JPS62212225A - Production of zirconia-containing fine powder - Google Patents

Production of zirconia-containing fine powder

Info

Publication number
JPS62212225A
JPS62212225A JP5146886A JP5146886A JPS62212225A JP S62212225 A JPS62212225 A JP S62212225A JP 5146886 A JP5146886 A JP 5146886A JP 5146886 A JP5146886 A JP 5146886A JP S62212225 A JPS62212225 A JP S62212225A
Authority
JP
Japan
Prior art keywords
precipitate
hydroxide
salt
water
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5146886A
Other languages
Japanese (ja)
Other versions
JPH0233652B2 (en
Inventor
Takehiko Suzuki
武彦 鈴木
Shigemi Osaka
大坂 重美
Hideki Imai
秀樹 今井
Kiichi Aikawa
規一 相川
Tsukasa Takahashi
典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP5146886A priority Critical patent/JPH0233652B2/en
Publication of JPS62212225A publication Critical patent/JPS62212225A/en
Publication of JPH0233652B2 publication Critical patent/JPH0233652B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce zirconia-containing fine powder having improved dispersibility, by adding a basic substance to an aqueous solution of a Zr salt or it and a specific metallic salt to give a hydroxide, dehydrating, drying and calcining. CONSTITUTION:A basic substance such as NaOH, NH3, etc., is added to an aqueous solution containing a Zr salt (e.g. ZrCl4) or it and at least one salt of metal selected from Y, Ca and Mg to give hydroxide precipitate, which is sufficiently washed with water, filtered and separated from the mother liquor. Then, the precipitate is dispersed into an organic solvent such as benzene, propanol, etc., distilled under heating, dewatered, dehydrated, put in an autoclave, pressurized under heating until pressure reaches >=0.5kg/cm<2>G, pressure in the autoclave is rapidly reduced, the precipitate is dried and calcined at 300-1,200 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分散性にすぐれたジルコニア系微粉末の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing fine zirconia powder with excellent dispersibility.

ジルコニアは単斜晶系、正方晶系および立方晶系の3種
類の結晶構造があシ、耐蝕性9強靭性。
Zirconia has three types of crystal structures: monoclinic, tetragonal, and cubic, and has a corrosion resistance of 9 toughness.

酸素イオン伝導性等、他の材料にない特性を有している
ことから酸素センサー、電子部品、各種構造材、あるい
は生体材料等いろいろな用途に応用され、素材として今
後増々重要視されることが予想される。そして本発明が
提供する分散性にすぐれた微粉末はさらに以下のごとき
用途が見出されるものである。すなわちセラミックスあ
るいは金属に分散させて強化セラミックスあるいは分散
強化合金用に使用され、さらに又、ガラス、プラスチッ
ク成形品、シート、フィルム等の基材中に分散させ、あ
るいはコーテイング膜を上記基材に製膜し、基材に耐熱
性2反射防止、導電性、紫外線吸収、硬度の強化、耐薬
品性、耐久性等の機能を付与し、あるいは向上させるた
めに使用される。
Because it has properties not found in other materials, such as oxygen ion conductivity, it is used in a variety of applications such as oxygen sensors, electronic components, various structural materials, and biological materials, and is expected to become increasingly important as a material in the future. is expected. Further, the fine powder with excellent dispersibility provided by the present invention has the following uses. That is, it is used for reinforced ceramics or dispersion-strengthened alloys by being dispersed in ceramics or metals, and it is also dispersed in base materials such as glass, plastic molded products, sheets, films, etc., or coating films are formed on the above base materials. It is used to impart or improve functions such as heat resistance, antireflection, conductivity, ultraviolet absorption, enhanced hardness, chemical resistance, and durability to the base material.

特に透明基材に適用した場合に基材の透明性をそこなう
ことなく上記の機能の付与、向上がはかれる。
In particular, when applied to a transparent substrate, the above functions can be imparted and improved without impairing the transparency of the substrate.

