JPS62211364A - Gas carburizing method - Google Patents

Gas carburizing method

Info

Publication number
JPS62211364A
JPS62211364A JP5208386A JP5208386A JPS62211364A JP S62211364 A JPS62211364 A JP S62211364A JP 5208386 A JP5208386 A JP 5208386A JP 5208386 A JP5208386 A JP 5208386A JP S62211364 A JPS62211364 A JP S62211364A
Authority
JP
Japan
Prior art keywords
gas
carburization
amt
base
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5208386A
Other languages
Japanese (ja)
Inventor
Kikuo Sakamoto
坂本 紀久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP5208386A priority Critical patent/JPS62211364A/en
Publication of JPS62211364A publication Critical patent/JPS62211364A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To maintain the amt. of the atmosphere gas during carburization at a required min. specified amt. and to considerably decrease the consumption of a base gas for forming the atmosphere gas by decreasing the amt. of the base gas in proportion to the amt. of an enriching gas to be added at the time of making a gas carburization treatment of a metal. CONSTITUTION:Steel products to be treated are put into a muffle type carburization furnace 1 and the surface thereof are subjected to gas carburization treatment. Gaseous N2, 5 and org. liquid 9 of a lower alcohol such as methanol or ethanol are supplied respectively through flow rate control mechanism 3, 7 as the base gas to be supplied to the carburization furnace. On the other hand, the supply rate of gaseous hydrocarbon such as CH4 or C2H6 as the enriching gas 13 is automatically controlled by a controller 17 and a flow rate control mechanism 11 in such a manner that the equil. carbon concn. of the atmosphere gas in the stage of the carburization process (3hr at 930 deg.C) in the carburization furnace attains 1.1% and that the equil. carbon concn. of the atmosphere gas in a diffusion process (1.5hr at 930 deg.C) attains 0.8%. The amt. of the base gas is thus efficiently and effectively used and is made considerably lower than heretofore.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鋼等の金属製品のガス浸炭方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a gas carburizing method for metal products such as steel.

従来の技術及びその問題点 鋼等の金1iiXk品のガス浸炭方法としては、従来、
メタン、エタン、プロパン等の炭化水素ガスと空気とを
変成炉に導入し、ニッケル系等の触媒の存在下にCo、
N2及びN2を主成分とする吸熱型変成ガスを生成させ
、これにエンリッチガスを加えて雰囲気ガスとする方法
が行なわれて来た。この吸熱型変成ガスをベースガスと
する方法においては、原料である炭化水素ガスと空気の
比率を常に一定に保持する必要があるので、雰囲気ガス
の流量の急激な変更は困難である。従って、通常は、第
2図に示す如く、浸炭操作期間(T2)中にも、浸炭処
理製品の搬入時(T+ )及び搬出時(T3)の浸炭炉
扉の開状態において外気等の侵入を防止するに必要な大
過剰量(Q2)のベースガスとエンリッチガス(E)と
を浸炭炉内に供給する必要があり、ガス消費量が極めて
大きいという問題点がある。
Conventional techniques and their problems As a gas carburizing method for gold 1iiXk products such as steel, conventionally,
Hydrocarbon gas such as methane, ethane, propane, etc. and air are introduced into a shift furnace, and in the presence of a nickel-based catalyst, etc.
A method has been used in which an endothermic metamorphosed gas containing N2 and N2 as main components is generated, and an enriched gas is added thereto to form an atmospheric gas. In the method using this endothermic metamorphic gas as the base gas, it is necessary to always maintain a constant ratio of the raw material hydrocarbon gas and air, so it is difficult to rapidly change the flow rate of the atmospheric gas. Therefore, as shown in Fig. 2, even during the carburizing operation period (T2), when the carburizing furnace door is open when the carburized product is being carried in (T+) and when it is being carried out (T3), outside air etc. are prevented from entering. It is necessary to supply a large excess amount (Q2) of base gas and enriched gas (E) necessary to prevent this, into the carburizing furnace, and there is a problem that gas consumption is extremely large.

