JPS6221228B2 - - Google Patents

Info

Publication number
JPS6221228B2
JPS6221228B2 JP55092734A JP9273480A JPS6221228B2 JP S6221228 B2 JPS6221228 B2 JP S6221228B2 JP 55092734 A JP55092734 A JP 55092734A JP 9273480 A JP9273480 A JP 9273480A JP S6221228 B2 JPS6221228 B2 JP S6221228B2
Authority
JP
Japan
Prior art keywords
fuel
liquid fuel
liquid
electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55092734A
Other languages
Japanese (ja)
Other versions
JPS5719973A (en
Inventor
Yasuyuki Tsutsumi
Tsutomu Tsukui
Ryota Doi
Toshio Shimizu
Koki Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9273480A priority Critical patent/JPS5719973A/en
Publication of JPS5719973A publication Critical patent/JPS5719973A/en
Publication of JPS6221228B2 publication Critical patent/JPS6221228B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明は燃料電池発電装置に係り、特に液体燃
料を直接燃料として使用する直接型燃料電池の発
電装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell power generation device, and more particularly to a direct fuel cell power generation device that uses liquid fuel directly as fuel.

従来、燃料電池には天然ガス等の燃料を改質し
て水素を作り、これを電極に供給する間接型燃料
電池と、燃料をそのまま電極に供給する直接型燃
料電池がある。間接型燃料電池として、燃料の沸
点以上で運転する高温型燃料電池、例えば天然ガ
ス改質燃料(主に水素)を用いた酸性質燃料電池
は反応が速く電流密度が大きくとれるため、装置
が小型になる利点があるが、燃料の改質プロセス
でエネルギー損失が発生するとともに未反応の燃
料ガスを反応生成物と分離して回収することが困
難なため、燃料の利用率が低い問題がある。
Conventionally, there are two types of fuel cells: indirect fuel cells that reform fuel such as natural gas to produce hydrogen and supply this to electrodes, and direct fuel cells that supply fuel directly to electrodes. As indirect fuel cells, high-temperature fuel cells that operate at temperatures above the boiling point of the fuel, such as acid fuel cells that use reformed natural gas fuel (mainly hydrogen), have fast reactions and can provide a large current density, so their devices are small. However, energy loss occurs in the fuel reforming process, and it is difficult to separate and recover unreacted fuel gas from reaction products, resulting in a low fuel utilization rate.

一方液体燃料直接型燃料電池は、液体燃料から
炭酸ガス等のガス状反応物が気泡として容易に分
離され、反応生成物のみを除きやすい利点があ
る。しかし、液体燃料直接型燃料電池では動作温
度が液体燃料の沸点近くなると、燃料のガス状物
が生成し、却つて反応が阻害されるために電流密
度が低くなり、また燃料の浪費量が著しく、その
浪費量が50%程度に至ることもある。したがつて
従来、液体燃料直接型燃料電池の動作温度は液体
燃料の沸点よりも低い温度に抑えられている。
On the other hand, liquid fuel direct fuel cells have the advantage that gaseous reactants such as carbon dioxide gas can be easily separated from the liquid fuel as bubbles, and only the reaction products can be easily removed. However, in liquid fuel direct fuel cells, when the operating temperature approaches the boiling point of the liquid fuel, gaseous substances of the fuel are generated, which inhibits the reaction, resulting in a low current density and a significant amount of fuel wasted. In some cases, the waste amount can reach up to 50%. Therefore, conventionally, the operating temperature of liquid fuel direct fuel cells has been suppressed to a temperature lower than the boiling point of the liquid fuel.

したがつて、液体燃料直接型燃料電池は動作温
度が低いため反応が遅く、単位電極面積当りの電
流密度が小さく規定の電流を得るためには装置が
大きくなる問題がある。
Therefore, the liquid fuel direct type fuel cell has a problem that the reaction is slow due to the low operating temperature, the current density per unit electrode area is small, and the device needs to be large in order to obtain a specified current.

本発明は、上記問題点を解決するために、電池
運転温度を上げても燃料利用効率が低下せず、単
位電極面積当りの電流密度を大きくすることによ
つて装置の小型化を図り、また未反応の燃料を容
易に回収することができる液体燃料電池発電装置
を提供することを目的とする。
In order to solve the above-mentioned problems, the present invention aims to reduce the size of the device by increasing the current density per unit electrode area, without reducing the fuel utilization efficiency even if the battery operating temperature is increased, and by increasing the current density per unit electrode area. It is an object of the present invention to provide a liquid fuel cell power generation device in which unreacted fuel can be easily recovered.

