JPS62213181A - Co2 gas laser device - Google Patents

Co2 gas laser device

Info

Publication number
JPS62213181A
JPS62213181A JP5484886A JP5484886A JPS62213181A JP S62213181 A JPS62213181 A JP S62213181A JP 5484886 A JP5484886 A JP 5484886A JP 5484886 A JP5484886 A JP 5484886A JP S62213181 A JPS62213181 A JP S62213181A
Authority
JP
Japan
Prior art keywords
ignition
discharge
glow
section
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5484886A
Other languages
Japanese (ja)
Inventor
Koichi Yasuoka
康一 安岡
Hideomi Takahashi
秀臣 高橋
Eiji Kaneko
英治 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5484886A priority Critical patent/JPS62213181A/en
Publication of JPS62213181A publication Critical patent/JPS62213181A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To improve the reliability of a discharge section by arranging an electrode so that a negative glow ignition-surface and an anode glow ignition-surface are formed in parallel surfaces orthogonal to the direction of a gas flow and fixing a cathode at the position of the upstream of the gas flow to the negative flow ignition-surface. CONSTITUTION:A pin-shaped slit cathode 6 consisting of an ignition section 6a orthogonal to a gas flow 5 and an electrode support section 6b obliquely extending to the insulating plate 8b side toward the upstream of the gas flow 5 from the ignition section 6a and a cylindrical anode 7 extending in the direction orthogonal to a paper surface are disposed oppositely into a discharge excitation section 2. Since a large number of the split cathodes 6 are arranged in the direction orthogonal to the paper surface, negative glow 13 ignition-surfaces generated in the split cathodes 6 and anode glow 14 ignition-surfaces generated in the anodes 7 are shaped in parallel surfaces orghogonal to the paper surface on the operation of a laser. Anode-cathode distance in the vicinity of the insulating plate 8b are made longer than a section in which glow discharge 12 is generated. The size of the ignition sections 6a and the electrode support sections 6b in the split cathodes 6 is determined so that the ignition sections 6a are kept within a predetermined range at the central section of a discharge space.

Description

【発明の詳細な説明】 [発明の目的1 (産業上の利用分野) 本発明は、CO2ガスレーザ装置に関するものであり、
特にその放電部の構造の信頼性を向上さぼたものに係る
[Detailed Description of the Invention] [Objective of the Invention 1 (Field of Industrial Application) The present invention relates to a CO2 gas laser device,
In particular, the present invention relates to improvements in the reliability of the structure of the discharge section.

(従来の技術) レーザ加工は、1台の加工装置で、切断、穴あけ、溶接
及び表面焼入れなどの一般加工や熱処理を、高速、高精
度に非接触で行うことがでさ、エネルギーの制御性が高
い、加工点周辺への影響が小さい、金属、非金属、複合
材料の加工ができる、工具の摩耗や破屓が起こらないな
ど、多くの優れた特徴を持つていることから、ファクト
リ−オートメーションの要素技術として注目をあびてい
る。この様なレーザ加工を行うためのレーザ加工装置及
びレーザ加工装置の研究開発は、従来名神の工業分野で
進められてJ3す、比較的出力の小さい加工′gt置は
♀くから実用化され、例えば、精密機械部品や電子部品
等の微細な部品の加工に多数使用されている。
(Conventional technology) Laser processing allows general processing such as cutting, drilling, welding, and surface hardening, as well as heat treatment, to be performed in a non-contact manner at high speed and with high precision using a single processing device. Factory automation has many excellent features, such as high speed, low impact on the area around the machining point, ability to process metals, non-metals, and composite materials, and no tool wear or flaking. is attracting attention as an elemental technology. Research and development of laser processing equipment and laser processing equipment for performing such laser processing has been progressing in the Meishin industrial field, and processing equipment with relatively low output has been put into practical use since then. For example, it is widely used for processing minute parts such as precision mechanical parts and electronic parts.