米国特許第4145232号明細書、待聞昭55−12
8576号公報及び゛メタルズ アンド マテリアルズ
、1979年(昭和54年)、10月号、第44頁乃至
第47頁は、窒素等の不活性ガスと有機液体とを直接浸
炭炉に導入してべ−スガスを形成させ、これに更にエン
リッチガスを加えて雰囲気ガスとする浸炭方法を開示し
ている。この方法においては、窒素等の不活性ガスの流
量を変更することは容易なので、第3図に示す如く、製
品の搬出入時の浸炭炉扉の開状態((T1)及び(T3
))では、外気等の侵入を防止するに必要な大過剰ff
1(Q2)のベースガスを供給するが、浸炭処理中の扉
の閉状態((T2 ) )では最小限必要但(Ql)の
ベースガスとエンリッチガス(E)とを供給する。この
場合、上記の吸熱型変成ガスをベースガスとする方法に
比して、雰囲気ガス消費mは、115乃至1/2程(資
)に減少する。しかしながら、この方法においても、ベ
ースガス流ff1(Q+)の5〜20%の割合で供給さ
れるエンリッチガスから生成する未分解のCH4,1−
12等の母は、ベースガス流量(Q+ )の10〜40
%程度にも達し、これ等は有効に利用されることなく失
われてしまう。
U.S. Patent No. 4145232, 1984-12
Publication No. 8576 and Metals and Materials, October 1979, pages 44 to 47 disclose that an inert gas such as nitrogen and an organic liquid should be directly introduced into a carburizing furnace. The present invention discloses a carburizing method in which a gas is formed and an enriched gas is further added thereto to form an atmospheric gas. In this method, it is easy to change the flow rate of inert gas such as nitrogen, so as shown in Figure 3, the carburizing furnace door is in the open state ((T1) and (T3)
)), the large excess ff necessary to prevent the intrusion of outside air, etc.
1 (Q2) of the base gas is supplied, but when the door is closed ((T2)) during the carburizing process, the minimum necessary base gas (Ql) and the enriched gas (E) are supplied. In this case, the atmospheric gas consumption m is reduced to about 115 to 1/2 (equity) compared to the method using the endothermic metamorphic gas as the base gas. However, even in this method, undecomposed CH4,1- produced from the enriched gas supplied at a rate of 5 to 20% of the base gas flow ff1(Q+)
The mother of 12 mag is 10 to 40 of the base gas flow rate (Q+)
%, and these are lost without being used effectively.

問題1、を解決するための一段 本発明は、窒素と有機液体の分解ガスとからなるベース
ガスにエンリッチガスを添加して雰囲気ガスとする浸炭
ガス方法の改良に関するものであり、添加エンリッチガ
ス吊に比例する瓜のベースガスを減少させることにより
浸炭操作中の雰囲気ガス四を一定に保持することを特徴
とするガス浸炭方法に係る。
The present invention is a step toward solving problem 1. The present invention relates to an improvement in a carburizing gas method in which an enriched gas is added to a base gas consisting of nitrogen and a decomposed gas of an organic liquid to obtain an atmospheric gas. This relates to a gas carburizing method characterized in that the atmospheric gas during the carburizing operation is kept constant by reducing the base gas of the melon in proportion to .

鋼の浸炭操作においてエンリッチガスとして炭化水素類
を使用する場合には、浸炭炉内で下式で示されるように
熱分解する。
When hydrocarbons are used as enrichment gas in carburizing steel, they are thermally decomposed in a carburizing furnace as shown by the following formula.

