JPS62210926A - Method for enhancing yield of plant - Google Patents

Method for enhancing yield of plant

Info

Publication number
JPS62210926A
JPS62210926A JP61053522A JP5352286A JPS62210926A JP S62210926 A JPS62210926 A JP S62210926A JP 61053522 A JP61053522 A JP 61053522A JP 5352286 A JP5352286 A JP 5352286A JP S62210926 A JPS62210926 A JP S62210926A
Authority
JP
Japan
Prior art keywords
kerosene
fuel
plant
environment
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61053522A
Other languages
Japanese (ja)
Other versions
JPH0513601B2 (en
Inventor
和光 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Priority to JP61053522A priority Critical patent/JPS62210926A/en
Publication of JPS62210926A publication Critical patent/JPS62210926A/en
Publication of JPH0513601B2 publication Critical patent/JPH0513601B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、温室のような加熱された環境で植物成長の効
率を高める方法に一関する。と(に本発明は、環境を加
熱するために特定の燃料を用いることによって果物及び
野菜の収穫を増大させることに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of increasing the efficiency of plant growth in a heated environment such as a greenhouse. The present invention relates to increasing fruit and vegetable yields by using specific fuels to heat the environment.

温室内で液体又は気体燃料を燃焼することにより温室を
加熱することは慣用であり、またそのような燃料を用い
るヒーターは周知である。広く使用されているそのよう
なヒーターのための燃料としてケロシンは広く用いられ
ている。温室の加熱においてケロシンのような炭化水素
燃料を用いることは、植物の成長の促進において別の利
益をもたらすことが判っている。なぜなら、二酸化炭素
が生成し、これは光合成において二酸化炭素を必要とす
る植物に有利な影響を持つからである。
It is common practice to heat greenhouses by burning liquid or gaseous fuels within the greenhouse, and heaters using such fuels are well known. Kerosene is widely used as a fuel for such heaters. The use of hydrocarbon fuels such as kerosene in heating greenhouses has been found to provide additional benefits in promoting plant growth. This is because carbon dioxide is produced, which has a beneficial effect on plants that require carbon dioxide in photosynthesis.

驚ろくべきことに本発明者は、この分野での利用のため
に従来知られていなかった成る種の炭化水素燃料の燃焼
が、公知の燃料に比べて植物成長調節とくに植物収穫に
おいて利益を提供しうろことを見い出した。
Surprisingly, the inventors have demonstrated that the combustion of a type of hydrocarbon fuel not previously known for use in this field provides benefits over known fuels in plant growth regulation, particularly in plant harvesting. I found Shiuroko.

すなわち、本発明は、加熱された環境で植物の成長を高
める方法において、5重量%未満の芳香族炭化水素を含
むパラフィン系及びナフテン系炭化水素を含む燃料を上
記環境中で燃焼させて、植物に熱源及び二酸化炭素源を
与えるところの方法である。
That is, the present invention provides a method for enhancing plant growth in a heated environment, in which a fuel containing paraffinic and naphthenic hydrocarbons containing less than 5% by weight of aromatic hydrocarbons is combusted in the above environment. This method provides a source of heat and carbon dioxide to the plant.

本発明で用いられる炭化水素燃料は好ましくは、1重量
未満の芳香族化合物を含み、典型的には約0.75重量
%の芳香族化合物を含む。最も好ましくは、燃料は、1
重量%未満の芳香族化合物をふくむ脱芳香族化ケロシン
タイプ留分であり、芳香族化合物含量は望ましくはより
低いレベルにさえ下げられる。燃料はまた好ましくは、
40〜60重量%のパラフィン系炭化水素(n−パラフ
ィン及びイソパラフィン)を含み、残部はナフテン系炭
化水素である。
The hydrocarbon fuel used in the present invention preferably contains less than 1 weight percent aromatics, typically about 0.75% by weight aromatics. Most preferably the fuel is 1
A dearomatized kerosene type cut containing less than % by weight of aromatics, the aromatics content being desirably reduced to even lower levels. The fuel is also preferably
It contains 40 to 60% by weight of paraffinic hydrocarbons (n-paraffins and isoparaffins), and the remainder is naphthenic hydrocarbons.