上記目的を達成するために本発明は、電解質を
介して相対向配置された酸化剤極と燃料極とから
なる単位電池を複数備えてなる液体燃料電池本体
と、前記酸化剤極へ酸化剤ガスを供給する酸化剤
ガス供給手段と、前記燃料極に液体燃料を供給す
る液体燃料供給手段と、を具備してなる液体燃料
電池発電装置において、前記液体燃料が前記燃料
極に供給される以前で当該液体燃料を予熱する予
熱手段と、前記液体燃料電池本体内の液体燃料を
加圧して液体燃料の沸点以上でも当該液体燃料を
液状に保つ加圧手段と、前記燃料極から排出され
た使用済み液体燃料中の未反応液体燃料と反応生
成ガスとを分離する分離手段と、当該分離された
未反応液体燃料を前記燃料極にリサイクルする還
流手段と、を備えてなることを特徴とする液体燃
料電池発電装置である。
In order to achieve the above object, the present invention provides a liquid fuel cell body comprising a plurality of unit cells each consisting of an oxidizer electrode and a fuel electrode arranged opposite to each other via an electrolyte, and an oxidant gas supplied to the oxidizer electrode. In a liquid fuel cell power generation device comprising: an oxidizing gas supply means for supplying a liquid fuel; and a liquid fuel supply means for supplying a liquid fuel to the fuel electrode, before the liquid fuel is supplied to the fuel electrode. a preheating means for preheating the liquid fuel; a pressurizing means for pressurizing the liquid fuel in the liquid fuel cell body to keep the liquid fuel in a liquid state even above the boiling point of the liquid fuel; and a used fuel discharged from the fuel electrode. A liquid fuel comprising a separation means for separating unreacted liquid fuel and reaction product gas in the liquid fuel, and a reflux means for recycling the separated unreacted liquid fuel to the fuel electrode. It is a battery power generator.

上記本発明によれば、燃料電池本体の動作温度
を液体燃料の沸点以上としても、燃料電池本体内
における燃料を液状に維持できる。したがつて、
燃料の利用効率が向上し、単位電極面積当りの電
流密度が著しく向上する。
According to the present invention, the fuel within the fuel cell main body can be maintained in a liquid state even if the operating temperature of the fuel cell main body is equal to or higher than the boiling point of the liquid fuel. Therefore,
The fuel utilization efficiency is improved and the current density per unit electrode area is significantly improved.

以下、添付図面に基づいて本発明の実施例を説
明する。
Embodiments of the present invention will be described below based on the accompanying drawings.

第1図は、メタノール燃料電池本体、燃料循環
系および空気供給系の構成を模式的に示したもの
である。メタノール燃料電池本体は、燃料室1、
燃料極2(負電極となる)、電解液3、空気極4
(正電極となる)、及び空気室5を1単位として構
成され、大出力を出す場合には、この単位セルが
直列または並列に接続される。燃料室1には、メ
タノールと硫酸の混合液が充填されており、この
メタノールは燃料極2に塗布されている白金等の
触媒により活性化されH+が形成され、このH+
硫酸の電解液3を通り、空気極4に達し、空気室
5の酸素と反応しH2Oを形成する。この一連の電
気化学的反応の際放出されるエネルギーの一部を
電気エネルギーとして直接取り出される。
FIG. 1 schematically shows the configuration of a methanol fuel cell main body, a fuel circulation system, and an air supply system. The methanol fuel cell main body has a fuel chamber 1,
Fuel electrode 2 (becomes a negative electrode), electrolyte 3, air electrode 4
(which serves as a positive electrode) and air chamber 5 as one unit, and when producing a large output, these unit cells are connected in series or in parallel. The fuel chamber 1 is filled with a mixture of methanol and sulfuric acid, and this methanol is activated by a catalyst such as platinum applied to the fuel electrode 2 to form H + , which is used to electrolyze sulfuric acid. It passes through the liquid 3 and reaches the air electrode 4, where it reacts with oxygen in the air chamber 5 to form H 2 O. A part of the energy released during this series of electrochemical reactions is directly extracted as electrical energy.