CmH,→ (m−(Z)  ・C+αCHt + (”  2(Z
)H3P ・・・・・・(1) (1)式において生成した炭素は、鋼に浸炭成分として
吸収される。未分解のCH4については、雰囲気ガスの
温度と平均炉内滞留時間が定まれば、その残留分率αは
、実験的に求められる。又、雰囲気の初期状態によって
は、エンリッチガスの一部は雰囲気中のCO2,02等
の還元に使用されてCo、H20等を生成するが、雰囲
気が制御状態にあれば、それ等の蚤は、CH4、H2の
発生量に比して微量で、無視することができる。
CmH, → (m-(Z) ・C+αCHt + (” 2(Z
) H3P (1) The carbon generated in equation (1) is absorbed into the steel as a carburizing component. Regarding undecomposed CH4, once the temperature of the atmospheric gas and the average residence time in the furnace are determined, the residual fraction α can be determined experimentally. Also, depending on the initial state of the atmosphere, a part of the enriched gas may be used to reduce CO2, 02, etc. in the atmosphere to produce Co, H20, etc., but if the atmosphere is in a controlled state, these fleas will , CH4, and H2, and can be ignored.

以上の考察から、浸炭炉内雰囲気の温度と平均滞留時間
とを一定に保持すれば、エンリッチガスの添加による雰
囲気ガス増加岱は、はぼ(n−α)X(CmH,)とな
り、エンリッチガスの添加はにほぼ比例する。従って、
第1図に示す如く、工°ンリツチガス添加による雰囲気
増加分に比例するff1(E’)をベースガス(B)か
ら減じることにより、雰囲気ガス流ωを常に浸炭炉に必
要な最小限f2t(Q+)に保持することができる。こ
の場合、ベースガス固の削減は、流最制御の容易なN2
供給旦の削減により行なう。
From the above considerations, if the temperature and average residence time of the atmosphere in the carburizing furnace are kept constant, the increase in atmospheric gas due to the addition of enriched gas will be (n-α)X(CmH, ), and the enriched gas The addition of is approximately proportional to . Therefore,
As shown in Fig. 1, by subtracting ff1 (E'), which is proportional to the atmosphere increase due to the addition of enrichment gas, from the base gas (B), the atmospheric gas flow ω is always reduced to the minimum value f2t (Q + ) can be held. In this case, the reduction of the base gas concentration is achieved by reducing the flow rate by easily controlling N2
This is done by reducing supply days.

以下、第4図に示すフローチャートを参照しつつ、本発
明方法をより詳細に説明する。
Hereinafter, the method of the present invention will be explained in more detail with reference to the flowchart shown in FIG.

浸炭炉(1)には、流量制御機構(3)を備えた窒素供
給ライン(5)、流量制御機構(7)を備えた有機液体
供給ライン(9)、及び流量制御機構(11)を備えた
エンリッチガス供給ライン(13)が接続されている。
The carburizing furnace (1) is equipped with a nitrogen supply line (5) equipped with a flow rate control mechanism (3), an organic liquid supply line (9) equipped with a flow rate control mechanism (7), and a flow rate control mechanism (11). An enriched gas supply line (13) is connected thereto.

有機液体としては、メタノール、エタノール等の低級ア
ルコール類が例示され、エンリッチガスとしては、CH
t、C2H6,03Ha 、Ct H+ o等の炭化水
素類、プロパツール、ブタノール等が例示される。浸炭
操作時には、供給ライン(5)からの窒素と供給ライン
(9)からの有機液体とが浸炭炉(1)に導入され、窒
素と有機液体の分解ガスとからなるベースガスが形成す
る。エンリッチガス無添加時には、ベースガスのみによ
り浸炭処理時の最小限必要ff1(Q+)が維持される
様に、窒素及び有成液体の流量基準設定値が流量制御機
構(3)及び(7)にそれぞれセットされている。
Examples of organic liquids include lower alcohols such as methanol and ethanol, and examples of enriched gas include CH.
Examples include hydrocarbons such as t, C2H6,03Ha, and Ct H+ o, propatool, butanol, and the like. During the carburizing operation, nitrogen from the feed line (5) and organic liquid from the feed line (9) are introduced into the carburizing furnace (1) to form a base gas consisting of nitrogen and decomposition gas of the organic liquid. When no enrich gas is added, the flow rate reference set values for nitrogen and constituent liquids are set by the flow rate control mechanisms (3) and (7) so that the minimum required ff1 (Q+) during carburization is maintained using only the base gas. Each is set.

