of copper per 100 parts by weight of the support.
A catalyst was obtained in which parts by weight were supported. A reaction was carried out in the same manner as in Example 1 using 30 ml of this catalyst. The results are shown in Table 1. Comparative Example 6 The same procedure as Comparative Example 5 was carried out except that 1.3 g of palladium chloride (PdCl 2 ) was used instead of rhodium chloride and the amount of cupric chloride (CuCl 2 ) was changed to 9.9 g. A catalyst supporting 1 part by weight of palladium and 6 parts by weight of copper was obtained. A reaction was carried out in the same manner as in Example 1 using 30 ml of this catalyst. The results are shown in Table 1.

【表】 実施例 3〜6 実施例1の触媒30mlを直径25mmのステンレス製
反応管に充填し、ブテン−17.5%、酸素5%、窒
素17.5%、水70%(容量組成)からなる混合ガス
接触時間9秒で、種々の反応温度、圧力にて流し
て反応させた。その結果を第2表に示す。 比較例 7〜8 比較例1の触媒(ロジウム(1重量部)−鉄
(1重量部)/γ−Al2O3(100重量部))または
比較例2の触媒(ロジウム(1重量部)−マンガ
ン(1重量部)/γ−Al2O3(100重量部))を用
いて実施例6と同様に反応させた。その結果を第
2表に示す。
[Table] Examples 3 to 6 30 ml of the catalyst of Example 1 was filled into a stainless steel reaction tube with a diameter of 25 mm, and a mixed gas consisting of 17.5% butene, 5% oxygen, 17.5% nitrogen, and 70% water (by volume) was prepared. The reaction was carried out at various reaction temperatures and pressures with a contact time of 9 seconds. The results are shown in Table 2. Comparative Examples 7-8 Catalyst of Comparative Example 1 (Rhodium (1 part by weight) - Iron (1 part by weight)/γ-Al 2 O 3 (100 parts by weight)) or Catalyst of Comparative Example 2 (Rhodium (1 part by weight) - Manganese (1 part by weight)/γ-Al 2 O 3 (100 parts by weight)) was used to react in the same manner as in Example 6. The results are shown in Table 2.

【表】 実施例 7 接触時間を6秒にしたこと以外は実施例6と同
様な操作を行ない、以下に示す結果を得た。 ブテン−1の転化率 63モル% メチルエチルケトンの選択率 88モル% メチルエチルケトンの収率 55モル% 実施例 8〜11 実施例1の触媒調製法を用いて種々の金属担持
率をもつ触媒を調製し、実施例1と同様に反応さ
せた。その結果を第3表に示す。
[Table] Example 7 The same operation as in Example 6 was performed except that the contact time was 6 seconds, and the results shown below were obtained. Conversion rate of butene-1 63 mol% Selectivity of methyl ethyl ketone 88 mol% Yield of methyl ethyl ketone 55 mol% Examples 8 to 11 Catalysts with various metal loading ratios were prepared using the catalyst preparation method of Example 1, The reaction was carried out in the same manner as in Example 1. The results are shown in Table 3.

【表】 実施例 12〜13 実施例2の触媒調製法を用いて種々の金属担持
率をもつ触媒を調製し、実施例1と同様に反応さ
せた。その結果を第4表に示す。
[Table] Examples 12 to 13 Using the catalyst preparation method of Example 2, catalysts with various metal loading rates were prepared and reacted in the same manner as in Example 1. The results are shown in Table 4.