燃料循環系は、燃料タンク6から燃料電池本体
に燃料を供給する燃料ポンプ7、メタノールと硫
酸の混合物を加熱する熱交換器8、未反応メタノ
ールと硫酸の混合物を冷却する熱交換器9、未反
応メタノールと硫酸の混合物を燃料供給側へもど
す燃料回収ポンプ10および調節弁11とから主
として構成されている。
The fuel circulation system includes a fuel pump 7 that supplies fuel from the fuel tank 6 to the fuel cell main body, a heat exchanger 8 that heats the mixture of methanol and sulfuric acid, a heat exchanger 9 that cools the mixture of unreacted methanol and sulfuric acid, and an unreacted mixture of methanol and sulfuric acid. It mainly consists of a fuel recovery pump 10 and a control valve 11 that return a mixture of reacted methanol and sulfuric acid to the fuel supply side.

空気供給系は、送風機12、空気配管13およ
び調節弁14からなつている。
The air supply system consists of a blower 12, an air pipe 13, and a control valve 14.

このような燃料電池システムにおいて、燃料電
池本体は自己の発熱によつて温度が上昇するが、
送風機12の風量を調整することによつて、一定
の温度に保たれる。また、燃料室1内の圧力は、
燃料ポンプ7による加圧と調節弁11による放圧
を調整することにより規定値に設定される。燃料
室1内の温度は、メタノールの沸点(65℃)以上
に保たれるが、圧力を上げることによつてメタノ
ールと硫酸の混合物は、液状に保たれ、液状の
まゝ熱交換器9、燃料回収ポンプ10、熱交換器
8の系路を循環する。熱交換器8において、燃料
電池の排熱を利用してメタノールと硫酸の混合物
が加熱される。熱交換器9において、冷却水配管
15より冷却水が供給されて器内はメタノールの
沸点以下に維持される。これによつて炭酸ガス等
のガス状生成物とメタノールおよび硫酸の液状混
合物とは気液分離され、分離されたガス状生成物
は調節弁11を介して大気中に放出される。なお
調節弁14は送風機12とともに空気室5内の圧
力を調節して燃料室1内の圧力とほぼ等しくする
ことによつて、電極に加わる圧力を軽減させるよ
うになつている。
In such a fuel cell system, the temperature of the fuel cell body rises due to its own heat generation.
By adjusting the air volume of the blower 12, a constant temperature can be maintained. Moreover, the pressure inside the fuel chamber 1 is
The pressure is set to a specified value by adjusting the pressurization by the fuel pump 7 and the pressure release by the control valve 11. The temperature inside the fuel chamber 1 is maintained above the boiling point of methanol (65°C), but by increasing the pressure, the mixture of methanol and sulfuric acid is kept in a liquid state, and the mixture is transferred to the heat exchanger 9, It circulates through the fuel recovery pump 10 and heat exchanger 8 system. In the heat exchanger 8, the mixture of methanol and sulfuric acid is heated using exhaust heat from the fuel cell. In the heat exchanger 9, cooling water is supplied from the cooling water pipe 15 to maintain the inside of the heat exchanger 9 at a temperature below the boiling point of methanol. As a result, a gaseous product such as carbon dioxide gas and a liquid mixture of methanol and sulfuric acid are separated into gas and liquid, and the separated gaseous product is discharged into the atmosphere via the control valve 11. The control valve 14 works together with the blower 12 to adjust the pressure in the air chamber 5 to be approximately equal to the pressure in the fuel chamber 1, thereby reducing the pressure applied to the electrodes.