これに対し、近年、CO2ガスレーザ[fにおいて、従
来不可能であった放電部分の用位良さにJ)けるレーザ
出力の大幅な増大が果されたことにより、出力1kw以
上のいわゆる大出力CO2ガスレーザ装置が17i発・
実用化されるに至っている。
On the other hand, in recent years, the laser output of CO2 gas lasers [f] has been significantly increased to improve the usability of the discharge part, which was previously impossible. The device fires 17i.
It has now been put into practical use.

この大出力CO2ガスレーザ!A茸にJ3いては、CO
2ガスを含む気体をレーザ風洞内に1送風機により高速
循環させ、一対の電極闇でグロー放電を生じさせ、その
両端にミラーを配置した光共振器により、レーザ光を発
生させている。その際、大容積のグロー放電を均一に安
定して点弧する必要があるため、通常は、陰極を多数の
ビン状T陽極として空間的に均一に分散して配置し、そ
れぞれの陰極に放電安定化用の抵抗器を接触して電流を
制限し、この目的を達している。
This high output CO2 gas laser! If J3 is in A mushroom, CO
A gas containing two gases is circulated at high speed in a laser wind tunnel by a blower, a glow discharge is generated between a pair of electrodes, and a laser beam is generated by an optical resonator with mirrors placed at both ends. At that time, it is necessary to uniformly and stably ignite a large volume of glow discharge, so the cathode is usually arranged as a large number of bottle-shaped T anodes, which are evenly distributed in space, and each cathode is used to discharge a discharge. This goal is achieved by contacting a stabilizing resistor to limit the current.

この様なCO2ガスレーザ装置の従来例を第2図及び第
3図に示す。
Conventional examples of such a CO2 gas laser device are shown in FIGS. 2 and 3.

第2図は、装置全体を示?l概略断面図であり、CO2
ガスを含む気体を密封したレーザ風洞1内には、放電励
起部2、熱交換器3、及び送風機4が設けられている。
Figure 2 shows the entire device? This is a schematic cross-sectional view of CO2
A discharge excitation section 2, a heat exchanger 3, and a blower 4 are provided in a laser wind tunnel 1 in which a gas containing gas is sealed.

放電励起部2には、送1!1fi4ににってず口秒約5
0m111.度に加速された高速のガス流5が循環供給
され、放電励起部2で高温になっだレーザガスは、熱交
換器3.によって冷却された後、再び送8a灘4によっ
て加速され、放電ΩJ起部2に送られる様になっている
The discharge excitation unit 2 has a feed rate of approximately 5 seconds per second.
0m111. A high-speed gas flow 5 that has been accelerated to a certain degree is circulated and supplied, and the laser gas that has reached a high temperature in the discharge excitation section 2 is transferred to a heat exchanger 3. After being cooled by , it is accelerated again by the feeder 8a and is sent to the discharge ΩJ origin 2.

第3図は、放電励起部2の内部構成を示′rj断面図で
ある。同図に示す様に、放電励起部2の内部には、図中
水平方向であるガス流方向に延びる点弧部6aと図中上
下方向に延びる電極支持部6bから成るビン状の分vJ
 陰極6と、紙面と0交方向に延びる棒状の陽極7とが
対向配置されている。
FIG. 3 is a sectional view taken along the line 'rj' and shows the internal structure of the discharge excitation section 2. As shown in FIG. As shown in the figure, inside the discharge excitation part 2, there is a bottle-shaped portion vJ consisting of an ignition part 6a extending in the gas flow direction, which is the horizontal direction in the figure, and an electrode support part 6b extending in the vertical direction in the figure.
A cathode 6 and a rod-shaped anode 7 extending in a direction 0 orthogonal to the plane of the paper are arranged to face each other.

分割陰極6は、ガス流5の方向に複数本(同図では3本
)且つ紙面と直交する方向に多数本配置されており、下
方の絶縁板8bに、固定具9により気密保持状態で固定
されている。なお、図中88は、下方の絶縁板8bとの
間にtlj、電冷気部2の気密空間を形成する上方の絶
縁板であり、両絶縁板8a、 8bは、共にレーザ風洞
1の壁面の一部を構成している。
A plurality of divided cathodes 6 (three in the figure) are arranged in the direction of the gas flow 5 and in a direction perpendicular to the plane of the paper, and are fixed to the lower insulating plate 8b with a fixture 9 in an airtight state. has been done. Note that 88 in the figure is an upper insulating plate that forms an airtight space for the electric cooling section 2 between it and the lower insulating plate 8b, and both insulating plates 8a and 8b are connected to the wall surface of the laser wind tunnel 1. constitutes a part.