【表】 実施例 14 実施例2の触媒調製法を用いて担体100重量部
当りロジウム1重量部、マンガン3重量部および
コバルト1重量部が担持された触媒を調製した。
得られた触媒30mlを直径25mmのステンレス製反応
管に充填し、ブテン−17.5%、酸素5%、窒素
17.5%、水70%(容量組成)からなる混合ガスを
210℃、3Kg/cm2G、接触時間9秒で流して反応
させ、以下に示す結果を得た。 ブテン−1の転化率 73モル% メチルエチルケトンの選択率 80モル% メチルエチルケトンの収率 58モル% 実施例 15 実施例1の触媒(ロジウム(1重量部)−マン
ガン(1重量部)−鉄(1重量部)/γ−Al2O3
(100重量部))30mlを直径25mmのステンレス製反
応管に充填し、トランス−ブテン−27.5%、酸素
5%、窒素17.5%、水70%(容量組成)からなる
混合ガスを200℃、3Kg/cm2G、接触時間9秒で
流して反応させた。その結果を第5表に示す。 実施例 16 実施例2の触媒(ロジウム(1重量部)−マン
ガン(1重量部)−コバルト(3重量部)/γ−
Al2O3(100重量部))を用いて実施例15と同様な
操作を行なつた。その結果を第5表に示す。
[Table] Example 14 Using the catalyst preparation method of Example 2, a catalyst was prepared in which 1 part by weight of rhodium, 3 parts by weight of manganese, and 1 part by weight of cobalt were supported per 100 parts by weight of the carrier.
30 ml of the obtained catalyst was packed into a stainless steel reaction tube with a diameter of 25 mm, and the mixture was filled with 17.5% butene, 5% oxygen, and nitrogen.
A mixed gas consisting of 17.5% water and 70% water (volume composition)
The reaction was carried out at 210° C., 3 Kg/cm 2 G, and a contact time of 9 seconds, and the results shown below were obtained. Conversion rate of butene-1 73 mol% Selectivity of methyl ethyl ketone 80 mol% Yield of methyl ethyl ketone 58 mol% Example 15 Catalyst of Example 1 (rhodium (1 part by weight) - manganese (1 part by weight) - iron (1 part by weight) part)/γ−Al 2 O 3
(100 parts by weight)) was filled into a stainless steel reaction tube with a diameter of 25 mm, and a mixed gas consisting of 27.5% trans-butene, 5% oxygen, 17.5% nitrogen, and 70% water (volume composition) was added at 200℃, 3 kg. /cm 2 G and a contact time of 9 seconds to cause the reaction. The results are shown in Table 5. Example 16 Catalyst of Example 2 (rhodium (1 part by weight) - manganese (1 part by weight) - cobalt (3 parts by weight)/γ-
The same operation as in Example 15 was carried out using Al 2 O 3 (100 parts by weight). The results are shown in Table 5.

【表】 比較例 7〜12 比較例1〜6の触媒30mlをそれぞれ用いて、ト
ランス−ブテン−27.5%、酸素5%、水87.5%
(容量組成)からなる混合ガスを200℃、3Kg/cm2
G、接触時間9秒で流して反応させた。その結果
を第6表に示す。
[Table] Comparative Examples 7 to 12 Using 30 ml of each of the catalysts of Comparative Examples 1 to 6, trans-butene - 27.5%, oxygen 5%, water 87.5%
Mixed gas consisting of (volume composition) at 200℃, 3Kg/cm 2
G, reaction was allowed to flow for a contact time of 9 seconds. The results are shown in Table 6.

【表】【table】

【表】 実施例 17〜24 実施例2の触媒調製法を用いて種々の金属担持
率を持つ触媒を調製し、それぞれの触媒30mlを用
いてトランス−ブテン−27.5%、酸素5%、窒素
17.5%、水70%からなる混合ガスを接触時間9秒
で流して反応させた。その結果を第7表に示す。
[Table] Examples 17 to 24 Catalysts with various metal loading rates were prepared using the catalyst preparation method of Example 2, and 30 ml of each catalyst was used to prepare trans-butene-27.5%, oxygen 5%, and nitrogen.
A mixed gas consisting of 17.5% water and 70% water was flowed for a contact time of 9 seconds to cause a reaction. The results are shown in Table 7.

【表】 比較例 13〜20 実施例2の触媒調製法を用いて種々の金属担持
率を持つ触媒を調製し、第8表に示す各種の触媒
をそれぞれ30ml用いてトランス−ブテン−27.5
%、酸素5%、窒素17.5%および水70%からなる
混合ガスを接触時間9秒で流し反応させた。結果
を第8表に示す。
[Table] Comparative Examples 13 to 20 Catalysts with various metal loading rates were prepared using the catalyst preparation method of Example 2, and trans-butene-27.5 was prepared using 30 ml of each of the various catalysts shown in Table 8.
%, oxygen 5%, nitrogen 17.5%, and water 70% for a contact time of 9 seconds to cause a reaction. The results are shown in Table 8.