浸炭炉(1)内の平衡炭素濃度制御は、常法に従って、
雰囲気ガス中の02、CO2、co等の1又は2以上の
濃度を測定してこれを信号ライン(15)を経てコント
ローラー(17)に送り、ここで平衡炭素濃度設定値と
比較して、その結果に応じて供給ライン(13)からの
エンリッチガス供給撥を増減する様に信号ライン(19
)を介して流量制御機構(11)を調整する。一方、前
述の如く、エンリッチガスの種類、熱処理温度(雰囲気
温度)及び雰囲気の平均炉内滞留時間か(23)におい
て信号ライン(21)から送られてくるコントローラー
(17)の出力(即ちエンリッチガスの流量設定値)に
乗じる。得られた値は、信号ライン(25)を経て加算
器(27)に送られ、ここで予め定められた窒素量基準
設定値から減じられる。得られた結果が、窒素流量の設
定値として信号ライン(29)を経て流量制御機構(3
)に与えられ、窒素流量の制御が行なわれる。
Equilibrium carbon concentration control in the carburizing furnace (1) is carried out according to the conventional method.
The concentration of one or more of 02, CO2, co, etc. in the atmospheric gas is measured and sent to the controller (17) via the signal line (15), where it is compared with the equilibrium carbon concentration set value and its value is determined. The signal line (19) is connected to increase or decrease the enriched gas supply from the supply line (13) depending on the result.
) to adjust the flow rate control mechanism (11). On the other hand, as mentioned above, the output of the controller (17) sent from the signal line (21) (i.e., the enriched gas (flow rate setting value). The obtained value is sent via a signal line (25) to an adder (27), where it is subtracted from a predetermined nitrogen quantity reference set value. The obtained result is sent to the flow rate control mechanism (3) via the signal line (29) as the set value for the nitrogen flow rate.
) to control the nitrogen flow rate.

なお、エンリッヂガス源としてプロパツール、ブタノー
ル等のアルコール類を使用する場合には、上記(1)式
に代る熱分解反応式から定まる比例定数を使用して窒素
流量の制御を行なえば良い。
Note that when alcohols such as propatool and butanol are used as the enriched gas source, the nitrogen flow rate may be controlled using a proportionality constant determined from a thermal decomposition reaction equation in place of equation (1) above.

発明の効果 本発明によれば、浸炭処理すべき製品の毒、設定平衡炭
素濃度の高低、浸炭処理時間の経過等の諸要因に基いて
エンリッチガス添加逗がどの様に変化した場合にも、雰
囲気ガス流分を必要最小限の一定量に保持することがで
きる。従って、窒素等の不活性ガスと有機液体の分解ガ
スとからなるベースガスを使用する従来技術(第3図参
照)に比して、ベースガスの消)2mを10〜40%程
度も削減することができる。
Effects of the Invention According to the present invention, no matter how the enrichment gas addition amount changes based on various factors such as the toxicity of the product to be carburized, the level of the set equilibrium carbon concentration, and the elapse of carburizing time, The atmospheric gas flow can be maintained at a constant minimum necessary amount. Therefore, compared to the conventional technology that uses a base gas consisting of an inert gas such as nitrogen and a decomposed gas of an organic liquid (see Figure 3), the amount of base gas used (2 m) can be reduced by about 10 to 40%. be able to.

実  施  例 以下実施例を示し、本発明の特徴とするところをより一
層明らかにする。
EXAMPLES Examples will be shown below to further clarify the characteristics of the present invention.

実施例1 都市ガス13Aを加熱源とするマツフル型浸炭炉(炉内
有効寸法高さ550 ma+x巾600 max長さ1
23011m)において、第4図に示すフローに従って
丸鋼(80M415、直径35111X長さ300mm
)約300 koの浸炭処理を行なった。
Example 1 Matsufuru type carburizing furnace using city gas 13A as a heating source (effective dimensions inside the furnace: height 550 ma + x width 600 max length 1
23011m), round steel (80M415, diameter 35111x length 300mm) was prepared according to the flow shown in Figure 4.
) Approximately 300 ko carburizing treatment was performed.