この様な構成を有するt11?1f励起部2にJ3いて
、動作時には、外部に設けられた高圧電源10から放電
安定化抵抗11を介して分割陰極6に負の高電圧が印加
され、陽t41!7との間にグロー放t12が発生する
。この時、分割陰極6の点弧部6a上には負グo −1
3が、また陽極7上には陽極グロー14が、それぞれ生
じている。グロー放1!12の放電エネルギーはガスレ
ーザ媒質に与えられて002分子を励起し、放電励起部
2の両端に固定配置された図示していない光共振器の作
用によりレーザ発振がおこりレーデ光が出力される・と
ころで、以上の様な@戒を有する放電励磁部2において
は、そのレーデ運転時に、次に説明する様な、分7;l
陰極6の絶縁板8bとの取付は位置における加熱という
問題が生ずる。
J3 is in the t11?1f excitation section 2 having such a configuration, and during operation, a negative high voltage is applied to the divided cathode 6 from the external high voltage power supply 10 via the discharge stabilizing resistor 11, and the positive t41 !7, glow emission t12 occurs. At this time, there is a negative polarity o −1 on the ignition part 6a of the divided cathode 6.
3, and an anode glow 14 is generated on the anode 7, respectively. The discharge energy of the glow emission 1!12 is given to the gas laser medium and excites the 002 molecules, and laser oscillation occurs due to the action of optical resonators (not shown) fixedly arranged at both ends of the discharge excitation part 2, and a radar light is output. By the way, in the discharge excitation unit 2 having the above-mentioned @ command, during the radar operation, the minute 7;
Attachment of the cathode 6 to the insulating plate 8b poses the problem of heating at the location.

即ち、レーザ運転時において、分v11i3極6は、負
グロー13の点弧により加熱され、絶縁板取付U位置に
J3いても数10℃以上になる。また、第3図に示づ゛
分割113橿6の絶縁板8bへの固定点A。
That is, during laser operation, the minute v11i three poles 6 are heated by the ignition of the negative glow 13, and the temperature becomes several tens of degrees Celsius or more even if J3 is at the insulating plate mounting position U. Also, as shown in FIG. 3, there is a point A for fixing the split 113 rod 6 to the insulating plate 8b.

BにJ3 Gプる陰極温度は、分v1陰極6に注入され
る熱入力、即ち分割陰4f11本当りの電流値とドλ極
降下電圧との積と、ガス流5による冷fJIとのバラン
スにより決定される。一方、第3図に示す様に、分割#
1極6は、その電極支持部6bの長さ寸法に大小がある
。従って、電極支持部6b/fi短い分割陰極6では、
電極支持部6bの冷却効果が低下する上、負グロー点弧
部と絶縁板8bとの距離が短くなり、熱入力が高まるた
め、その取付は面における温度が他の陰極と比較して高
くなる。即ち、第3図では、A点の温度は8点よりも高
くなる。
The cathode temperature applied to B is determined by the balance between the heat input injected into the v1 cathode 6, that is, the product of the current value per divided cathode 4f11 and the deλ pole drop voltage, and the cooling fJI due to the gas flow 5. Determined by On the other hand, as shown in Figure 3, the division #
In one pole 6, the electrode support portion 6b has a length dimension. Therefore, in the divided cathode 6 with short electrode support portions 6b/fi,
In addition to reducing the cooling effect of the electrode support part 6b, the distance between the negative glow ignition part and the insulating plate 8b is shortened, increasing heat input, so that the temperature at the surface of the electrode support part 6b becomes higher than that of other cathodes. . That is, in FIG. 3, the temperature at point A is higher than at point 8.