〔従来の技術〕[Conventional technology]

ジルコニア微粉末の製造方法として、ジルコニウム塩ま
たはジルコニウム塩と安定化剤であるイツトリウム、カ
ルシウム、マグネシウムの少なくとも一種の金属の塩と
を含む水溶液とアルカリと全混合することにより水酸化
物の沈澱物を得、該沈澱物を水洗、乾燥、焼成すること
によりジルコニア含有微粉末を製造する方法が知られて
いる。
As a method for producing zirconia fine powder, a hydroxide precipitate is removed by completely mixing an aqueous solution containing a zirconium salt or a salt of at least one metal of yttrium, calcium, or magnesium as a stabilizer with an alkali. A method is known in which a fine powder containing zirconia is produced by washing the precipitate with water, drying, and calcining it.

しかし、この方法で得られる粉末は粒子が凝集した分散
性の悪いものしか得られない。
However, the powder obtained by this method is only one in which the particles are aggregated and have poor dispersibility.

特公昭59−39367号公報では分散性を改善する目
的で、水洗したジルコニウムを含む水酸化物の沈澱粒子
を母液から分離後直ちに乾燥及び焼成するのではなく、
沈澱粒子を有機溶媒中に分散させた状態で加熱蒸留を行
い水を除去するとともに一次粒子を有機溶媒中に分散さ
せ引続き減圧−下及び大気圧下で乾燥し焼成する方法が
開示されている。
In Japanese Patent Publication No. 59-39367, for the purpose of improving dispersibility, the precipitated particles of hydroxide containing zirconium that have been washed with water are not dried and calcined immediately after being separated from the mother liquor.
A method is disclosed in which precipitated particles are dispersed in an organic solvent and subjected to heating distillation to remove water, and the primary particles are dispersed in the organic solvent, followed by drying and firing under reduced pressure and atmospheric pressure.

記載の方法は分散性に関し一定の改善効果は認められる
もののいまだ不充分の域を出ていない。特に粒子径が微
小で凝集しやすい場合にはさらに改善が必要である。
Although the described method has shown some improvement in dispersibility, it is still insufficient. Further improvement is required especially when the particle size is small and tends to aggregate.

ジルコニウムを含む水酸化物の沈澱粒子が乾燥工程で凝
集するのは沈澱物中の水分のためである。
The reason why precipitated particles of hydroxide containing zirconium aggregate during the drying process is due to the moisture in the precipitate.

それ故乾燥工程に先立ち水酸化物の沈澱物中の水分除去
の目的で水酸化物全有機溶媒で洗浄したり、あるいは有
機溶媒中に分散し共沸蒸留により水分を除去する方法等
が適用される。しかし、これらの方法だけでは水酸化物
の沈澱物中の水分を完全に除去することができず、乾燥
工程で残存水分の働らきて沈澱粒子が凝集し、水酸化物
の沈澱物は収縮した乾燥体となる。そして引き続く焼成
工程により凝集・収縮がさらに進行し分散性の不良な粉
体として見られることになる。
Therefore, in order to remove water from the hydroxide precipitate prior to the drying process, methods such as washing the hydroxide with an all-organic solvent, or dispersing the hydroxide in an organic solvent and removing water by azeotropic distillation are applied. Ru. However, these methods alone were not able to completely remove the moisture in the hydroxide precipitate, and during the drying process, the residual moisture acted to cause the precipitate particles to coagulate, causing the hydroxide precipitate to shrink. It becomes a dry body. In the subsequent firing process, agglomeration and shrinkage further progress, resulting in a powder with poor dispersibility.

本発明者等は有機溶媒を使用して水分を除去した水酸化
物の沈澱物の乾燥を加圧下で行うことにより、分散性が
大巾に改善されたジルコニア系微粉体が得られることを
見いだし本発明にいたった。
The present inventors have discovered that by drying under pressure a hydroxide precipitate from which water has been removed using an organic solvent, a zirconia-based fine powder with greatly improved dispersibility can be obtained. This led to the present invention.

〔手段〕〔means〕

すなわち、本発明は以下の如く特定される。 That is, the present invention is specified as follows.