【表】【table】

【表】 実施例 25 58.6gのγ−Al2O3(比表面積200m2/g、3mm
φ×3mm)を2規定の塩酸250c.c.に4時間浸漬
し、過後、蒸留水にて3回洗浄し、80℃で一夜
乾燥した。この担体を空気流通下、500℃で4時
間焼成して塩酸処理γ−Al2O3を得た。 次に、1.5gの塩化ロジウム(RhCl3・3H2O)、
7.1gの塩化コバルト(CoCl2・6H2O)および6.3
gの塩化マンガン(MnCl2・4H2O)を80mlの蒸
留水に溶かし、58.6gの上記塩酸処理γ−Al2O3
に含浸後、乾燥し空気流通下、200℃で4時間焼
成して担体100重量部当りロジウム1重量部、マ
ンガン3重量部、コバルト3重量部が担持された
触媒を得た。得られた触媒30mlを用いて実施例18
と同様に反応させた。その結果を以下に示す。 トランス−ブテン−2の転化率 70モル% メチルエチルケトンの選択率 60モル% メチルエチルケトンの収率 42モル% 実施例 26 78.2gのγ−Al2O3の代りに65.3gのγ−Al2O3
(5mmφ×5mm、比表面積200m2/g)を用いたこ
と以外は実施例2と同様に操作し、担体100重量
部当りロジウム1.2重量部、マンガン3.6重量部、
コバルト3.6重量部が担持された触媒を得た。こ
の触媒30mlを用いてトランス−ブテン−27.5%、
酸素17.5%、窒素5%および水70%からなる混合
ガスを200℃、3/cm2G、接触時間9秒で流し反
応させた。その結果を以下に示す。 トランス−ブテン−2の転化率 74モル% メチルエチルケトンの選択率 59モル% メチルエチルケトンの収率 44モル% 実施例 27 0.9gの塩化ビスマス(BiCl3)を60mlの蒸留水
に溶かし、58.6gのγ−Al2O3(3mmφ×3mm、
比表面積200m2/g)に含浸、乾燥後、空気流通
下400℃にて4時間焼成した。次いで、1.5gの塩
化ロジウム(RhCl3・3H2O)および4.2gの塩化
マンガン(MnCl2・4H2O)を60mlの蒸留水に溶
かし、上記担持触媒に含浸、乾燥後、空気流通下
200℃で4時間焼成し、担体100重量部当りロジウ
ム1重量部、マンガン2重量部、ビスマス1重量
部が担持された触媒を得た。この触媒30mlを用い
て実施例18と同様に反応させた。その結果を第9
表に示す。 実施例 28 塩化ビスマスの代りに2.6gの塩化ニツケル
(NiCl2)を用いたこと以外は実施例27と同じ操作
を行ない、担体100重量部当りロジウム1重量
部、マンガン2重量部、ニツケル2重量部が担持
された触媒を得た。この触媒30mlを用いて実施例
18と同様に反応させた。その結果を第9表に示
す。 実施例 29 2.3gの塩化スズ(SnCl4・5H2O)を80mlの蒸
留水に溶かし、78.2gのγ−Al2O3(3mmφ×3
mm、比表面積200m2/g)に含浸後乾燥させた。
次に14.1gの酸化マンガン(MnCl2・4H2O)を
80mlの蒸留水に溶かし、上記担持触媒に含浸後、
乾燥させた。次いで、2gの塩化ロジウム
(RhCl3・3H2O)を80mlの蒸留乾燥水に溶かし、
スズとマンガンの担持された触媒に含浸後、空気
流通下200℃にて焼成し、担体100重量部当りロジ
ウム1重量部、マンガン5重量部、スズ1重量部
が担持された触媒を得た。この触媒30mlを用いて
実施例18と同様に反応させた。その結果を第9表
に示す。 実施例 30 1.5gの塩化ロジウム(RhCl3・3H2O)、1.2g
の塩化亜鉛(ZnCl2)および10.6gの塩化マンガン
(MnCl2・4H2O)を60mlの蒸留水に溶かし、58.6
gのγ−Al2O3(3mmφ×3mm、比表面積200
m2/g)に含浸、乾燥後、空気流通下200℃にて
4時間焼成し、担体100重量部当りロジウム1重
量部、マンガン5重量部、亜鉛1重量部が担持さ
れた触媒を得た。この触媒30mlを用いて実施例18
と同様に反応させた。その結果を第9表に示す。
[Table] Example 25 58.6g of γ-Al 2 O 3 (specific surface area 200m 2 /g, 3mm
φ×3 mm) was immersed in 250 c.c. of 2N hydrochloric acid for 4 hours, washed with distilled water three times, and dried at 80° C. overnight. This carrier was calcined at 500° C. for 4 hours under air circulation to obtain hydrochloric acid-treated γ-Al 2 O 3 . Next, 1.5 g of rhodium chloride (RhCl 3 3H 2 O),
7.1 g cobalt chloride (CoCl 2 6H 2 O) and 6.3
g of manganese chloride (MnCl 2 4H 2 O) was dissolved in 80 ml of distilled water, and 58.6 g of the above hydrochloric acid treatment γ-Al 2 O 3 was dissolved.
After impregnation, the catalyst was dried and calcined at 200° C. for 4 hours under air circulation to obtain a catalyst in which 1 part by weight of rhodium, 3 parts by weight of manganese, and 3 parts by weight of cobalt were supported per 100 parts by weight of the carrier. Example 18 using 30 ml of the obtained catalyst
reacted in the same way. The results are shown below. Conversion rate of trans-butene-2 70 mol% Selectivity of methyl ethyl ketone 60 mol% Yield of methyl ethyl ketone 42 mol% Example 26 65.3 g of γ-Al 2 O 3 instead of 78.2 g of γ-Al 2 O 3
(5 mmφ x 5 mm, specific surface area 200 m 2 /g) was operated in the same manner as in Example 2, and per 100 parts by weight of the carrier, 1.2 parts by weight of rhodium, 3.6 parts by weight of manganese,
A catalyst on which 3.6 parts by weight of cobalt was supported was obtained. Using 30 ml of this catalyst, trans-butene-27.5%,
A mixed gas consisting of 17.5% oxygen, 5% nitrogen, and 70% water was flowed at 200° C., 3/cm 2 G, and a contact time of 9 seconds to cause a reaction. The results are shown below. Conversion rate of trans-butene-2 74 mol% Selectivity of methyl ethyl ketone 59 mol% Yield of methyl ethyl ketone 44 mol% Example 27 0.9 g of bismuth chloride (BiCl 3 ) was dissolved in 60 ml of distilled water, and 58.6 g of γ- Al 2 O 3 (3mmφ×3mm,
After impregnation to a specific surface area of 200 m 2 /g) and drying, it was fired at 400° C. for 4 hours under air circulation. Next, 1.5 g of rhodium chloride (RhCl 3 .3H 2 O) and 4.2 g of manganese chloride (MnCl 2 .4H 2 O) were dissolved in 60 ml of distilled water, impregnated onto the above supported catalyst, dried, and then cooled under air circulation.
The catalyst was calcined at 200° C. for 4 hours to obtain a catalyst in which 1 part by weight of rhodium, 2 parts by weight of manganese, and 1 part by weight of bismuth were supported per 100 parts by weight of the carrier. A reaction was carried out in the same manner as in Example 18 using 30 ml of this catalyst. The result is the 9th
Shown in the table. Example 28 The same operation as in Example 27 was carried out except that 2.6 g of nickel chloride (NiCl 2 ) was used instead of bismuth chloride, and 1 part by weight of rhodium, 2 parts by weight of manganese, and 2 parts by weight of nickel were added per 100 parts by weight of support. A catalyst was obtained in which part was supported. Example using 30ml of this catalyst
The reaction was carried out in the same manner as in 18. The results are shown in Table 9. Example 29 2.3g of tin chloride ( SnCl4.5H2O ) was dissolved in 80ml of distilled water, and 78.2g of γ- Al2O3 (3mmφ×3
mm, specific surface area 200 m 2 /g) and dried.
Next, add 14.1g of manganese oxide (MnCl 2 4H 2 O).
After dissolving in 80 ml of distilled water and impregnating the above supported catalyst,
Dry. Then, 2 g of rhodium chloride (RhCl 3 3H 2 O) was dissolved in 80 ml of distilled dry water,
After impregnating the catalyst on which tin and manganese were supported, it was calcined at 200° C. under air circulation to obtain a catalyst on which 1 part by weight of rhodium, 5 parts by weight of manganese, and 1 part by weight of tin were supported per 100 parts by weight of the carrier. A reaction was carried out in the same manner as in Example 18 using 30 ml of this catalyst. The results are shown in Table 9. Example 30 1.5 g rhodium chloride (RhCl 3.3H 2 O), 1.2 g
of zinc chloride (ZnCl 2 ) and 10.6 g of manganese chloride (MnCl 2 4H 2 O) were dissolved in 60 ml of distilled water, and 58.6
g of γ-Al 2 O 3 (3mmφ×3mm, specific surface area 200
m 2 /g), dried, and calcined for 4 hours at 200°C under air circulation to obtain a catalyst in which 1 part by weight of rhodium, 5 parts by weight of manganese, and 1 part by weight of zinc were supported per 100 parts by weight of the carrier. . Example 18 using 30 ml of this catalyst
reacted in the same way. The results are shown in Table 9.