特に、なんらかの要因により、放電が局所に集中する放
電不安定性が発生した場合には、放電の集中した陰極1
本に流れる電流値は定常運転時の数倍以上になるため、
例えばA点の温度は瞬時に100℃にも達する。また、
電極支持部6bが短い場合、放電集中時に負グロー13
が絶縁板8bに達する恐れもある。この様に、lI;&
権の固定部において温度が上昇し、または負グロー13
が絶縁板8bに達すると、絶縁板8bが劣化し、気密シ
ールが破壊されて放電空間内に不純物が混入し、放電不
安定性の発生原因となってしまう。そして、この様な放
電集中時における絶縁板8bの劣化は、絶縁板8bの使
用条件′を厳しくする要因でもありた。
In particular, if discharge instability occurs due to some reason, where the discharge is locally concentrated, the cathode 1 where the discharge is concentrated
The current value flowing through the book is several times higher than during steady operation, so
For example, the temperature at point A instantly reaches 100°C. Also,
When the electrode support part 6b is short, negative glow 13 occurs when discharge is concentrated.
There is also a possibility that the particles may reach the insulating plate 8b. In this way, lI;&
Temperature rises or negative glow 13
When the insulating plate 8b is reached, the insulating plate 8b deteriorates, the airtight seal is broken, and impurities enter the discharge space, causing discharge instability. The deterioration of the insulating plate 8b during such concentrated discharge is also a factor that makes the usage conditions of the insulating plate 8b strict.

また、グロー放電電流が増加するとJξに、分割陰Vi
6上に点弧する負グロー13はガス流5の方向と逆方向
に増加していくため、分!!、1III3t4i6と陽
極7間に発生するグロー放電12は、各分割陰極に応じ
て空間的に分割された様になり、空間の電力密度に高低
が生ずる。このため、放電収縮の発生ずる直前の最大注
入電力は電力195度の高い部分で1−1限され、安定
に放電可能な全体としての放電電力密度が低く抑えられ
るという問題を生じていた。
Moreover, when the glow discharge current increases, the division shade Vi
The negative glow 13 ignited on the gas flow 5 increases in the opposite direction to the direction of the gas flow 5, so that the minute! ! , 1III3t4i6 and the anode 7, the glow discharge 12 appears to be spatially divided according to each divided cathode, and the power density in the space varies. For this reason, the maximum injected power immediately before discharge contraction occurs is limited to 1-1 at a high power of 195 degrees, resulting in the problem that the overall discharge power density that allows stable discharge is kept low.

さらに、放電空間内に千鳥状に多数の分1.11陰極を
配置する必要があるため、ガス流5に対する抵抗が大き
くなり送風機4の負荷が増ザだけでなく、放電部の構造
が複雑化し、製作に要する時間及び電極の保守作業にが
かるO、t 15]を多く必要とする問題があった。
Furthermore, since it is necessary to arrange a large number of cathodes in a staggered manner within the discharge space, the resistance to the gas flow 5 increases, which not only increases the load on the blower 4 but also complicates the structure of the discharge section. There was a problem in that a large amount of time was required for manufacturing and maintenance work for the electrodes.

(発明が解決しようとする問題点) 以上説明した様に、従来のCO2ガスレーザ装置には、
陰極と絶縁板との固定部の過熱による放電部の信頼性の
低下、陰極配置に起因する安定に放電可能な放電電力密
度の低下、及びrIi電部構部構造雑化等の問題が存在
していた。
(Problems to be solved by the invention) As explained above, the conventional CO2 gas laser device has
There are problems such as a decrease in the reliability of the discharge section due to overheating of the fixing part between the cathode and the insulating plate, a decrease in the discharge power density that allows stable discharge due to the arrangement of the cathode, and a complicated structure of the rIi electric section. was.

本発明は、以上の様な問題点を解決するために提案され
たものであり、その目的は、放電部構造を(:m’M化
して、放?I!電力密度の高低の発生を防止し、これに
よって族Ti電力を増大させ、且つ、陰極と絶縁板との
固定部における過熱、特に、陰極の配置構造に基づく局
部的な過熱を防止して、放電不安定性等を生じない様に
したCO2ガスレーザ装置を提供することである。
The present invention was proposed in order to solve the above-mentioned problems, and its purpose is to make the discharge section structure (:m'M) to prevent the occurrence of high and low discharge power density. However, this increases the group Ti power and prevents overheating at the fixed part between the cathode and the insulating plate, especially local overheating due to the arrangement structure of the cathode, so as to prevent discharge instability. It is an object of the present invention to provide a CO2 gas laser device.