次に第1図に示す装置において、燃料電池本体
の動作温度及び圧力を変えて発生するセル電圧及
び電流を測定した実験結果を第2図に示す。この
実験に用いた燃料極2及び空気極4は、タンタル
製焼結板に白金黒、アセチレンブラツク及びポリ
テトラフルオロエチレン粘結体を混合塗布したも
のであり、10cm×10cmの広さを有する。電解液3
は、フエノール布のスペーサにより1mmの厚さに
保たれている。空気室5には毎分20の空気を供
給し、燃料室1にはメタノール1モルと硫酸3モ
ルの比率の混合液を毎分5供給した。さらに冷
却水配管15内には水を導入し、熱交換器9内の
メタノールと硫酸の混合液の温度を50℃まで冷却
している。
Next, FIG. 2 shows the experimental results of measuring the cell voltage and current generated by changing the operating temperature and pressure of the fuel cell main body in the apparatus shown in FIG. 1. The fuel electrode 2 and air electrode 4 used in this experiment were made of tantalum sintered plates coated with a mixture of platinum black, acetylene black, and polytetrafluoroethylene caking, and had a size of 10 cm x 10 cm. Electrolyte 3
is maintained at a thickness of 1 mm by phenolic cloth spacers. Air was supplied to the air chamber 5 at a rate of 20 per minute, and a mixed solution of 1 mole of methanol and 3 moles of sulfuric acid was supplied to the fuel chamber 1 at a rate of 5 times per minute. Furthermore, water is introduced into the cooling water pipe 15 to cool the temperature of the methanol and sulfuric acid mixture in the heat exchanger 9 to 50°C.

このような実験の結果、第2図に示すように燃
料電池本体内の圧力を1気圧に維持したまま動作
温度を20℃、50℃の順に上げていくと、高いセル
電圧が発生し電池性能が改善されるが、80℃の動
作温度ではセル電圧が急激に低下した。この現象
は、燃料室1及び電解液3内にメタノールの蒸気
がたまり、反応が阻害されるためと堆測される。
そこで燃料電池本体内の圧力を高め、メタノール
を液状に維持しながら動作温度を上げたところ、
70℃(2気圧)、100℃(5気圧)の条件下で高い
セル電圧を示した。
As a result of these experiments, as shown in Figure 2, when the operating temperature is increased in the order of 20℃ and 50℃ while maintaining the pressure inside the fuel cell body at 1 atm, a high cell voltage is generated and the battery performance is reduced. However, at an operating temperature of 80°C, the cell voltage dropped rapidly. This phenomenon is believed to be due to the accumulation of methanol vapor in the fuel chamber 1 and the electrolytic solution 3, inhibiting the reaction.
Therefore, we increased the pressure inside the fuel cell and raised the operating temperature while maintaining the methanol in a liquid state.
High cell voltage was exhibited under conditions of 70°C (2 atm) and 100°C (5 atm).

またメタノールを燃料とする5セルの積層燃料
電池において、1ボルト(V)における発生電流
を燃料電池の動作温度を変えながらメタノールを
液状に維持した状態で測定した実験を行なつた。
この実験では、メタノールは電解室である硫酸と
混合してあり、その濃度は1モルである。この実
験結果を第3図に示す。第3図によれば、発生電
流はメタノールの沸点(64.1℃)付近から高い温
度になると大きくなることを示している。
Furthermore, in a five-cell stacked fuel cell using methanol as fuel, an experiment was conducted in which the generated current at 1 volt (V) was measured while the operating temperature of the fuel cell was varied while methanol was maintained in a liquid state.
In this experiment, methanol is mixed with sulfuric acid, which is an electrolytic chamber, and its concentration is 1 molar. The results of this experiment are shown in FIG. According to FIG. 3, the generated current increases as the temperature increases from around the boiling point of methanol (64.1°C).

以上のように第1図に示す装置において、燃料
電池の動作温度をメタノールの沸点以上とし、燃
料電池内におけるメタノールを液状に維持するこ
とによつて反応が速く単位電極面積当りの電流密
度を大きくすることができ、装置の小型化を図る
ことができる。また燃料電池内で発生するガス状
反応物(炭酸ガス)とメタノール及び硫酸の液状
混合物とは熱交換器9において、気液分離操作に
より効率的に分離され、メタノールが回収され
る。
As described above, in the device shown in Figure 1, the operating temperature of the fuel cell is set to be higher than the boiling point of methanol, and by maintaining methanol in a liquid state within the fuel cell, the reaction is fast and the current density per unit electrode area is increased. This makes it possible to downsize the device. Further, the gaseous reactant (carbon dioxide gas) generated within the fuel cell and the liquid mixture of methanol and sulfuric acid are efficiently separated by a gas-liquid separation operation in the heat exchanger 9, and methanol is recovered.