本炭化水素燃料は一般に、120〜300℃、より好ま
しくは150〜250℃、最も好ましくは150〜20
0℃の沸点範囲を持つ留分を含む。
The hydrocarbon fuel is generally 120-300°C, more preferably 150-250°C, most preferably 150-200°C.
Contains fractions with a boiling range of 0°C.

この種の環境において燃料として従来用いられている慣
用のケロシンは、本発明で用いられる燃料よりも高い芳
香族化合物含量、つまり約5重量%以上、典型的ケロシ
ンでは20重量%又はそれ以上の芳香族化合物含量を持
つ。一般に加熱目的のためのケロシンの製造において、
温和な水添処理(ハイドロトリーティング)工程が、本
発明で規定したレベルまで芳香族炭化水素を除去しない
ような条件で行われる。水素添加によってケロシンを脱
芳香族化することが可能である。すなわち本発明の好ま
しい態様において、パラフィン系炭化水素燃料は水素添
加されたケロシンである。ケロシンを本発明で用いられ
る燃料に用いられる水素添加工程は、利用できる原料に
関係して、芳香族化合物含量を望むレベルに低下できる
ように選択しなければならない。たとえば、典型的な条
件は、15〜30バールで、100℃(入口最低)〜2
50℃(出口最高)の温度で固体ニッケル触媒上で水素
により水素添加し、必要なら分別するというものである
Conventional kerosene, conventionally used as a fuel in this type of environment, has a higher aromatics content than the fuel used in the present invention, i.e., about 5% by weight or more, compared to 20% by weight or more for typical kerosene. It has a content of group compounds. In the production of kerosene, generally for heating purposes,
A mild hydrotreating step is carried out under conditions that do not remove aromatic hydrocarbons to the levels specified in this invention. It is possible to dearomatize kerosene by hydrogenation. That is, in a preferred embodiment of the present invention, the paraffinic hydrocarbon fuel is hydrogenated kerosene. The hydrogenation process used to make kerosene the fuel used in the present invention must be chosen to reduce the aromatics content to the desired level, in relation to the available raw materials. For example, typical conditions are 15-30 bar and 100°C (inlet minimum) to 2
Hydrogenation with hydrogen over a solid nickel catalyst at a temperature of 50° C. (exit maximum) and fractionation if necessary.

本発明で用いうる市販入手できる脱芳香族化炭化水素燃
料の例は、エクソン ケミカル ジャパン社から入手で
きるエフソール(Exxsol :商標)タイプの炭化
水素である。
An example of a commercially available dearomatized hydrocarbon fuel that may be used in the present invention is an Exxsol® type hydrocarbon available from Exxon Chemical Japan.

本発明方法は、温室のような加熱された環境で成長され
うる光合成に依存する任意の植物について用いることが
できる。それは、キュウリのようなりクルビット(cu
curbit )又はゴアド(gourd )科の員に
対して特に効果的である。驚ろくべきことには、本発明
方法は、ケロシンで又は二酸化炭素を作らない熱源によ
り加熱される環境中で成長される植物と比べて向上され
た成長挙動を与えることが見い出された。
The method of the invention can be used with any plant that relies on photosynthesis that can be grown in a heated environment such as a greenhouse. It looks like a cucumber and is called curvit (cu).
curbit) or members of the gourd family. Surprisingly, it has been found that the method of the invention provides improved growth behavior compared to plants grown in an environment heated with kerosene or by a heat source that does not produce carbon dioxide.

主として収1を量の増加に関しての植物成長への影響の
他に、他の効果たとえば側枝発生の増加もまた見られた
Besides the effects on plant growth, mainly regarding increased yield, other effects were also observed, such as increased lateral branch development.

これら観察された効果は顕著であり、この挙動のメカニ
ズムは完全に理解されていない。単なる例示として、次
のように考えられる。本発明で用いられ°る燃料は高純
度二酸化炭素源を提供し、従って望ましくない不純物が
低減される。あるいは、植物成長に有効な燃料の燃焼に
より作られる他の物質たとえばエチレンのレベルがかな
す異るのかも知れない。
These observed effects are significant and the mechanism of this behavior is not completely understood. Merely by way of example, the following may be considered. The fuel used in the present invention provides a source of high purity carbon dioxide, thus reducing undesirable impurities. Alternatively, the difference may be in the levels of other substances produced by combustion of the fuel that are effective for plant growth, such as ethylene.

