JPS62212395A - Production of phosphorus amide compound - Google Patents

Production of phosphorus amide compound

Info

Publication number
JPS62212395A
JPS62212395A JP61053305A JP5330586A JPS62212395A JP S62212395 A JPS62212395 A JP S62212395A JP 61053305 A JP61053305 A JP 61053305A JP 5330586 A JP5330586 A JP 5330586A JP S62212395 A JPS62212395 A JP S62212395A
Authority
JP
Japan
Prior art keywords
formula
bisaminomonohalogenophosphine
group
general formula
reacting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61053305A
Other languages
Japanese (ja)
Inventor
Shinichiro Tawara
伸一郎 田原
Kuniaki Goto
邦明 後藤
Yoshihiro Hayakawa
芳宏 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP61053305A priority Critical patent/JPS62212395A/en
Publication of JPS62212395A publication Critical patent/JPS62212395A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To efficiently obtain the titled bisamino type compound useful as a raw material for DNA synthetic reagents, by reacting a trihalogenophosphine with a secondary aminating agent and further reacting the resultant bisaminomonohalogenophosphine with an alcohol. CONSTITUTION:A trihalogenophosphine, preferably trichlorophosphine is reacted with a secondary aminating agent, e.g. diisopropylamine, etc., to synthesize a bisaminomonohalogenophosphine expressed by formula I (R1 and R2 are secondary or tertiary alkyl or both link to represent residue forming a heterocyclic amine; X is halogen), which is then reacted with an alcohol expressed by the formula R3-OH (R3 is OH-protecting group in phosphoric acid triester) to afford the aimed compound expressed by formula II.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はリンアミド化合物の製造法に関し、さらに詳し
くは、2級アミノ基を分子中に2個含有するリンアミド
化合物を効率よく合成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a phosphorus amide compound, and more particularly to a method for efficiently synthesizing a phosphorus amide compound containing two secondary amino groups in the molecule.

(従来の技術) 最近の遺伝子工学の発展に伴い、その11L要な素材で
あるDNA (デオキシリポ核酸)やRNA (リポ核
酸)などのポリヌクレオチrを化学的に合成する方法の
研究が盛んに行なわれている。
(Prior art) With the recent development of genetic engineering, research has been actively conducted on methods for chemically synthesizing polynucleotides such as DNA (deoxyliponucleic acid) and RNA (liponucleic acid), which are the essential materials for 11L. It is.

従来、ポリヌクレオチドの化学合成法としてリン酸ジエ
ステル法、リン酸トリエステル法、ホスファイト法など
の手法が知られているが、そのなかでも反応性の点でホ
スファイト法が注目されており、とくにホスホロアミダ
イトを用いるアミダイト法が関心を集めている。
Conventionally, methods such as the phosphodiester method, phosphotriester method, and phosphite method are known as chemical synthesis methods for polynucleotides, but among these, the phosphite method is attracting attention due to its reactivity. In particular, the amidite method using phosphoramidites is attracting attention.

このアミダイト法の場合、ヌクレオチドモノマーの合成
試薬として一般にクロロ−N、N−ジアルキルアミノメ
トキシホスフィン、クロロ−N、N −ジアルキルアミ
ノシアノエトキシホスフィンなどが用いられているが(
例えば特開昭57−176998号、特表昭60−50
2102号など)、これまでの研究によって2級アミノ
基の置換基の種類によって生成するヌクレオチドモノマ
ーの安定性に差異があり、ノイソプロピルアミノ基に代
表される分校状のアルキル基やモルホリノ基のような複
素環アミノ基を有するものの方がジメチルアミノ基、ジ
エチルアミノ基などのごとき鎖状の置換基を有するもの
よシも安定であることが知られている(例えばテトラヘ
ドロンレターズ、VOL 24、A3,245〜248
頁、1983年)。
In the case of the amidite method, chloro-N,N-dialkylaminomethoxyphosphine, chloro-N,N-dialkylaminocyanoethoxyphosphine, etc. are generally used as reagents for synthesizing nucleotide monomers (
For example, JP-A-57-176998, JP-A-60-50
2102, etc.), and previous studies have shown that the stability of nucleotide monomers produced differs depending on the type of substituent of the secondary amino group, and it has been found that the stability of nucleotide monomers produced differs depending on the type of substituent of the secondary amino group. It is known that those having a heterocyclic amino group are more stable than those having a chain substituent such as a dimethylamino group or a diethylamino group (for example, Tetrahedron Letters, VOL 24, A3, 245-248
Page, 1983).