【表】 比較例 21〜24 実施例27〜30の触媒成分のうちマンガンを除い
て触媒を調製し、実施例18と同様に反応させた。
その結果を第10表に示す。
[Table] Comparative Examples 21 to 24 Catalysts were prepared by removing manganese from the catalyst components of Examples 27 to 30, and reacted in the same manner as in Example 18.
The results are shown in Table 10.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ブテン、水および酸素または酸素含有ガスを
触媒の存在下で反応させてカルボニル化合物の製
造する方法において、触媒として(a)ロジウム、(b)
マンガンおよび(c)コバルト、鉄、ニツケル、ビス
マス、亜鉛およびスズの中から選ばれた少なくと
も1種類の元素をγ−アルミナに担持した触媒を
用いることを特徴とするカルボニル化合物の製造
方法。 2 触媒が、担体100重量部当り元素として(a)成
分0.2〜5重量部、(b)成分0.5〜30重量部および(c)
成分0.5〜30重量部を含むものである特許請求の
範囲第1項記載の方法。
[Claims] 1. A method for producing a carbonyl compound by reacting butene, water, and oxygen or an oxygen-containing gas in the presence of a catalyst, in which (a) rhodium, (b)
A method for producing a carbonyl compound, comprising using a catalyst in which manganese and (c) at least one element selected from cobalt, iron, nickel, bismuth, zinc and tin are supported on γ-alumina. 2 The catalyst contains (a) component 0.2 to 5 parts by weight, (b) component 0.5 to 30 parts by weight, and (c) as an element per 100 parts by weight of carrier.
The method according to claim 1, which contains 0.5 to 30 parts by weight of the ingredient.
JP57142591A 1982-08-19 1982-08-19 Preparation of carbonyl compound Granted JPS5933240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57142591A JPS5933240A (en) 1982-08-19 1982-08-19 Preparation of carbonyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57142591A JPS5933240A (en) 1982-08-19 1982-08-19 Preparation of carbonyl compound