慣用のケロシンの燃焼により加熱された植物に比べて収
穫の増大は顕著であり、野菜及び果物たとえばキュウリ
の温室栽培においては小さな収穫増大であっても有意義
である。
The yield increase is significant compared to plants heated by conventional kerosene combustion, and even small yield increases are significant in greenhouse cultivation of vegetables and fruits such as cucumbers.

本発明の方法は、加熱される環境内のバーナーで用いら
れる加熱燃料の少くとも一部を本発明で規定した燃料に
より置き替えることによって達成される。すなわち、水
素添加されたケロシンのような燃料は、他の点では慣用
のケロシンヒーターで燃焼され、この際生成された二酸
化炭素及び他の分解生成物は加熱される環境に入ってゆ
くことを許される。本方法は通常、温室で用いられるが
、植物が成長され熱を要求するところの任意の空間で使
用されうる。
The method of the invention is achieved by replacing at least a portion of the heating fuel used in the burner in the heated environment with a fuel defined by the invention. That is, a fuel such as hydrogenated kerosene is combusted in an otherwise conventional kerosene heater, and the carbon dioxide and other decomposition products produced are allowed to enter the environment to be heated. It will be done. The method is typically used in greenhouses, but can be used in any space where plants are grown and require heat.

本発明を以下の実施例により更に詳しく説明するが、こ
れは単なる例示であって、本発明を限定するものではな
い。
The present invention will be explained in more detail with reference to the following examples, which are merely illustrative and do not limit the present invention.

実施例 三つの異る手段で加熱された温室内でキュウリがテスト
のために40日間成長された:1、  Exxsol 
D40 (エクソン ケミカル ジャパン社より入手で
きる、水素添加したケロシン留分(沸点範囲155〜1
96℃、0.5重量%芳香族化合物、1 ppm硫黄)
)を燃焼。
EXAMPLE Cucumbers were grown for 40 days for testing in a greenhouse heated by three different means: 1. Exxsol
D40 (hydrogenated kerosene fraction (boiling range 155-1
96°C, 0.5 wt% aromatics, 1 ppm sulfur)
) burning.

2、ケロシン(沸点範囲150〜260℃、20重量%
芳香族化合物、30ppm硫黄)を燃焼。
2. Kerosene (boiling point range 150-260℃, 20% by weight
Burns aromatic compounds, 30 ppm sulfur).

3、二酸化炭素を生成しない加熱源を使用。植物を観察
し、収量を記録した。結果を下記の表に示す。
3. Use a heating source that does not produce carbon dioxide. Plants were observed and yield recorded. The results are shown in the table below.

表1から、テストされた二つのキュウリ種においてEx
xsol D 40処理が最高の合計収量を与えたこと
が判る。
From Table 1, Ex
It can be seen that the xsol D 40 treatment gave the highest total yield.

植えつけてから40日後の観察(表2)によると、高さ
及び葉の数の両者とも二つのCO2処理で最大・であり
、燃料間の差は無視しうる。主枝雌花発生率は、CO□
処理により少し減少した。しかしテストの終りに観察し
た側枝発生(表3)は、種間の明らかな差を示し、王金
女神随2が、とくにExxsol D 40でのCO2
処理により高い数を示した。Exxsol D 40は
また、通常のケロシンに比べて阻2種における側枝発生
を促進し、これがテスト期間の後半においてこの種につ
いて観察されたより高い収量に寄与したと考えられる。
Observations 40 days after planting (Table 2) show that both height and number of leaves are maximum in the two CO2 treatments, with negligible differences between the fuels. Main branch female flower incidence is CO□
It decreased slightly after processing. However, the side branch development observed at the end of the test (Table 3) showed clear differences between the species, with Ojin Goddessui 2 exhibiting particularly low CO2 at Exxsol D 40.
Treatment showed higher numbers. Exxsol D 40 also promoted side branch development in the kerosene species compared to regular kerosene, which may have contributed to the higher yield observed for this species in the second half of the test period.