そして、これらのリンアミド化合物のなかでも、とくに
ハロゲンを含まないビスアミノをのリンアミド化合物で
あれば、分子中にハロゲン原子を含まないため、ヌクレ
オシドと反応させてヌクレオシドホスファイトを合成す
る際にハロダン化水素を副生ずることがなく、操作上好
都合である。
Among these phosphorus amide compounds, bis-amino phosphorus amide compounds that do not contain halogens do not contain halogen atoms in their molecules, so when they are reacted with nucleosides to synthesize nucleoside phosphites, hydrogen halide is generated. It does not produce by-products and is convenient for operation.

(発明が解決しようとする問題点) そこで本発明者らは、DNA合成試薬の原料として有用
なビスアミノ型のリンアミド化合物の効率的な製造法を
開発すべく鋭意検討の結果、安価なトリハロゲノホスフ
ィンを原料とし、ビスアミノモノハロゲノホスフィンを
経由する方法が反応性の点で優れていることを見い出し
、本発明を完成するに到った。
(Problems to be Solved by the Invention) Therefore, the present inventors conducted intensive studies to develop an efficient method for producing a bisamino-type phosphorus amide compound useful as a raw material for a DNA synthesis reagent, and found that an inexpensive trihalogenophosphin The present inventors have discovered that a method using bisaminomonohalogenophosphine as a raw material is superior in terms of reactivity, and has completed the present invention.

(問題点を解決するための手段) かくして本発明によれば、トリハロゲノホスフィンと2
級アミノ化剤を反応させて下記一般式(1)で表わされ
るビスアミノモノハロゲノホスフィンを合成したのち、
下記一般式〔■〕で表わされるアルコールを反応させる
ことを特徴とする下記一般式(111で表わされるリン
アミド化合物の製造法が提供される。
(Means for Solving the Problems) Thus, according to the present invention, trihalogenophosphine and
After synthesizing bisaminomonohalogenophosphine represented by the following general formula (1) by reacting a class aminating agent,
There is provided a method for producing a phosphorus amide compound represented by the following general formula (111), which is characterized by reacting an alcohol represented by the following general formula [■].

(1)      (u)         (ll[
’1(式中、R,、R2はそれぞれ2級もしくは3級ア
ルキル基または両者が結合して複素環アミンを形成する
残基を表わし、Xはハロゲン原子を表わし、R3Fil
Jン酸トリエステルにおける水酸基の保護基を表わす。
(1) (u) (ll[
'1 (in the formula, R, and R2 each represent a secondary or tertiary alkyl group or a residue that forms a heterocyclic amine by combining the two, X represents a halogen atom, and R3Fil
It represents a protecting group for the hydroxyl group in the J-acid triester.

) 本発明においては、まずトリハロrノホスフ(ンと2級
アミノ化剤とから上記一般式(1)で表わされるビスア
ミノモノハロゲノホスフィンが合成される。
) In the present invention, first, a bisaminomonohalogenophosphine represented by the above general formula (1) is synthesized from a trihalophosphine and a secondary aminating agent.

用いられるトリハロゲノホスフィンの具体例としては、
例えばトリクロロホスフィン、トリブロモホスフィンな
どが例示され、なかでも経済性のR2は前記と同じ)の
残基を有する2級アミン、金鵡アミドなどをいい、その
具体例として、例えばジイソプロピルアミン、ジ−t−
ブチルアミン、モルホリン、チオモルホリン、ピロリジ
ン、ピペリジン、2.6−シメチルビロリジン、ピペラ
ジン、トリメチルシリルジイソグロビルアミン、トリメ
チルシリルジ−t−ジチルアミン、これらのリチウムア
ミド、ナトリウムアミド、アルミニウムアミドなどが例
示される。
Specific examples of trihalogenophosphines used include:
For example, trichlorophosphine, tribromophosphine, etc. are exemplified, and among them, it refers to secondary amines having the residue (R2 for economic efficiency is the same as above), gold amide, etc., and specific examples thereof include diisopropylamine, di- t-
Examples include butylamine, morpholine, thiomorpholine, pyrrolidine, piperidine, 2,6-dimethylpyrrolidine, piperazine, trimethylsilyldiisoglobylamine, trimethylsilyldi-t-ditylamine, lithium amide, sodium amide, aluminum amide, etc. Ru.