ジルコニウム塩またはジルコニウム塩とイツトリウム、
カルシウム、マグネシウムの少なくとも一種の金属の塩
とを含む水溶液と塩基性物質とを混合することにより水
酸化物の沈澱物を得、該沈澱物を水洗、濾過後有機溶媒
中に分散せしめて加熱蒸留を行い、脱水し次いで加圧下
で乾燥した後焼成することを特徴とするジルコニア含有
微粉末の製造方法。
Zirconium salt or zirconium salt and yttrium,
A hydroxide precipitate is obtained by mixing a basic substance with an aqueous solution containing a salt of at least one metal such as calcium or magnesium, and the precipitate is washed with water, filtered, and then dispersed in an organic solvent, followed by heating distillation. A method for producing a zirconia-containing fine powder, which comprises dehydrating, drying under pressure, and then firing.

本発明を以下さらに具体的に説明する。The present invention will be explained in more detail below.

塩化ジルコニウム、硝酸ジルコニウム、硫酸ジルコニウ
ム、有機酸ジルコニウム塩等の水可溶性ジルコニウム塩
類の水溶液、あるいはこれにイツトリウム、カルシウム
、マグネシウムの水可溶性塩類又は水可溶性ジルコニウ
ム塩類の水溶液に可溶な化合物の一種以上を添加した水
溶液を調製する。
An aqueous solution of water-soluble zirconium salts such as zirconium chloride, zirconium nitrate, zirconium sulfate, and organic acid zirconium salts, or one or more compounds soluble in the aqueous solution of water-soluble salts of yttrium, calcium, and magnesium or water-soluble zirconium salts. Prepare an aqueous solution.

次いで、該水溶液と水酸化ナトリウム、炭酸ナトリウム
、アンモニアなどの塩基性物質、とくに好ましくはアン
モニア水とを混合し水酸化物の沈澱物を得る。該沈澱物
を充分水洗し、濾過により母液から分離する。
Next, the aqueous solution is mixed with a basic substance such as sodium hydroxide, sodium carbonate, or ammonia, particularly preferably aqueous ammonia, to obtain a hydroxide precipitate. The precipitate is thoroughly washed with water and separated from the mother liquor by filtration.

かくして得られる沈澱物を有機溶媒中に分散し加熱蒸留
により水分除去を行う。用いる有機溶媒トシてはベンゼ
ン、トルエン、キシレン、フェノールなど芳香族系化合
物、グロパノール、ブタノール、(ンタノール、オクタ
ツール、イソアミルアルコール、ヘキサノール、シクロ
ヘキサノールなどの脂肪族系アルコールさらには安息香
酸メチルなどのエステルが使用可能であるが、とくに炭
素数3〜10のプロノJ?ノール、ブタノール、ペンタ
ノール、オクタツールなど親水性のアルコール類が好ま
しく、さらに分散性の良好な微粉末を得るには、その使
用量は沈澱物中の全水分量が使用するアルコールの水の
溶解度内であることが望ましい。蒸留による脱水操作を
終えた沈澱物をついでオートクレーブに入れ加熱・昇圧
する。設定圧力に到達後、圧力が一定となるよう有機溶
媒を排出しつつ乾燥を行い、有機溶媒の排出が認められ
なくなってからオートクレーブのパルプを開きオートク
レーブ内の圧を急激に減少させ、オートクレーブ内の沈
澱物層中に残留する有機溶媒および水分を一気に排出し
乾燥する。有機溶媒および水分の排出が不完全な場合は
、さらに、オートクレ−ブ内に空気や窒素ガスを導入し
加圧後、オートクレーブ内の圧を急激に減少させる操作
を数回繰り返すことによりオートクレーブ内の沈澱物を
乾燥させる。
The precipitate thus obtained is dispersed in an organic solvent and water is removed by heated distillation. The organic solvents to be used include aromatic compounds such as benzene, toluene, xylene, and phenol, aliphatic alcohols such as glopanol, butanol, (butanol, octatool, isoamyl alcohol, hexanol, and cyclohexanol), and esters such as methyl benzoate. can be used, but hydrophilic alcohols having 3 to 10 carbon atoms, such as pronoJ?nol, butanol, pentanol, and octatool, are particularly preferred. It is desirable that the total amount of water in the precipitate is within the water solubility of the alcohol used.The precipitate that has been dehydrated by distillation is then placed in an autoclave and heated and pressurized.After reaching the set pressure, the pressure is increased. Drying is carried out while discharging the organic solvent so that the organic solvent remains constant, and when the organic solvent is no longer discharged, the pulp of the autoclave is opened and the pressure inside the autoclave is rapidly reduced, so that the organic solvent remains in the precipitate layer inside the autoclave. Drain the organic solvent and water all at once and dry it. If the organic solvent and water are not completely drained, air or nitrogen gas is further introduced into the autoclave to pressurize it, and then the pressure inside the autoclave is rapidly reduced. By repeating this operation several times, the precipitate in the autoclave is dried.