第4図は本発明の他の実施例を示すもので、第
1図では空気系の排熱を利用して燃料の予熱を行
つているのに対し、本図は燃料系の排熱を利用し
て燃料の予熱を行つている点が異なつている。す
なわち、燃料のメタノールは、常温、常圧のメタ
ノールタンク6から燃料ポンプ7を介し運転圧力
4気圧の燃料循環系に送り込まれる。液状メタノ
ールは熱交換器8内で燃料系の排熱によつて加
熱、気化され、110℃まで昇温し、気体の状態で
燃料室1に送り込まれる。燃料室1内において、
メタノールは加圧状態のもとに液状となり、発電
に寄与するとともに一部の気体状メタノールも反
応し発電に寄与する。未反応メタノールと炭酸ガ
ス等の反応生成物は、反応熱によつてさらに加熱
され、190℃まで昇温して燃料電池本体外に送り
出される。このガスは熱交換器8を通して熱交換
されて120℃まで冷却され、次いで熱交換器9に
おいてメタノールの沸点以下に冷却され液化され
る。これによつて液化しない炭酸ガス等の反応生
成物は調整弁11を経て系外に放出され、液化し
たメタノールはポンプ10を介して再び熱料電池
本体に供給される。
Figure 4 shows another embodiment of the present invention. In Figure 1, the exhaust heat of the air system is used to preheat the fuel, whereas in this figure, the exhaust heat of the fuel system is used to preheat the fuel. The difference is that the fuel is preheated. That is, methanol as fuel is sent from a methanol tank 6 at normal temperature and normal pressure via a fuel pump 7 to a fuel circulation system at an operating pressure of 4 atmospheres. The liquid methanol is heated and vaporized in the heat exchanger 8 by the exhaust heat of the fuel system, the temperature is raised to 110° C., and the liquid methanol is sent into the fuel chamber 1 in a gaseous state. Inside the fuel chamber 1,
Methanol becomes liquid under pressure and contributes to power generation, and some gaseous methanol also reacts and contributes to power generation. Reaction products such as unreacted methanol and carbon dioxide gas are further heated by the heat of reaction, and the temperature is raised to 190° C., and then sent out of the fuel cell main body. This gas is heat exchanged through a heat exchanger 8 and cooled to 120°C, and then cooled to below the boiling point of methanol in a heat exchanger 9 and liquefied. As a result, reaction products such as carbon dioxide gas that are not liquefied are discharged out of the system via the regulating valve 11, and liquefied methanol is again supplied to the thermal cell main body via the pump 10.

本実施例において、電解液として濃縮リン酸を
用いられている。濃縮リン酸は沸点が高く、高温
まで液状を保つことができるためである。ただし
200℃を超えると、リン酸の縮合が超るため、燃
料電池の動作温度は190℃とされている。
In this example, concentrated phosphoric acid is used as the electrolyte. This is because concentrated phosphoric acid has a high boiling point and can remain liquid up to high temperatures. however
If the temperature exceeds 200°C, the condensation of phosphoric acid will exceed, so the operating temperature of fuel cells is set at 190°C.

次に第4図に示す装置において、燃料電池の電
極として、タンタル焼結板上に白金黒とアセチレ
ンブラツクとテフロン粘結剤との混合物を塗布し
た電極を用い、上述した条件中におけるリン酸電
解液燃料電池の性能を調べ、その結果を第5図の
Aに示す。比較のため、燃料電池の動作温度50
℃、燃料電池本体内の圧力1気圧における硫酸電
解液燃料電池の性能を第5図中にBとして示す。
第5図によれば、運転圧力4気圧の条件で高温度
(190℃)の燃料を液状に維持することができるた
め、高いセル電圧が発生していることを示してい
る。
Next, in the apparatus shown in Fig. 4, an electrode made of a tantalum sintered plate coated with a mixture of platinum black, acetylene black, and Teflon binder was used as the fuel cell electrode, and phosphoric acid electrolysis was carried out under the above conditions. The performance of the liquid fuel cell was investigated and the results are shown in Figure 5A. For comparison, the fuel cell operating temperature 50
The performance of the sulfuric acid electrolyte fuel cell at 1 atm pressure inside the fuel cell body is shown as B in FIG.
According to FIG. 5, high temperature (190° C.) fuel can be maintained in a liquid state under the condition of an operating pressure of 4 atmospheres, which indicates that a high cell voltage is generated.