トリハロゲノホスフィンと2級アミン化剤との反応は、
通常、溶剤の存在下に行われ、その具体例として例えば
ジエチルエーテル、テトラヒドロフラン、ベンゼン、ト
ルエン、キシレンナトが例示される。
The reaction between trihalogenophosphine and a secondary aminating agent is
It is usually carried out in the presence of a solvent, and specific examples thereof include diethyl ether, tetrahydrofuran, benzene, toluene, and xylenato.

反応に当たっては、通常、トリハロrノホスフィン1モ
ルに対して約2モルのアミノ化剤を使用すればよいが、
反応の際に副生ずるハロダン化水素を除去する目的でよ
シ多童のアミン化剤を存在させてもよい。
In the reaction, it is usually sufficient to use about 2 mol of the aminating agent per 1 mol of trihalor-nophosphine.
An aminating agent such as Yoshitado may be present for the purpose of removing hydrogen halide produced as a by-product during the reaction.

反応は通常θ〜50℃の温度で2〜30時間程度にわた
って行われるが、必ずしもこれに限定されるものではな
い。
The reaction is usually carried out at a temperature of θ to 50° C. for about 2 to 30 hours, but is not necessarily limited thereto.

反応終了後、反応液中からビスアミノモノハロゲノホス
フィンが分離される。分離手段はとくに制限されないが
、通常は#留によって行われる。
After the reaction is completed, bisaminomonohalogenophosphine is separated from the reaction solution. The separation means is not particularly limited, but it is usually carried out by distillation.

また反応液中に固形のハロダン酸塩が副生じている場合
には予め固形分の戸別が行われる。しかし、場合によっ
ては反応液からビスアミノモノハロゲノホスフィンの分
離を行うことなく、次の反応を行うこともできる。
In addition, if a solid halide salt is produced as a by-product in the reaction solution, the solid content is separated in advance. However, in some cases, the next reaction may be carried out without separating the bisaminomonohalogenophosphine from the reaction solution.

本発明においては、かくして得られるビスアミノモノハ
ロゲノホスフィンに上記一般式(II)で表わされるア
ルコールを反応させることにょシ、目的とする上記一般
式(lit)で表わされるリンアミド化合物が合成され
る。
In the present invention, the desired phosphorus amide compound represented by the above general formula (lit) is synthesized by reacting the thus obtained bisaminomonohalogenophosphine with the alcohol represented by the above general formula (II).

上記一般式(ill)中のR3は、DNA合成において
リン酸トリエステルを形成した際に水酸基の保護基とし
て作用するものであればいずれでもよく、その具体例と
して、メチル基、エチル基、プロピル話、ブチル基など
のごときアルキル基、β−シアノエチル基、β−ハロゲ
ノエチル基、β−ニトロエチル基、β−チオシアノエチ
ル基、β−メチルスルホニルエチル基、β−フェニルス
ルホニルエチル基などのβ−開裂によって脱離する保護
基、アリル基、クロチル基、プレニル基、グラニ/14
、シンナミル基、p・−クロロシンナミル基などのアリ
ル型保護基などが例示される。
R3 in the above general formula (ill) may be any group as long as it acts as a protecting group for a hydroxyl group when a phosphotriester is formed in DNA synthesis. Specific examples thereof include a methyl group, an ethyl group, and a propyl group. β-cleavage of alkyl groups such as butyl groups, β-cyanoethyl groups, β-halogenoethyl groups, β-nitroethyl groups, β-thiocyanoethyl groups, β-methylsulfonylethyl groups, β-phenylsulfonylethyl groups, etc. Protecting groups that are removed by, allyl group, crotyl group, prenyl group, Grani/14
, cinnamyl group, p·-chlorocinnamyl group, and other allyl-type protecting groups.