かくして得られる乾燥した沈澱物をオートクレーブよシ
取シ出し、焼成炉中で300〜1200℃の温度で焼成
することにより分散性の良好なジルコニア微粉末を得る
The thus obtained dried precipitate is taken out of the autoclave and calcined in a calcining furnace at a temperature of 300 to 1200°C to obtain fine zirconia powder with good dispersibility.

〔作用〕[Effect]

有機溶媒で水分全除去した沈澱物を加圧下で乾燥すると
、沈澱物を収縮することなしに乾燥させることができ、
従って次の焼成工程においても一次粒子の凝集を防止す
ることができ分散性の良好な微粉体を得ることができる
。加圧の条件は、0.5気圧(r−ジ圧)以上あれば本
発明の効果は認められるが好ましくは3気圧からその臨
界圧力まで適用される。
By drying the precipitate from which all water has been removed using an organic solvent under pressure, the precipitate can be dried without shrinking.
Therefore, agglomeration of the primary particles can be prevented even in the next firing step, and a fine powder with good dispersibility can be obtained. The effect of the present invention is recognized as long as the pressurization condition is 0.5 atm (r-dipressure) or more, but it is preferably applied from 3 atm to its critical pressure.

又加圧下での乾燥は減圧下や常圧下にくらべ比較的短時
間にかつ均一に乾燥することができ乾燥工程の合理化に
有利な方法ともなる。
Furthermore, drying under pressure allows for uniform drying in a comparatively shorter time than under reduced pressure or normal pressure, and is therefore an advantageous method for streamlining the drying process.

なお上記した以外にジルコニウム塩を含む水溶液と塩基
性物質とを混合して水酸化物の沈澱物を得る方法として
は、ジルコニウム塩全含む水溶液に直接塩基性物質を添
加してもよいし、あるいは塩基性物質の水溶液中にジル
コニウム塩を含む水溶液を加えてもよいが、ジルコニア
中に安定化剤である酸化イツトリウム、酸化カルシウム
、酸化マグネシウム等を均一に分散させ、かつ粒子径が
均一な微粉末を得るには、ジルコニウム塩を含む水溶液
および塩基性物質の水溶液とを各々定量ポンプ等により
攪拌製反応器に、反応器内の−が一定となるよう定量的
に送入しつつ反応を行い、反応器内の液量が一定となる
ように反応液を流出させながら反応を連続的に行う流通
式反応方式が望ましい。
In addition to the methods described above, as a method for obtaining a hydroxide precipitate by mixing an aqueous solution containing a zirconium salt and a basic substance, the basic substance may be added directly to the aqueous solution containing all the zirconium salts, or Although an aqueous solution containing a zirconium salt may be added to an aqueous solution of a basic substance, it is necessary to uniformly disperse stabilizers such as yttrium oxide, calcium oxide, magnesium oxide, etc. in zirconia and use fine powder with a uniform particle size. In order to obtain zirconium salt, an aqueous solution containing a zirconium salt and an aqueous solution of a basic substance are each quantitatively fed into a stirring reactor using a metering pump or the like so that the - inside the reactor remains constant, and the reaction is carried out. A flow reaction system is desirable, in which the reaction is carried out continuously while the reaction liquid is flowing out so that the amount of liquid in the reactor remains constant.