[JP明の構成] (f1g題点を解決するための手段) 本発明のCO2ガスレーザ装置は、負グロー点弧面と陽
極グロー点弧面とがガス流方向と1交する平行面となる
様に電極を配置し、旦つ負グロー点弧面に対し、ガス流
の上流位置で陰極の固定を行う様にしたことを特徴とす
るものである。
[Configuration of JP Ming] (Means for solving the f1g problem) The CO2 gas laser device of the present invention is such that the negative glow ignition surface and the anode glow ignition surface are parallel surfaces that intersect with the gas flow direction. This is characterized in that the electrodes are disposed at the negative glow ignition surface, and the cathode is fixed at a position upstream of the gas flow relative to the negative glow ignition surface.

(作用) 本発明のCO2ガスレーザ装置は、以上の様な構成を有
することにより、負グロー点弧面をガス流方向と直交し
且つ陽極グローと平行面としたため、分割F3極の数を
従来より大幅に低減でき、構成の著しい1IljIIi
i化が実現される。しから、放電の一様性が高く、放電
密度の均一化が計れるため、族ff1ffi力を大幅に
向上できる。また、陰極の固定部の配M構成により、ガ
ス流による冷IA効果が向上し、絶縁板の劣化が防止さ
れている。
(Function) The CO2 gas laser device of the present invention has the above-described configuration, so that the negative glow ignition surface is perpendicular to the gas flow direction and parallel to the anode glow, so the number of divided F3 poles is smaller than that of the conventional one. 1IljIIi can be significantly reduced and has a remarkable configuration.
i-ization will be realized. Therefore, since the uniformity of the discharge is high and the discharge density can be made uniform, the family ff1ffi power can be greatly improved. Furthermore, the M configuration of the fixed portion of the cathode improves the cold IA effect due to the gas flow and prevents deterioration of the insulating plate.

(実11 以下、本発明によるCO2ガスレーザRffiの一実施
例を第1図に基づいて具体的に説明する。
(Example 11) Hereinafter, one embodiment of the CO2 gas laser Rffi according to the present invention will be specifically described based on FIG.

なお、本発明の装置の全体構成は、第2図に示した構成
と同一であるため、ここではその説明を省略し、発明の
要部である放電励起部2についてのみ説明を加えるもの
とする。また、第1図において、第3図に示した従来技
術に対応するRIG分には同−符qを付している。
The overall configuration of the device of the present invention is the same as the configuration shown in FIG. 2, so the explanation thereof will be omitted here, and only the discharge excitation section 2, which is the main part of the invention, will be explained. . Further, in FIG. 1, the RIG corresponding to the prior art shown in FIG. 3 is marked with the same symbol q.