なお、これらの保護基の他の具体例及び脱保護の方法な
どについては、特開昭57−176998号、特表昭6
0−502102号、特願昭60−211240号など
に詳細に開示されている。
For other specific examples of these protecting groups and methods of deprotection, see JP-A No. 57-176998 and Japanese Patent Application Publication No. 6
This method is disclosed in detail in Japanese Patent Application No. 0-502102, Japanese Patent Application No. 60-211240, etc.

これらの保護基のなかでは、脱保護の容易性、副反応の
防止等の見地からβ−開裂によって脱離する保護基及び
アリル型保膜基が好ましく、とくにβ−シアノエチル基
、炭素数6以下のアリル逅保護基が賞月される。
Among these protecting groups, from the viewpoint of ease of deprotection and prevention of side reactions, protecting groups that are eliminated by β-cleavage and allyl-type film-retaining groups are preferred, and in particular β-cyanoethyl groups, carbon atoms of 6 or less The allyl-protecting group is recognized.

ビスアミノモノハロダンホスフィンとアルコールとの反
応は適当な溶剤中で実施される。溶剤の異例としては、
例えばジエチルエーテル、テトラヒドロフラン、ベンゼ
ン、トルエン、キシレンなどが挙げられ、ビスアミノモ
ノハロゲノホスフィンを単離せずに反応させる場合には
溶剤を共通にしておくことが望ましい。
The reaction of the bisaminomonohalodanephosphine with the alcohol is carried out in a suitable solvent. An unusual example of a solvent is
Examples include diethyl ether, tetrahydrofuran, benzene, toluene, xylene, etc. When the bisaminomonohalogenophosphine is reacted without being isolated, it is desirable to use a common solvent.

またその他の反応条件も適宜選択すればよく、通常は前
者1モルに対し後者的1−ビルを仕込み0〜50℃で2
〜30時間反応することによって行われる。さらに反応
によって副生するハロダン化水素を除去するためにアミ
ンなどの塩基を共存させることが好ましい。
In addition, other reaction conditions may be selected as appropriate; usually, 1 mole of the former is charged with 1-bil of the latter, and 2
This is done by reacting for ~30 hours. Further, it is preferable to coexist a base such as an amine in order to remove hydrogen halide produced as a by-product during the reaction.

反応液中からの生成物の単離・精製は、通常の有機合成
反応の手段である蒸留、吸着クロマトグラフィーやイオ
ン交換クロマトグラフィーあるいは有機溶媒による分配
など公知の手段を適宜に選択し、あるいは組み合わせて
実施することが可能である。
Isolation and purification of the product from the reaction solution can be carried out by appropriately selecting or combining known methods such as distillation, adsorption chromatography, ion exchange chromatography, or distribution using organic solvents, which are common methods for organic synthesis reactions. It is possible to implement it by

(発明の効果) かくして本発明によれば、三ハロダン化リン、2級アミ
ノ化剤及びアルコールという入手容易な原料を用いて効
率よく目的とするリンアミド化合物を得ることができる
(Effects of the Invention) Thus, according to the present invention, the desired phosphorus amide compound can be efficiently obtained using readily available raw materials such as phosphorus trihalodanide, a secondary aminating agent, and alcohol.

これに対し、他の手法として考えられるアルコールを先
に反応させる方法では、モノアルコキシジハロゲノホス
フィンを収率よく得ることが困難なうえ、バルキーな置
換基を有する2個の2級アミノ基を同時に導入すること
も難しく、そのため目的物を効率よく得ることができな
い。
On the other hand, with the other possible method of reacting alcohol first, it is difficult to obtain monoalkoxydihalogenophosphine in good yield, and it is difficult to simultaneously react two secondary amino groups with bulky substituents. It is also difficult to introduce, and therefore the target product cannot be obtained efficiently.

(実施例) 以下に実施例を挙げて本発明をさらに具体的に説明する
(Example) The present invention will be described in more detail with reference to Examples below.