実施例1 イツトリア(Y2O,)として3モル%?含有するよう
に塩化イツトリウムおよびオキシ塩化ジルコニウムの混
合水溶液を調製した。液濃度はジルコニア(ZrO2)
として0.15モル/!とした。オーバーフロー管およ
び攪拌器付の内容積2!の種型反応器に水を入れさらに
これにアンモニア水を加えてpH1s、sとした。これ
に上記混合水溶液を毎分1!の割合で、又同時にアンモ
ニア水(28重量%水溶液)II:、槽内の−が約8.
5となるように各々定量ポンプで加えた。水酸化物はオ
ーバーフロー管から流出させ別の槽に受けた。反応中は
反応液の容量を約2jに保ち、かつ反応液の−が8.5
±0.2となるようにアンモニア水の液量を微調整しな
がら中和共沈反応を連続的に行った。得られた水酸化物
音デカンテーションにより洗浄し、母液中の塩素イオン
濃度が2 PPM以下となるまで洗浄した後濾過により
水酸化物を母液よシ分離した。かくして得られた水酸化
物5 Kg ’k n−ブタノール40!中に分散し、
溶液温度が105℃になるまで常圧蒸留を行うことによ
シ脱水を行い、次いでこの脱水された水酸化物を含むス
ラ!J−t−5!のオートクレーブに入れた。ついでオ
ートクレーブを加熱することにより昇圧しオートクレー
ブ内の圧力が5に9/c1rI2となるようにコントロ
ールパルプを作動させなからn−ブタノールおよび水分
を排出させた。約30分間でn−ブタノールおよび水分
の排出が認められなくなったのでコントロールパルプを
全開とし、残留するn−ブタノールを一気に排出し水酸
化物の乾燥を行った。冷却後、乾燥物をオートクレーブ
より取り出し、さらに焼成炉中で700℃1時間焼成す
ることにより Y2O33モルチ含有の分散性の良好な
ジルコニア微粉末503?が得られた。見られた微粉末
は比表面積が77m”/?であシ、その平均粒子径は0
.013μmであった。
Example 1 3 mol% as ittria (Y2O,)? A mixed aqueous solution of yttrium chloride and zirconium oxychloride was prepared so as to contain yttrium chloride and zirconium oxychloride. The liquid concentration is zirconia (ZrO2)
As 0.15 mol/! And so. Internal volume 2 with overflow tube and stirrer! Water was placed in a seed reactor and aqueous ammonia was added thereto to adjust the pH to 1s.s. Add the above mixed aqueous solution to this at 1 minute per minute! At the same time, aqueous ammonia (28% by weight aqueous solution) II: - in the tank is about 8.
5, respectively, using a metering pump. The hydroxide was discharged through an overflow pipe and received in a separate tank. During the reaction, the volume of the reaction solution was kept at about 2J, and the - of the reaction solution was kept at about 8.5.
The neutralization coprecipitation reaction was carried out continuously while finely adjusting the amount of ammonia water so that it was ±0.2. The obtained hydroxide was washed by sonic decantation until the chlorine ion concentration in the mother liquor became 2 PPM or less, and then the hydroxide was separated from the mother liquor by filtration. The hydroxide thus obtained 5 Kg 'k n-butanol 40! dispersed in
Dehydration is carried out by performing atmospheric distillation until the solution temperature reaches 105°C, and then the sludge containing this dehydrated hydroxide is obtained. J-t-5! was placed in an autoclave. Next, the pressure in the autoclave was increased by heating, and n-butanol and water were discharged while the control pulp was operated so that the pressure inside the autoclave became 5 to 9/c1rI2. After about 30 minutes, no discharge of n-butanol or water was observed, so the control pulp was fully opened, the remaining n-butanol was discharged all at once, and the hydroxide was dried. After cooling, the dried product was taken out of the autoclave and further fired at 700°C for 1 hour in a firing furnace to obtain fine zirconia powder 503? containing Y2O33 mole and having good dispersibility. was gotten. The fine powder observed has a specific surface area of 77 m''/? and an average particle size of 0.
.. It was 0.013 μm.

この微粉末を用いてラバープレス法によシ500に?/
−の圧力で直径10fiφ長さ12簡の円柱体を成形し
この細孔径分布をポロシメーターにより測定した。その
結果−次粒子に起因する平均0.015μmの細孔のみ
からなフたち、凝集粒子に起因する細孔は認められず分
散性が良好な微粉末であった。
Using this fine powder to make 500 yen using the rubber press method? /
A cylindrical body with a diameter of 10 fiφ and a length of 12 pieces was molded at a pressure of -, and the pore size distribution was measured using a porosimeter. As a result, only pores with an average size of 0.015 μm caused by secondary particles were found, and no pores caused by agglomerated particles were observed, resulting in a fine powder with good dispersibility.