ベースガス源としては、基準流量20Q/■in(但し
下記エンリッチガス最に比例して自動的に量を削減され
る)の窒素と定常流m 18 mQ/1nのメタノール
とを使用した。
As base gas sources, nitrogen with a standard flow rate of 20Q/inch (however, the amount is automatically reduced in proportion to the enriched gas described below) and methanol with a steady flow m 18 mQ/1n were used.

一方、浸炭過程(930℃で3時間)における雰囲気ガ
スの平衡炭素濃度が1.1%となる様に且つ拡散過程(
930”Cで1.5時間)における雰囲気ガスの平衡炭
素濃度が0.8%となる様に、02センサ一信号を用い
て平衡炭素濃度コントローラー(17)により、エンリ
ッチガスとしてのとしガス13A(CHi88%、C2
H66%、03Hs4%、CLl(+o2%)の供給口
を自動制御した。
On the other hand, the equilibrium carbon concentration of the atmospheric gas during the carburizing process (3 hours at 930°C) was set to 1.1%, and the diffusion process (
Using the 02 sensor signal, the equilibrium carbon concentration controller (17) controls the use of the soybean gas 13A ( CHi88%, C2
The supply ports of H66%, 03Hs4%, and CL1 (+O2%) were automatically controlled.

比率設定器(23)に与えられる比例定数は、n=4.
4、α=0.36から−−α=1.84とした。
The proportionality constant given to the ratio setter (23) is n=4.
4. α=0.36 to −α=1.84.

拡散過程を終えた処理品は、870℃まで降温させ、同
温度で0.5時間保持した後、常法に従って焼入れだ。
After the diffusion process has been completed, the treated product is cooled to 870°C, held at that temperature for 0.5 hours, and then quenched using conventional methods.

本実施例における窒素消費量は6.5m3であったのに
対し、第3図に示す従来方法による場合の窒素消費量は
9 rll 3であり、本発明方法により窒素使用量が
26.7%削減された。
The amount of nitrogen consumed in this example was 6.5 m3, whereas the amount of nitrogen consumed by the conventional method shown in FIG. 3 was 9 rll3, and the amount of nitrogen used by the method of the present invention was 26.7%. reduced.

尚、浸炭処理品の性状は、吸熱型変成ガスをベースガス
とする方法(第2図参照)及び窒素基ガスをベースガス
とする従来方法(第3図参照)による処理品のそれと同
様であり、表面炭素濃度0.81%、有効硬化深さ0.
75mmで、異常組織は認められなかった。
The properties of the carburized product are similar to those of the product processed by the method using endothermic metamorphosed gas as the base gas (see Figure 2) and the conventional method using nitrogen-based gas as the base gas (see Figure 3). , surface carbon concentration 0.81%, effective hardening depth 0.
No abnormal tissue was observed at 75 mm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法における浸炭炉内雰囲気の必要最
小限ff1(Q+)とエンリッチガス添加による雰囲気
増加量に比例するff1(E’)及びベースガスff1
(B)との関係を示すグラフ、第2図及び第3図は、従
来技術におけるベースガス(Q2)又は(Ql)とエン
リッチガスall(E)との関係を示すグラフである。 第4図は本発明実施態様の1例を示ずフローチャートで
ある。 (1)・・・浸炭炉 (3)・・・窒素流コ制御機構 (5)・・・窒素供給ライン (7)・・・有機液体流量制御機構 (9)・・・有機液体供給ライン (11)・・・エンリッチガス流最制t11機構(13
)・・・エンリッチガス供給ライン(15)・・・信号
ライン (17)・・・コントローラー (19)・・・信号ライン (21)・・・信号ライン (23)・・・比率設定器 (25)・・・信号ライン (27)・・・加算器 (29)・・・信号ライン (以 上)
Figure 1 shows the minimum necessary atmosphere ff1 (Q+) in the carburizing furnace in the method of the present invention, ff1 (E') which is proportional to the amount of atmosphere increase due to the addition of enriched gas, and base gas ff1.
2 and 3 are graphs showing the relationship between the base gas (Q2) or (Ql) and the enriched gas all (E) in the prior art. FIG. 4 is a flowchart showing one example of an embodiment of the present invention. (1) Carburizing furnace (3) Nitrogen flow control mechanism (5) Nitrogen supply line (7) Organic liquid flow rate control mechanism (9) Organic liquid supply line ( 11)... Enriched gas flow maximum control t11 mechanism (13
)...Enrich gas supply line (15)...Signal line (17)...Controller (19)...Signal line (21)...Signal line (23)...Ratio setter (25 )...Signal line (27)...Adder (29)...Signal line (and above)