実施例1 3塩化リン28.6ミリモルをエーテル3QmJにとか
したのち、ジイソゾロビルアミン114.4ミリ七ルを
加え、室温で20時間攪拌した。反応波、生成したジイ
ソデロビルアンモニウムクロライトヲF別し、蒸留して
油状のビス(N、N−ジイソゾロビルアミン)クロロホ
スフィンを収率7o%で得た。さらにこのビス(N、N
−ジイソゾロビルアミン)クロロホスフィン20ミリモ
ルをエーテル30mに溶かした後、トリエチルアミン2
0ミリモル、アリルアルコール20ミリモルを加え、室
温で15時間攪拌した。反応後、生成したトリエチルア
ンモニウムクロライドを戸別し、エーテルを留去後、蒸
留して油状のアリルオキシビス(N、N−ジイソプロピ
ルアミン)ホスフィンを得た。トータル収率は47%で
あった。
Example 1 After 28.6 mmol of phosphorus trichloride was dissolved in 3 QmJ of ether, 114.4 mmol of diisozolobylamine was added, and the mixture was stirred at room temperature for 20 hours. The reaction wave and the generated diisoderobyl ammonium chlorite were separated and distilled to obtain oily bis(N,N-diisozorobylamine)chlorophosphine in a yield of 70%. Furthermore, this screw (N, N
-diisozolobylamine) After dissolving 20 mmol of chlorophosphine in 30 m of ether, 2 mmol of triethylamine
0 mmol and 20 mmol of allyl alcohol were added, and the mixture was stirred at room temperature for 15 hours. After the reaction, the triethylammonium chloride produced was separated and the ether was distilled off, followed by distillation to obtain oily allyloxybis(N,N-diisopropylamine)phosphine. The total yield was 47%.

・沸漬130〜133℃/6■Hg ・HNMR(C6D6) 1.17(dd、J−7,8,1,8Hz、24H。・Boiling 130-133℃/6■Hg ・HNMR (C6D6) 1.17 (dd, J-7,8,1,8Hz, 24H.

4 NCH(CH3)2 ) 、 3.53(d 、 
5ept 、 J−10,8゜7.8Hz 、 41(
,4NCH) 、 4.10(dat 、 J = 1
0.5゜2 Hz + 2 Ht C=CCH2) +
  5−07 (m 、 I H* c 1sCI(−
CHCH2’)、5.33(m、IH,trans  
C旦冨CHCH2) −5,93(ddt lJ” 1
8 − 10−5Hz lI H、CH2=C旦CH2
) ・” P NMR(Cb D b −Cb Hb 、1
 : 4 ) 123−58 p pm実施例2 ジイソプロピルアミンの代シにモルホリンを用いること
以外は実施例1と同様にして反応を行い、アリルオキシ
ビス(モ丹ホリノ)ホスフィンを得た。トータル収率は
48モル係であった。
4 NCH(CH3)2 ), 3.53(d,
5ept, J-10, 8°7.8Hz, 41(
,4NCH), 4.10(dat, J = 1
0.5゜2 Hz + 2 Ht C=CCH2) +
5-07 (m, I H* c 1sCI(-
CHCH2'), 5.33 (m, IH, trans
CHCH2) -5,93 (ddt lJ” 1
8-10-5Hz lI H, CH2=CdanCH2
) ・”P NMR(Cb D b −Cb Hb , 1
: 4) 123-58 ppm Example 2 The reaction was carried out in the same manner as in Example 1 except that morpholine was used in place of diisopropylamine to obtain allyloxybis(modanphorino)phosphine. The total yield was 48 moles.

・沸点145〜155℃/ 0.6 wHg・ HNM
R(C6D6) 2、90 (qlike 、I、−、= JH−、= 
4.5Hz 、 8H。
・Boiling point 145-155℃/0.6 wHg・HNM
R(C6D6) 2,90 (qlike, I, -, = JH-, =
4.5Hz, 8H.

4NCH2) 、 3.47(t 、 J=4.5Hz
、 8H,400H2) 。
4NCH2), 3.47(t, J=4.5Hz
, 8H, 400H2).

4.10(m、2H,C=CCH2)、5.07(m、
IH,cisC旦=CHCH2)*  5.3 0  
(m  e  I Hr  trans  CH−CH
CH2) 、 5.88 (dat 、 p 1直10
.5Hz。
4.10 (m, 2H, C=CCH2), 5.07 (m,
IH,cisCdan=CHCH2)*5.3 0
(m e I Hr trans CH-CH
CH2), 5.88 (dat, p 1 shift 10
.. 5Hz.