*実施例の構成 第1図において、放電励−起部2内には、ガス流5に直
交する上下方向に延びる点弧部6aとこの点弧部6aよ
りガス流5上流に向かって絶縁板8b側に斜めに延びる
電極支持部6bとから成るビン状の分割陰極6と、紙面
と直交方向に延びる棒状の陽Ir17とが対向配置され
ている。分割陰極6は、紙面と直交する方向に多数本配
列されている。従って、レーザ運転時において分割陰極
6に発生する負グロー13点弧面と陽極7に発生する陽
極グロー14点弧面とが、紙面に直交する平行面となる
様になっている。また、絶縁板8a近傍の極聞距鐘(分
割陰極6のl’!1tii、支持部6bの固定側と陽極
7との距離)は、グロー放電12の発生ずる部分く分割
陰極6の点弧部6aと陽極7との距PIIt)より5良
くなっている。さらに、放電空間内の流速分布測定結果
より、絶縁板8a、8b付近、叩ら放電空間周辺部のガ
ス流5の流速は、放電空間中央部のガス流5の流速より
も遅い事が確認されており、このことから、分割陰極6
の点弧部6a及び電極支持部6bの1法は、点弧部6a
が放電空間中央部の一定の範囲内に収まる様に決定され
ている。この場合、電極支持部6bの司法については、
ガス流による冷却効果をも併せて4慮されている。
*Configuration of the Embodiment In FIG. 1, the discharge excitation section 2 includes an ignition section 6a extending vertically perpendicular to the gas flow 5, and an insulating plate extending upstream from the ignition section 6a toward the gas flow 5. A bottle-shaped segmented cathode 6 consisting of an electrode support portion 6b extending diagonally toward the side 8b and a rod-shaped positive Ir 17 extending perpendicularly to the plane of the paper are arranged to face each other. A large number of divided cathodes 6 are arranged in a direction perpendicular to the paper surface. Therefore, during laser operation, the negative glow 13 ignition surface generated on the divided cathode 6 and the anode glow 14 ignition surface generated on the anode 7 are parallel planes perpendicular to the plane of the drawing. In addition, the pole distance near the insulating plate 8a (l'!1tii of the divided cathode 6, the distance between the fixed side of the support part 6b and the anode 7) is the ignition of the divided cathode 6 at the point where the glow discharge 12 occurs. The distance between the portion 6a and the anode 7 is 5 better than the distance PIIt). Furthermore, from the flow velocity distribution measurement results in the discharge space, it was confirmed that the flow velocity of the gas flow 5 near the insulating plates 8a and 8b and around the beaten discharge space was slower than the flow velocity of the gas flow 5 in the center of the discharge space. Therefore, the divided cathode 6
One method of the ignition part 6a and the electrode support part 6b is that the ignition part 6a and the electrode support part 6b are
is determined so that it falls within a certain range in the center of the discharge space. In this case, regarding the jurisdiction of the electrode support part 6b,
The cooling effect of the gas flow is also taken into consideration.

本実施例のn“用 以上の様な構成を有する本実施例の作用は次の通りであ
る。
The operation of this embodiment having the above structure is as follows.

まず、レーザ運転時の過程については、前述した従来技
術と何等変らない。即ら、高圧電源10から放電安定化
抵抗11を介して分割1121ft6に角の高電圧が印
加されると、分割陰極6の1玄弧部6aと[4fi7と
の間にグロー放電12が発生する。
First, the process during laser operation is no different from the prior art described above. That is, when a square high voltage is applied from the high-voltage power supply 10 to the divided 1121ft6 via the discharge stabilizing resistor 11, a glow discharge 12 is generated between the first arc portion 6a of the divided cathode 6 and [4fi7]. .

この時の放電エネルギーはガスレー+j媒質に与えられ
、これによってCO2ガス分子が励起され、放電励起部
2の両端に固定配置された図示していない光J(振器の
0−用により、レーザ発振が起こりシー1フ光が出力さ
れる。
The discharge energy at this time is given to the gas ray +j medium, which excites CO2 gas molecules, and the laser oscillation is caused by the light J (not shown) fixedly arranged at both ends of the discharge excitation part 2 (by the oscillator's 0- occurs and the first beam of light is output.

イして、本実施例においては、分割陰極6の点弧部6a
及び電極支1.′1部6bの寸法設定により、1.1グ
ロー13は、第1図に示す様に放電空間中央部にのみ点
弧する。また、分割電極6の絶縁板8bへの固定部の温
度は、電極支持部6bの寸法が充分にとっである−[、
回部が、角グ0−13に対しガス流5の上流に位置する
ことから、低温に抑えられ、過熱の心配はない。さらに
、放電集中が発生した場合においても負グロー13が絶
縁板8bに接触づることはない。従って、従来の様に絶
縁板8bの劣化の問題が生ずることはなり、IIl電部
の信頼性が向上している。
Therefore, in this embodiment, the ignition part 6a of the divided cathode 6 is
and electrode support 1. By setting the dimensions of the '1 section 6b, the 1.1 glow 13 is ignited only in the center of the discharge space, as shown in FIG. Furthermore, the temperature of the portion of the divided electrode 6 fixed to the insulating plate 8b is determined by the sufficient dimensions of the electrode support portion 6b.
Since the rotating section is located upstream of the gas flow 5 with respect to the corners 0-13, the temperature is kept low and there is no fear of overheating. Furthermore, even if discharge concentration occurs, the negative glow 13 will not come into contact with the insulating plate 8b. Therefore, the problem of deterioration of the insulating plate 8b as in the conventional case does not occur, and the reliability of the IIl electric section is improved.