Claims (1)

【特許請求の範囲】[Claims] [1]窒素と有機液体の分解ガスとからなるベースガス
にエンリツチガスを添加して雰囲気ガスとするガス浸炭
方法において、添加エンリツチガス量に比例する量のベ
ースガスを減少させることにより浸炭操作中の雰囲気ガ
ス量を一定に保持することを特徴とするガス浸炭方法。
[1] In a gas carburizing method in which an enrichment gas is added to a base gas consisting of nitrogen and decomposition gas of an organic liquid to create an atmosphere gas, the atmosphere during the carburizing operation is reduced by reducing an amount of base gas proportional to the amount of added enrichment gas. A gas carburizing method characterized by keeping the amount of gas constant.
JP5208386A 1986-03-10 1986-03-10 Gas carburizing method Pending JPS62211364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5208386A JPS62211364A (en) 1986-03-10 1986-03-10 Gas carburizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5208386A JPS62211364A (en) 1986-03-10 1986-03-10 Gas carburizing method

Publications (1)

Publication Number Publication Date
JPS62211364A true JPS62211364A (en) 1987-09-17

Family

ID=12904929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5208386A Pending JPS62211364A (en) 1986-03-10 1986-03-10 Gas carburizing method

Country Status (1)

Country Link
JP (1) JPS62211364A (en)

Similar Documents

Publication Publication Date Title
EP0482992B1 (en) Process for the production of a thermic treatment atmosphere
US4175986A (en) Inert carrier gas heat treating control process
RU2036976C1 (en) Steel pieces thermal or thermochemical treatment method and apparatus for benefication of steel pieces surface areas with carbon
US4208224A (en) Heat treatment processes utilizing H2 O additions
GB2066301A (en) Process for carburising or heating of steel workpieces in a protective atmosphere
JPS62211364A (en) Gas carburizing method
JPS6356304B2 (en)
US4211584A (en) Methods of heat-treating steel
JPS6411709B2 (en)
GB2092183A (en) Method of controlling furnace atmospheres
GB2044804A (en) Heat treatment method
KR19980071377A (en) Atmosphere control method and apparatus in heat treatment furnace
JPS6050159A (en) Gas carburization hardening method
JPS641547B2 (en)
JP2007162055A (en) Method of generating atmospheric gas for carburizing
JP2019135332A (en) Manufacturing method and manufacturing apparatus for metallic spring
JPS6053744B2 (en) Gas carburizing method using nitrogen, organic liquid, and hydrocarbon
CZ197695A3 (en) Heat treatment, particularly carburization of metal workpieces
JP2009235451A (en) Heat-treatment method
JPS6250457A (en) Composition variable gaseous n2 carburization treatment
JP5793802B2 (en) Gas carburizing method
US6143098A (en) Process and plant for thermal treatment of metals in protecting atmosphere
JP6031313B2 (en) Carburizing method
JPS61159567A (en) Gas carburizing method
JPS62260013A (en) Controlling method for heat treatment atmosphere