IH、CH2−CHCH2) −”P NMR(C6D6−C6H6,1: 4 ) 
130.45 ppm実施例3 アリルアルコールに代えてβ−シアノエタノールを用い
ること以外は実施例1と同様にして反応を行い、β−シ
アノエトキシビス(N、N−ジインプロピルアミノ)ホ
スフィンを得た。トータル収率は42モル係であった。
IH, CH2-CHCH2)-”P NMR (C6D6-C6H6,1:4)
130.45 ppm Example 3 The reaction was carried out in the same manner as in Example 1 except that β-cyanoethanol was used instead of allyl alcohol to obtain β-cyanoethoxybis(N,N-diimpropylamino)phosphine. . The total yield was 42 moles.

・沸点123〜130℃/ 0.01 mHg−P−N
MR(C6D6−041(801: 2 ) 123.
85 ppm−H−NMR(CD、Ct) 1.35  (d 、 24H4NCI((CMp2)
3、82 (m 、 4 H4NCH(CH3)2)4
.03.4.25(2t、2H−0□2CH2CミN)
2.80  (t 、 2 H−0CH2%CミN)比
較例1 三塩化リン30ミリモルをエーテル30mKiJ解した
のち、β−シアンエタノール30ミリモル及びピリジン
30ミリモルを加え室温で20時間ビ 攪拌した。反応後、生成した→リジニウムクロライドを
戸別し、蒸留して油状のβ−シアノエトキシジクロロホ
スフィンを得た。収率H約151であった。
・Boiling point 123-130℃/0.01 mHg-P-N
MR (C6D6-041 (801: 2) 123.
85 ppm-H-NMR (CD, Ct) 1.35 (d, 24H4NCI ((CMp2)
3,82 (m, 4 H4NCH(CH3)2)4
.. 03.4.25 (2t, 2H-0□2CH2CmiN)
2.80 (t, 2H-0CH2%CmiN) Comparative Example 1 After dissolving 30 mmol of phosphorus trichloride in 30 mKiJ of ether, 30 mmol of β-cyanethanol and 30 mmol of pyridine were added and stirred at room temperature for 20 hours. After the reaction, the produced → lysinium chloride was separated and distilled to obtain oily β-cyanoethoxydichlorophosphine. The yield H was about 151.

欠いでこのβ−シアノエトキシジクロロホスフィン20
ミリモルをエーテル30−に溶解したのち、ツインゾロ
ビルアミン80ミリモルを加え、室温で20時間攪拌し
た。しかし、目的とするβ−シアノエトキシビス(ジイ
ンプロピルアミノ)ホスフィンは殆ど得られなかった。
Without this β-cyanoethoxydichlorophosphine 20
After dissolving 30 mmol of ether, 80 mmol of twinzolobylamine was added and the mixture was stirred at room temperature for 20 hours. However, the desired β-cyanoethoxybis(diimpropylamino)phosphine was hardly obtained.

Claims (1)

【特許請求の範囲】 1、トリハロゲノホスフィンと2級アミノ化剤を反応さ
せて下記一般式〔 I 〕で表わされるビスアミノモノハ
ロゲノホスフィンを合成したのち、下記一般式〔II〕で
表わされるアルコールを反応させることを特徴とする下
記一般式〔III〕で表わされるリンアミド化合物の製造
法。 ▲数式、化学式、表等があります▼〔 I 〕▲数式、化
学式、表等があります▼〔II〕▲数式、化学式、表等が
あります▼〔III〕 (式中、R_1、R_2はそれぞれ2級もしくは3級ア
ルキル基または両者が結合して複素環アミンを形成する
残基を表わし、Xはハロゲン原子を表わし、R_3はリ
ン酸トリエステルにおける水酸基の保護基を表わす。)
[Scope of Claims] 1. After synthesizing bisaminomonohalogenophosphine represented by the following general formula [I] by reacting trihalogenophosphine with a secondary aminating agent, an alcohol represented by the following general formula [II] is synthesized. A method for producing a phosphorus amide compound represented by the following general formula [III], which comprises reacting. ▲There are mathematical formulas, chemical formulas, tables, etc.▼[I]▲There are mathematical formulas, chemical formulas, tables, etc.▼[II]▲There are mathematical formulas, chemical formulas, tables, etc.▼[III] (In the formula, R_1 and R_2 are respectively secondary or a tertiary alkyl group or a residue in which both are bonded to form a heterocyclic amine, X represents a halogen atom, and R_3 represents a protecting group for the hydroxyl group in the phosphoric triester.)
JP61053305A 1986-03-11 1986-03-11 Production of phosphorus amide compound Pending JPS62212395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61053305A JPS62212395A (en) 1986-03-11 1986-03-11 Production of phosphorus amide compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61053305A JPS62212395A (en) 1986-03-11 1986-03-11 Production of phosphorus amide compound