また、本実施例に13いては、分割陰極の配置構成から
、ログロー13はガス2Q5の方向と直交し且つ陽極グ
ロー14と平行に発生するため、放電の一様性が高くな
っており、放電電力密度の均一性の大幅な向上が実現さ
れている。このため、従来の構成に比べ、放電密度の局
所的増大を発生ずることなく注入可能な全体の放電電力
密度が著しく向上している。分割陰ff16の数につい
ては、従来の千鳥状に配置した電極構成においてガス流
5方向に複数本段1)でいたのに対し、本実施例では、
同方向に1本設けるだけであり、従って、分υ1陰極6
全体の数は従来に比べて大幅に減少している。
In addition, in this example, due to the arrangement of the divided cathodes, the log glow 13 is generated perpendicular to the direction of the gas 2Q5 and parallel to the anode glow 14, so the uniformity of the discharge is high and the discharge is Significant improvements in power density uniformity have been achieved. Therefore, compared to the conventional configuration, the overall discharge power density that can be injected without causing a local increase in discharge density is significantly improved. Regarding the number of divided shadows ff16, whereas in the conventional staggered electrode configuration, there were multiple stages 1) in five directions of gas flow, in this embodiment,
Only one cathode is provided in the same direction, therefore, υ1 cathode 6
The overall number has decreased significantly compared to before.

こtのことは、tllll電入幅の簡素化を果すと其に
流体抵抗損を減少させ、送8a機4の負荷の低減を実現
している。ざらに、分割lI2極6の数の低減に伴い、
放電安定化抵抗11の数も減少し、この点でも構成の簡
素化に貢献している。
This simplifies the electrical input width, reduces fluid resistance loss, and reduces the load on the feeder 8a. Roughly speaking, with the reduction in the number of divided lI2 poles 6,
The number of discharge stabilizing resistors 11 is also reduced, which also contributes to the simplification of the configuration.

[発明の効果] 以上説明した様に、本発明にJ:れば、ログロー点弧而
とg1極グロー点弧面とがガス流方向と直交する平行面
となる様に電極を配置し、且つ負グロー点弧部に対し、
ガス流の上流位置で陰極の固定を行う様に構成したこと
により、放電部の構成の1′!l索化を果し、旦っ安定
して放電可能な電力密度を向上させ、しかも放電部の信
頼性の高いCO2ガスレーFfil!iffを提供でき
る。
[Effects of the Invention] As explained above, according to the present invention, the electrodes are arranged so that the log-glow ignition plane and the g1-pole glow ignition plane are parallel planes perpendicular to the gas flow direction, and For negative glow ignition part,
By configuring the cathode to be fixed at a position upstream of the gas flow, 1'! The CO2 gas relay Ffil! achieves a stable discharge and improves the power density, and has a highly reliable discharge section. iff can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のCo2ガスレーザ装置の一実施例に
おける要部を示づ断面図、第2図は、Co2ガスレーザ
装置の装置全体を示す概略断面図、第3図は、従来のC
O2ガスレーザ装置の要部を示づ断面図である。 1・・・レーザ風洞、2・・・放電励起部、3・・・熱
交換器、4・・・送III閤、5・・・ガス流、6・・
・分割陰極、6a・・・点弧部、6b・・・電極支持部
、7・・・陽極、8a。
FIG. 1 is a sectional view showing the main parts of an embodiment of the Co2 gas laser device of the present invention, FIG. 2 is a schematic sectional view showing the entire device of the Co2 gas laser device, and FIG. 3 is a conventional C2 gas laser device.
FIG. 2 is a cross-sectional view showing the main parts of the O2 gas laser device. DESCRIPTION OF SYMBOLS 1...Laser wind tunnel, 2...Discharge excitation part, 3...Heat exchanger, 4...Transmission III valve, 5...Gas flow, 6...
- Divided cathode, 6a... Ignition part, 6b... Electrode support part, 7... Anode, 8a.