キュウリ成長の初期においてCO□ガス適用の効果はか
なり強く、処理間の差がでないと考えられる。しかし、
加熱のためにケロシンが用いられるときに一般に観察さ
れる老化現象が、この実験において通常のケロシンの場
合に観察された。しかし、後期において、Exxsol
 D 40が用いられた場合には新しい側枝発生が観察
され、これはExxsol D 40と通常のケロシン
により発生されたエチレン濃度の差に起因するのかも知
れない。
At the early stage of cucumber growth, the effect of CO□ gas application is quite strong, and there is no difference between treatments. but,
The aging phenomenon commonly observed when kerosene is used for heating was observed in the case of regular kerosene in this experiment. However, in the later stages, Exxsol
New side branch development was observed when D 40 was used, which may be due to the difference in ethylene concentration generated by Exxsol D 40 and regular kerosene.

表  1 Exxsol 040 160.5(113)  14
1.[117)ケロシン  153.2(10B)  
 146.9(122)無処理 141.5(100)
  120.6(100)吐■ Exxsol  ロ40     405.0(124
)       449.5(123)ケロシン  3
81.1(117)   431.7(11B)無処理
 326.3(100)  364.4(100)*注
)キュウリの種類 Exxsol 040   125.5   20.3
   80.8ケロシン  124.3  19.6 
 82.3無処理 105.6 1?、9 83.3秀
−一一一周 Exxsol  040    110.0     
1B、6    73.5ケロシン  112.7  
19.3  71.6無処理 95.1 16.7 8
0.4−調査は、植えつけてから40日目に行われた。
Table 1 Exxsol 040 160.5 (113) 14
1. [117) Kerosene 153.2 (10B)
146.9 (122) No treatment 141.5 (100)
120.6 (100) Exxsol Ro40 405.0 (124
) 449.5 (123) Kerosene 3
81.1 (117) 431.7 (11B) Untreated 326.3 (100) 364.4 (100) *Note) Type of cucumber Exxsol 040 125.5 20.3
80.8 Kerosene 124.3 19.6
82.3 No treatment 105.6 1? , 9 83.3 Hide-111 Shu Exxsol 040 110.0
1B, 6 73.5 Kerosene 112.7
19.3 71.6 No treatment 95.1 16.7 8
0.4 - The study was carried out on the 40th day after planting.

−生技雌花率: Exxsol 040    B 0.3     5
5.9ケロシン  75.6    58.7無処理 
63.1  56.0 側枝発生率:
-Female flower rate: Exxsol 040 B 0.3 5
5.9 Kerosene 75.6 58.7 Untreated
63.1 56.0 Side branch incidence:

Claims (1)

【特許請求の範囲】 1、加熱された環境で植物の成長を高める方法において
、5重量%未満の芳香族炭化水素を含むパラフィン系及
びナフテン系炭化水素を含む燃料を上記環境中で燃焼さ
せて、植物に熱源及び二酸化炭素源を与えるところの方
法。 2、燃料が1重量%未満の芳香族炭化水素を含む特許請
求の範囲第1項記載の方法。 3、植物がククルビット(cucurbit)又はゴア
ド(gourd)科に属するものである特許請求の範囲
第1項又は第2項記載の方法。 4、植物がキュウリである特許請求の範囲第3項記載の
方法。 5、加熱された環境で植物の成長を高める方法において
、脱芳香族化したケロシンを上記環境中で燃焼させて、
植物に熱源及び二酸化炭素源を与える方法。
[Claims] 1. A method for enhancing plant growth in a heated environment, comprising burning a fuel containing paraffinic and naphthenic hydrocarbons containing less than 5% by weight of aromatic hydrocarbons in the above environment. , a method of providing a heat source and a carbon dioxide source to plants. 2. The method of claim 1, wherein the fuel contains less than 1% by weight of aromatic hydrocarbons. 3. The method according to claim 1 or 2, wherein the plant belongs to the cucurbit or gourd family. 4. The method according to claim 3, wherein the plant is a cucumber. 5. A method for enhancing plant growth in a heated environment, comprising burning dearomatized kerosene in the above environment;
A method of providing heat and carbon dioxide sources to plants.
JP61053522A 1986-03-11 1986-03-11 Method for enhancing yield of plant Granted JPS62210926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61053522A JPS62210926A (en) 1986-03-11 1986-03-11 Method for enhancing yield of plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61053522A JPS62210926A (en) 1986-03-11 1986-03-11 Method for enhancing yield of plant