このポロシメーターの結果を図1に示す。The results of this porosimeter are shown in FIG.

比較例1 実施例1におけると同様にして調製した水洗後の水酸化
物5に9e使い実施例1と同様にn−ブタノール中で常
圧蒸留を行うことにより脱水を行った。次いで脱水され
た水酸化物を含むスラリーヲ減圧下70℃で8時間乾燥
した。得られた乾燥物を焼成炉中で700℃1時間焼成
することによりY2O3含有のジルコニア微粉末507
 %’i得た。得られた微粉末は比表面積が60 m2
/9−であった。
Comparative Example 1 Hydroxide 5 prepared in the same manner as in Example 1 and washed with water was dehydrated by distillation at atmospheric pressure in n-butanol in the same manner as in Example 1 using 9e. The slurry containing the dehydrated hydroxide was then dried at 70° C. for 8 hours under reduced pressure. By firing the obtained dried product in a firing furnace at 700°C for 1 hour, Y2O3-containing zirconia fine powder 507
%'i got. The obtained fine powder has a specific surface area of 60 m2
/9-.

この微粉末を用いてラバープレス法にヨシ1.000 
Kg/crIr2の圧力で、直径10震φ、長さ12■
の円柱体を成形しこの細孔径分布をポロシメーターによ
り測定した。その結果、−次粒子に起因する平均0.0
23μmの細孔のみならず凝集粒子に起因する平均0.
 ’055μmの細孔も認められこの微粉末は分散性が
不充分なものであった。
Using this fine powder, the rubber press method
At a pressure of Kg/crIr2, the diameter is 10 mm and the length is 12 mm.
A cylindrical body was formed and the pore size distribution was measured using a porosimeter. As a result, an average of 0.0
An average of 0.5 mm due to the 23 μm pores as well as the agglomerated particles.
Pores of 0.055 μm were also observed, indicating that the fine powder had insufficient dispersibility.

このポロシメーターの結果を図2に示す。The results of this porosimeter are shown in FIG.

実施例2 純水3!にオキシ塩化ジルコニウム290P、!:塩化
カルシウム(CaCt2’6H20) 6.09 %と
を溶解させた水溶液に−が10となるまでアンモニア水
を攪拌下添加し水酸化物の沈澱物を得、デカンテーショ
ンにより水洗後、濾過にょシ水酸化物を母液よシ分離し
た。得られた水酸化物を1−ペンタノール中に分散させ
、溶液温度が110℃になるまで常圧蒸留を行うことに
よシ脱水を行い、次いでこの脱水された水酸化物全含む
スラリーヲオートクレープに入れた。オートクレーブを
加熱することにより昇圧し、オートクレーブ内の圧力が
20 K9/cm2となるようにコントロールパルプ’
e作動させながら1−にンタノールおよび水分を排出さ
せた。約15分間で1−ペンタノールおよび水分の排出
は認められなくなシ、次いでコントロールパルプを全開
とし残留する1−−2ンタノールおよび水分を一気に排
出した。この後さらに窒素ガスをオートクレーブ中に導
入しオートクレーブ内(D 圧? 10 K4/cm2
に昇圧し次いでコントロールバルブを全開としオートク
レーブ内を圧を急激に減少させる操作を2回縁シ返すこ
とによシ、オートクレーブ内に残留していた微少量の1
−ペンタノールおよび水分を完全に排出し乾燥を行った
。該乾燥物t900℃で3時間焼成することにょシCa
03モルチ含有の分散性良好なジルコニア微粉末金得た
。この微粉末の比表面積は30 m2/9−であった。
Example 2 Pure water 3! Zirconium oxychloride 290P,! : Calcium chloride (CaCt2'6H20) 6.09% was dissolved in an aqueous solution by adding ammonia water under stirring until -10 to obtain a hydroxide precipitate, washed with water by decantation, and filtered. The hydroxide was separated from the mother liquor. The obtained hydroxide was dispersed in 1-pentanol and dehydrated by distillation under atmospheric pressure until the solution temperature reached 110°C, and then the slurry containing all of the dehydrated hydroxide was poured into an automatic slurry. I put it in a crepe. Increase the pressure by heating the autoclave, and control pulp' so that the pressure inside the autoclave becomes 20K9/cm2.
e While operating, ethanol and water were discharged from 1-. After about 15 minutes, no discharge of 1-pentanol and water was observed, and then the control pulp was fully opened to discharge the remaining 1--2 pentanol and water all at once. After this, nitrogen gas was further introduced into the autoclave and the inside of the autoclave (D pressure? 10 K4/cm2
By raising the pressure to 100%, then fully opening the control valve, and repeating the operation twice to rapidly reduce the pressure inside the autoclave, the trace amount of 1 remaining in the autoclave was removed.
- Pentanol and moisture were completely drained and drying was performed. The dried material was calcined at 900°C for 3 hours.
A fine zirconia powder containing 0.03 molti and having good dispersibility was obtained. The specific surface area of this fine powder was 30 m2/9-.