なお第4図の実施例では燃料室内に気化したメ
タノールを供給するシステムを記載したが、第1
図の実施例同様メタノールと電解液の混合液を気
化させることなく液状で供給し、かつ液状の混合
液を燃料供給系に循環させるようにすることもで
きる。また第1図および第4図には図示されてい
ないが、燃料電池の燃料室1または空気室5に隣
接して水などの冷媒を通す冷媒室を設け、この冷
媒によつて燃料電池を冷却し所定の動作温度に保
持するとともに冷媒の排熱を燃料の予熱に利用す
ることもできる。
Although the embodiment shown in Fig. 4 describes a system for supplying vaporized methanol into the fuel chamber,
As in the embodiment shown in the figure, it is also possible to supply the mixture of methanol and electrolyte in liquid form without vaporizing it, and to circulate the liquid mixture through the fuel supply system. Although not shown in FIGS. 1 and 4, a refrigerant chamber is provided adjacent to the fuel chamber 1 or air chamber 5 of the fuel cell, through which a refrigerant such as water is passed, and the fuel cell is cooled by this refrigerant. It is also possible to maintain a predetermined operating temperature and use the exhaust heat of the refrigerant to preheat the fuel.

本発明において、液体燃料としてはメタノール
の他にヒドラジン、エタノール、ガソリンなどの
常温、常圧で液状の燃料すべてが含まれる。
In the present invention, liquid fuels include all fuels that are liquid at room temperature and pressure, such as hydrazine, ethanol, and gasoline, in addition to methanol.

以上、本発明によれば燃料電池の動作温度を高
めても液体燃料の発電に対する利用率が高く、未
反応の燃料と反応生成物との分離が容易であるか
ら、燃料電池に供給される燃料の濃度を高くして
高出力の発電と燃料電池の小型化を図ることがで
きる。
As described above, according to the present invention, even if the operating temperature of the fuel cell is increased, the utilization rate of liquid fuel for power generation is high, and unreacted fuel and reaction products can be easily separated. By increasing the concentration of fuel, high-output power generation and miniaturization of fuel cells can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の動作原理の一例を示す系統
図、第2図は燃料電池の電圧−電流特性を示す
図、第3図は燃料電池の動作温度と発生電流との
関係を示す図、第4図は本発明の動作原理の他の
例を示す系統図、第5図は燃料電池の電圧−電流
特性を示す図である。 1……燃料室、2……燃料極、3……電解液、
4……空気極、5……空気室、6……燃料タン
ク、8,9……熱交換器、12……送風機。
FIG. 1 is a system diagram showing an example of the operating principle of the present invention, FIG. 2 is a diagram showing the voltage-current characteristics of the fuel cell, and FIG. 3 is a diagram showing the relationship between the operating temperature of the fuel cell and the generated current. FIG. 4 is a system diagram showing another example of the operating principle of the present invention, and FIG. 5 is a diagram showing voltage-current characteristics of the fuel cell. 1... Fuel chamber, 2... Fuel electrode, 3... Electrolyte,
4...Air electrode, 5...Air chamber, 6...Fuel tank, 8, 9...Heat exchanger, 12...Blower.

Claims (1)

【特許請求の範囲】 1 電解質を介して相対向配置された酸化剤極と
燃料極とからなる単位電池を複数備えてなる液体
燃料電池本体と、前記酸化剤極へ酸化剤ガスを供
給する酸化剤ガス供給手段と、前記燃料極に液体
燃料を供給する液体燃料供給手段とを具備してな
る液体燃料電池発電装置において、 前記液体燃料が前記燃料極に供給される以前
で、当該液体燃料を予熱する予熱手段と、 前記液体燃料電池本体内の液体燃料を加圧し
て、液体燃料の沸点以上でも当該液体燃料を液状
に保つ加圧手段と、 前記燃料極から排出された使用済み液体燃料中
の未反応液体燃料と反応生成ガスとを分離する分
離手段と、 当該分離された未反応液体燃料を前記燃料極に
リサイクルする還流手段と、 を備えてなることを特徴とする液体燃料電池発電
装置。 2 特許請求の範囲第1項において、前記分離装
置は、気液分離装置であることを特徴とする液体
燃料電池発電装置。
[Scope of Claims] 1. A liquid fuel cell body comprising a plurality of unit cells each consisting of an oxidizer electrode and a fuel electrode arranged opposite to each other via an electrolyte, and an oxidizer for supplying an oxidizer gas to the oxidizer electrode. In a liquid fuel cell power generation device comprising an agent gas supply means and a liquid fuel supply means for supplying liquid fuel to the fuel electrode, the liquid fuel is supplied to the fuel electrode before the liquid fuel is supplied to the fuel electrode. a preheating means for preheating; a pressurizing means for pressurizing the liquid fuel in the liquid fuel cell body to keep the liquid fuel in a liquid state even above the boiling point of the liquid fuel; A liquid fuel cell power generation device comprising: separation means for separating unreacted liquid fuel from reaction product gas; and reflux means for recycling the separated unreacted liquid fuel to the fuel electrode. . 2. The liquid fuel cell power generation device according to claim 1, wherein the separation device is a gas-liquid separation device.
JP9273480A 1980-07-09 1980-07-09 Fuel cell system Granted JPS5719973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9273480A JPS5719973A (en) 1980-07-09 1980-07-09 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9273480A JPS5719973A (en) 1980-07-09 1980-07-09 Fuel cell system