Publications (2)

Publication Number Publication Date
JPS5933240A JPS5933240A (en) 1984-02-23
JPS6221338B2 true JPS6221338B2 (en) 1987-05-12

Family

ID=15318862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57142591A Granted JPS5933240A (en) 1982-08-19 1982-08-19 Preparation of carbonyl compound

Country Status (1)

Country Link
JP (1) JPS5933240A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516643A (en) * 1974-07-05 1976-01-20 Sony Corp
JPS58140036A (en) * 1982-02-12 1983-08-19 Idemitsu Kosan Co Ltd Preparation of carbonyl compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516643A (en) * 1974-07-05 1976-01-20 Sony Corp
JPS58140036A (en) * 1982-02-12 1983-08-19 Idemitsu Kosan Co Ltd Preparation of carbonyl compound

Also Published As

Publication number Publication date
JPS5933240A (en) 1984-02-23

Similar Documents

Publication Publication Date Title
US4568790A (en) Process for oxydehydrogenation of ethane to ethylene
US3775474A (en) Process for the preparation of acrylic acid
JPS6155416B2 (en)
US20040192966A1 (en) Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
JP2544925B2 (en) Method for producing silver-containing catalyst
JPS6159178B2 (en)
US4111983A (en) Oxidation of unsaturated aldehydes to unsaturated acids
US4647690A (en) Process for the production of allyl acetate
JPH0242033A (en) Production of methacrylic acid and/or methacrolein
JPS6048496B2 (en) Method for producing methacrylic acid
JPH07324080A (en) Preparation of ethylene oxide
JPS6221338B2 (en)
JPS6113695B2 (en)
US4410725A (en) Process for preparing unsaturated acids with Mo, V, Ta-containing catalyst
KR940000866B1 (en) Silver-containing catalyst and process for the preparation of said catalyst and ethylene oxide
US4277375A (en) Catalytic oxide of molybdenum, vanadium, tantalum and optional 4th metal
JPS6039653B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPH0226613B2 (en)
US4608362A (en) Catalyst for the production of allyl acetate
US3598758A (en) Catalyst composition and process for oxychlorinating hydrocarbons
US4634794A (en) Process for the production of allyl acetate
JPH0242034A (en) Production of methacrylic acid and/or methacrolein
JP3413235B2 (en) Synthesis gas production method
US4170572A (en) Oxidation catalyst prepared with NH3
US4551555A (en) Process for the production of carbonyl compounds