この微粉末を用いてラバープレス法により 1000に
9/cm”の圧力で、直径10鵡φ 、長さ12雪の円
柱体を成形し、この細孔径分布をポロシメーターによシ
測定した。その結果−次粒子に起因する平均0.035
μmの細孔のみからなシたち、凝集粒子に起因する細孔
は認められず分散性が良好な微粉末であった。
Using this fine powder, a cylindrical body with a diameter of 10 mm and a length of 12 was formed using a rubber press method at a pressure of 1000 to 9/cm'', and the pore size distribution was measured using a porosimeter.The results were as follows. - average 0.035 due to secondary particles
It was a fine powder with good dispersibility, with only μm pores and no pores due to aggregated particles.

【図面の簡単な説明】[Brief explanation of drawings]

図1は実施例1によシえられたジルコニア粉末の細孔分
布、図2は比較例1によりえられたジルコニア粉末の細
孔分布を示すグラフである。
FIG. 1 is a graph showing the pore distribution of the zirconia powder obtained in Example 1, and FIG. 2 is a graph showing the pore distribution of the zirconia powder obtained in Comparative Example 1.

Claims (1)

【特許請求の範囲】[Claims] (1)ジルコニウム塩またはジルコニウム塩とイットリ
ウム、カルシウム、マグネシウムの少なくとも一種の金
属の塩とを含む水溶液と塩基性物質とを混合することに
より水酸化物の沈澱物を得、該沈澱物を水洗ろ過後有機
溶媒中に分散せしめて加熱蒸留を行い脱水し、次いで加
圧下で乾燥した後焼成することを特徴とするジルコニア
含有微粉末の製造方法。
(1) A hydroxide precipitate is obtained by mixing a basic substance with an aqueous solution containing a zirconium salt or a zirconium salt and a salt of at least one metal of yttrium, calcium, and magnesium, and the precipitate is washed and filtered with water. A method for producing a zirconia-containing fine powder, which comprises dispersing it in an organic solvent, dehydrating it by heating and distilling it, drying it under pressure, and then firing it.
JP5146886A 1986-03-11 1986-03-11 JIRUKONIAGANJUBIFUNMATSUNOSEIZOHOHO Expired - Lifetime JPH0233652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5146886A JPH0233652B2 (en) 1986-03-11 1986-03-11 JIRUKONIAGANJUBIFUNMATSUNOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5146886A JPH0233652B2 (en) 1986-03-11 1986-03-11 JIRUKONIAGANJUBIFUNMATSUNOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS62212225A true JPS62212225A (en) 1987-09-18
JPH0233652B2 JPH0233652B2 (en) 1990-07-30