Publications (2)

Publication Number Publication Date
JPS5719973A JPS5719973A (en) 1982-02-02
JPS6221228B2 true JPS6221228B2 (en) 1987-05-12

Family

ID=14062640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9273480A Granted JPS5719973A (en) 1980-07-09 1980-07-09 Fuel cell system

Country Status (1)

Country Link
JP (1) JPS5719973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185200A (en) * 1992-12-18 1994-07-05 Asanumagumi:Kk Cracking preventing method for concrete

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773162A (en) * 1993-10-12 1998-06-30 California Institute Of Technology Direct methanol feed fuel cell and system
DE19701560C2 (en) * 1997-01-17 1998-12-24 Dbb Fuel Cell Engines Gmbh Fuel cell system
DE19807878C2 (en) * 1998-02-25 2001-10-31 Xcellsis Gmbh Fuel cell system
KR19990078785A (en) * 1999-08-06 1999-11-05 김옥수 Method for manufacturing a wrapping material for protection of growing fruits
JP3742053B2 (en) 2002-11-22 2006-02-01 株式会社東芝 Fuel cell system
JP2005267976A (en) * 2004-03-17 2005-09-29 T Rad Co Ltd Heat exchanger
KR100612912B1 (en) 2004-12-15 2006-08-14 삼성에스디아이 주식회사 Fuel delivery apparatus of direct feed methanol fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185200A (en) * 1992-12-18 1994-07-05 Asanumagumi:Kk Cracking preventing method for concrete

Also Published As

Publication number Publication date
JPS5719973A (en) 1982-02-02

Similar Documents

Publication Publication Date Title
US3615839A (en) Fuel cell system with recycle stream
US4080487A (en) Process for cooling molten carbonate fuel cell stacks and apparatus therefor
CN101154741B (en) Fuel processing method and system comprising a methanation reactor and a solid oxide fuel cell
US5187024A (en) Fuel cell generating system
JP3920024B2 (en) Low temperature start of PEM fuel cell
US6410175B1 (en) Fuel cell system with improved starting capability
CN100479250C (en) Fuel processing method and system
KR101992798B1 (en) Energy storage using REP with engine
JP3510285B2 (en) Solid polymer electrolyte fuel cell system
CN111302306A (en) Miniature methanol reforming hydrogen production reactor for high-temperature fuel cell
JPS6221228B2 (en)
WO2002015295A2 (en) A segregated exhaust sofc generator with high fuel utilization capability
JP4419329B2 (en) Solid polymer electrolyte fuel cell power generator
US8071248B2 (en) Structure and method for optimizing system efficiency when operating an SOFC system with alcohol fuels
KR20200086697A (en) Hydrogen generation using a fuel cell system with REP
CN112174089B (en) Organic liquid hydrogen supply system for closed environment
JP2718239B2 (en) Solid polymer electrolyte fuel cell power generator
US20020022164A1 (en) Fuel cell having an internal reformation unit and a cell with a cation-conducting electrolyte membrane
EP0521185B1 (en) Power generation method using molten carbonate fuel cells
JP3555441B2 (en) Operating method of reformer for fuel cell power generator
JPH05275101A (en) Solid polyelectrolytic type fuel cell system
JPH0221103B2 (en)
JP2751526B2 (en) Molten carbonate fuel cell power generator
KR20180133267A (en) Fuel cell system for a ship
JPH0729591A (en) Solid high polymer fuel cell power generating system