Publications (1)

Publication Number Publication Date
JPS62212395A true JPS62212395A (en) 1987-09-18

Family

ID=12939005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61053305A Pending JPS62212395A (en) 1986-03-11 1986-03-11 Production of phosphorus amide compound

Country Status (1)

Country Link
JP (1) JPS62212395A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055030A1 (en) 2002-12-17 2004-07-01 Avecia Limited Process for the preparation of phosphitylation agents
WO2004058779A1 (en) * 2002-12-24 2004-07-15 Rhodia Consumer Specialties Limited Process for preparing phosphorodiamidites

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055030A1 (en) 2002-12-17 2004-07-01 Avecia Limited Process for the preparation of phosphitylation agents
JP2006509813A (en) * 2002-12-17 2006-03-23 アベシア・リミテッド Process for producing a phosphitylating agent
US7560555B2 (en) 2002-12-17 2009-07-14 Avecia Biotechnology Inc. Process for the preparation of phosphitylation agents
KR101167297B1 (en) 2002-12-17 2012-07-23 아베시아 바이오테크놀러지, 아이엔씨. Process for the preparation of phosphitylation agents
WO2004058779A1 (en) * 2002-12-24 2004-07-15 Rhodia Consumer Specialties Limited Process for preparing phosphorodiamidites
CN100338078C (en) * 2002-12-24 2007-09-19 罗迪亚消费特殊有限公司 Process for preparing phosphorodiamidites
US7276620B2 (en) 2002-12-24 2007-10-02 Rhodia Consumer Specialties Limited Process for preparing phosphorodiamidites

Similar Documents

Publication Publication Date Title
JP5143872B2 (en) Phosphonate nucleoside derivatives
US5051533A (en) Prophosphatrane compounds as proton abstracting reagents
JPH0662662B2 (en) Nucleoside alkyl-, aralkyl- and aryl-phosphonite and process for their production
JPS62212395A (en) Production of phosphorus amide compound
US5134228A (en) Nucleoside-3'-phosphites for synthesis of oligonucleotides
Hutchins et al. Preparation of N-Diprotected Allylic Amines via Palladium (0)-Catalyzed Coupling Reactions
EP0229053A1 (en) Method for synthesizing deoxyoligonucleotides
JPH02209882A (en) New phosphinopyrrolidine compound and asymmetric synthesis using the same
JPH07330786A (en) Optically active tertiary phosphine compound, transition metal complex with the same as ligand and production method using the complex
KR100889897B1 (en) Process for preparing phosphorodiamidites
JPS6033399B2 (en) Novel production method for lysophosphatidylcholine analogs
JP3382995B2 (en) Bisphosphinoalkane
JPS62212394A (en) Novel phosphorus amide compound
JP2981621B2 (en) Biphenyl bisphosphine complex
JP4257414B2 (en) Release method of phosphine
JP3669208B2 (en) Method for producing nucleotide block, nucleotide and nucleotide block
JPH08183791A (en) Bis-phosphepine and its production
JPH0232085A (en) Novel phosphonate compound, preparation thereof and preparation of h-phosphonate compound
JPS5910678B2 (en) Method for producing N-hydroxyalkyl-substituted phosphoramidate
RU2203284C1 (en) Method of synthesis of n-substituted alkyl-(2-dialkoxyphosphoryl)alkylimidates
JPH04112894A (en) Phosphine compound and synthesis of oligonucleotide using the same
JP3518385B2 (en) Phosphorazolide compounds
RU2157376C1 (en) Method of preparing hydrogen halide salt of hexaalkyltriamidophosphazohydride
JPS6270382A (en) Novel phosphorus amide compound
GB2096596A (en) 8-quinolinesulfonyl derivatives and their synthesis and use as coupling agents in nucleotide chemistry