Publications (2)

Publication Number Publication Date
JPS62210926A true JPS62210926A (en) 1987-09-17
JPH0513601B2 JPH0513601B2 (en) 1993-02-23

Family

ID=12945149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61053522A Granted JPS62210926A (en) 1986-03-11 1986-03-11 Method for enhancing yield of plant

Country Status (1)

Country Link
JP (1) JPS62210926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016535A1 (en) * 1994-11-29 1996-06-06 Commonwealth Scientific And Industrial Research Organisation Method of plant tissue culture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220626A (en) * 1982-06-17 1983-12-22 財団法人産業創造研究所 Atmosphere adjustment in carbon dioxide fertilizing and cultivating house
JPS6027324A (en) * 1983-07-25 1985-02-12 第一商事株式会社 Heating method of glass greenhouse by using kerosene or propane as fuel and carbon dioxide supply method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220626A (en) * 1982-06-17 1983-12-22 財団法人産業創造研究所 Atmosphere adjustment in carbon dioxide fertilizing and cultivating house
JPS6027324A (en) * 1983-07-25 1985-02-12 第一商事株式会社 Heating method of glass greenhouse by using kerosene or propane as fuel and carbon dioxide supply method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016535A1 (en) * 1994-11-29 1996-06-06 Commonwealth Scientific And Industrial Research Organisation Method of plant tissue culture

Also Published As

Publication number Publication date
JPH0513601B2 (en) 1993-02-23

Similar Documents

Publication Publication Date Title
US10240095B2 (en) Process for producing biofuel and biofuel components
Bryant et al. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory
US20210395620A1 (en) Method for production of aviation fuel
US7578927B2 (en) Gasoline and diesel production from pyrolytic lignin produced from pyrolysis of cellulosic waste
US20170037331A1 (en) Hydroprocessing of biodiesel fuels and blends
KR102462761B1 (en) Processes for converting biomass to btx with low sulfur, nitrogen and olefin content via a catalytic fast pyrolysis process
EP3050940A1 (en) Process for producing hydrocarbons
JP2007510774A (en) Multistage removal of heteroatoms and waxes from distillate fuels.
JPH10503804A (en) Propulsion fuel and its manufacturing method
US20120323044A1 (en) Production and separation of glycerol-related products using various feed stocks
JPS62210926A (en) Method for enhancing yield of plant
Gauhl Sun and shade ecotypes of Solanum dulcamara L.: Photosynthetic light dependence characteristics in relation to mild water stress
FR2527473A1 (en) PROCESS FOR THE HYDRODESULFURATION OF GAS CONTAINING OXYGEN AND ORGANIC COMPOUNDS OF SULFUR
DE765291C (en) Process for improving the knock resistance of gasolines of an aliphatic nature
Krizek et al. Photoperiodic induction of senescence in Xanthium plants
WO2013085533A1 (en) Post dewaxing hydrotreatment of low cloud point diesel
ÖZEL et al. Effect of different planting times on essential oil components of different mint (Mentha spp.) varieties
US20150328561A1 (en) Methods for separating bio-oils
Sussex et al. Growth of excised fern leaves in sterile culture
Broué Flowering in Dactylis glomerata. I. Photoperiodic requirement
Batista et al. Agronomic and energetic potential of sorghum evaluated in two consecultive crops
Wahyuningtyas Redistillation of wood vinegar from peat swamp species
CN109111939A (en) One wood vinegar treatment process
JP2023147742A (en) Plant material treatment method
Sulong et al. Less Hazardous Chemical Synthesis from Palm Oil Biomass