Claims (1)

【特許請求の範囲】 内部に一対の電極を対向配置したレーザ風洞の両側に光
共振器を配置し、前記風洞内にCO_2ガスを含む流通
気体を高速循環させ、グロー放電させることによりレー
ザ光を励起するCO_2ガスレーザ装置において、 陰極と陽極は、グロー放電時にそれぞれ発生する負グロ
ー点弧面と陽極グロー点弧面とが、流通気体の流通方向
に直交する平行面となる様に配置され、且つ陰極は、負
グロー点弧面に対し流通気体の上流位置で前記レーザ風
洞に固定される様に構成されたことを特徴とするCO_
2ガスレーザ装置。
[Claims] Optical resonators are arranged on both sides of a laser wind tunnel in which a pair of electrodes are arranged facing each other, and a circulating gas containing CO_2 gas is circulated at high speed in the wind tunnel to generate a glow discharge, thereby emitting laser light. In the excited CO_2 gas laser device, the cathode and the anode are arranged so that the negative glow ignition surface and the anode glow ignition surface, which are respectively generated during glow discharge, are parallel planes perpendicular to the flow direction of the circulating gas, and CO_ characterized in that the cathode is configured to be fixed in the laser wind tunnel at a position upstream of the flowing gas with respect to the negative glow ignition surface.
2 gas laser device.
JP5484886A 1986-03-14 1986-03-14 Co2 gas laser device Pending JPS62213181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5484886A JPS62213181A (en) 1986-03-14 1986-03-14 Co2 gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5484886A JPS62213181A (en) 1986-03-14 1986-03-14 Co2 gas laser device

Publications (1)

Publication Number Publication Date
JPS62213181A true JPS62213181A (en) 1987-09-19

Family

ID=12982020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5484886A Pending JPS62213181A (en) 1986-03-14 1986-03-14 Co2 gas laser device

Country Status (1)

Country Link
JP (1) JPS62213181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415486A (en) * 1992-10-22 1995-05-16 Agfa-Gevaert N. V. Dye ribbon package for use with a thermal printer and a method of loading the reloadable cassette of a thermal printer with a dye ribbon from a dye ribbon package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415486A (en) * 1992-10-22 1995-05-16 Agfa-Gevaert N. V. Dye ribbon package for use with a thermal printer and a method of loading the reloadable cassette of a thermal printer with a dye ribbon from a dye ribbon package

Similar Documents

Publication Publication Date Title
US3004133A (en) Process for starting and performing technical processes using electrical glow discharges
Goossens et al. The DC glow discharge at atmospheric pressure
US3544915A (en) Gas laser plasma guide
US5467362A (en) Pulsed gas discharge Xray laser
US3515839A (en) Plasma torch
JPS62213181A (en) Co2 gas laser device
Nath et al. Operational characteristics of a pulse-sustained dc-excited transverse-flow cw CO 2 laser of 5-kW output power
Sato et al. Improved performance of a closed‐cycle self‐sustained discharge‐excited cw CO laser
Nagai et al. CW 20-kW SAGE CO/sub 2/laser for industrial use
RU2557327C2 (en) Gas-discharge excimer laser (versions)
US6628693B1 (en) Discharge electrode for laser device
Feldman et al. Long‐lived lead‐vapor lasers
Garashchuk et al. Electric-discharge cw industrial CO2 laser
JP2829118B2 (en) Metal vapor laser device
JPS6335116B2 (en)
JPS6348881A (en) Gas laser oscillator
Bondarenko et al. Technological cw CO2 laser with a nonself-sustained discharge
JPS6114782A (en) Gas laser generator
Abil'siitov et al. Continuous-wave 10-kW CO2 processing laser
JPS62189777A (en) Gas laser oscillator
JPS639177A (en) Gas laser oscillator
JPS62126683A (en) Gas laser device
JPS6341233B2 (en)
JPS63228681A (en) Gas laser oscillator
JPH01214184A (en) Pulse laser oscillation device