Family

ID=12887769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5146886A Expired - Lifetime JPH0233652B2 (en) 1986-03-11 1986-03-11 JIRUKONIAGANJUBIFUNMATSUNOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0233652B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500527A (en) * 1987-10-09 1991-02-07 アライド‐シグナル・インコーポレーテッド Continuous manufacturing method for fine-grained ceramics
US5057360A (en) * 1987-10-23 1991-10-15 Nippon Shokubai Kagaku Kogyo Co., Ltd. Ceramic green sheet
CN103818956A (en) * 2014-03-17 2014-05-28 山东理工大学 Preparation technology for synthesizing flake nano zirconia employing water quenching method
CN103818957A (en) * 2014-03-17 2014-05-28 山东理工大学 Method for preparing chip-like hollow zirconium oxide powder through water quenching process
CN103864145A (en) * 2014-03-26 2014-06-18 山东理工大学 Preparation technology of synthesizing rod-like zirconium oxide powder through water-quenching method
WO2014199761A1 (en) * 2013-06-12 2014-12-18 株式会社村田製作所 Barium titanate production method, and electronic component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500527A (en) * 1987-10-09 1991-02-07 アライド‐シグナル・インコーポレーテッド Continuous manufacturing method for fine-grained ceramics
US5057360A (en) * 1987-10-23 1991-10-15 Nippon Shokubai Kagaku Kogyo Co., Ltd. Ceramic green sheet
WO2014199761A1 (en) * 2013-06-12 2014-12-18 株式会社村田製作所 Barium titanate production method, and electronic component
CN105283419A (en) * 2013-06-12 2016-01-27 株式会社村田制作所 Barium titanate production method, and electronic component
JP5920535B2 (en) * 2013-06-12 2016-05-18 株式会社村田製作所 Method for producing barium titanate
JPWO2014199761A1 (en) * 2013-06-12 2017-02-23 株式会社村田製作所 Method for producing barium titanate
US9796631B2 (en) 2013-06-12 2017-10-24 Murata Manufacturing Co., Ltd. Method of manufacturing barium titanate and electronic component of barium titanate
CN103818956A (en) * 2014-03-17 2014-05-28 山东理工大学 Preparation technology for synthesizing flake nano zirconia employing water quenching method
CN103818957A (en) * 2014-03-17 2014-05-28 山东理工大学 Method for preparing chip-like hollow zirconium oxide powder through water quenching process
CN103864145A (en) * 2014-03-26 2014-06-18 山东理工大学 Preparation technology of synthesizing rod-like zirconium oxide powder through water-quenching method

Also Published As

Publication number Publication date
JPH0233652B2 (en) 1990-07-30

Similar Documents

Publication Publication Date Title
CN102267713B (en) Method for producing high-quality light calcium carbonate by ammonium salt circulation process
FI111246B (en) Improved dispersibility for titanium dioxide
US4927560A (en) Method for production of inorganic minute globular particles
US4605631A (en) Advanced preparation of ceramic powders
US2247624A (en) Aluminum hydrate
TW412505B (en) Process for producing spheroidally agglomerated basic cobalt (II) carbonate
US5004711A (en) Process of producing colloidal zirconia sols and powders using an ion exchange resin
CN104876638B (en) A kind of nanometer porous pottery pore creating material and its preparation method and application
US3442817A (en) Preparation of zirconia and hafnia sols
CN107597073B (en) Industrial preparation method of cation resin-based zirconium-loaded nano composite adsorbent
KR101433851B1 (en) Solvent for the Preparation of Aerogel and Method for Preparing Hydrophobic Aerogel by Using the Same
JP2005255450A (en) Zirconium oxide crystal particle and method for producing the same
JPS62212225A (en) Production of zirconia-containing fine powder
CN107537468A (en) A kind of preparation method for the bismuth tungstate based photocatalyst for loading graphite oxide
CN109052477A (en) A kind of sodium tungstate preparation process being used to prepare ammonium paratungstate
CN105152174A (en) Preparing method for high-purity white carbon black
JP3250243B2 (en) Method for producing zirconia-based sol
CN109319793B (en) Preparation method of high-specific-surface high-oil-absorption white carbon black
KR101573098B1 (en) Process for continuous production of fibrous basic magnesium sulfate particle
US20120067830A1 (en) Removing Organic Impurities from Bayer Process Liquors
JPS632809A (en) Production of high-purity zirconia sol
JPH0355413B2 (en)
JPH03126621A (en) Zirconium dioxide powder, preparation thereof, use thereof and sintered body prepared therefrom
JPS62153121A (en) Production of zirconia fine powder
JPS60127240A (en) Preparation of fine powder of zirconium oxide