JPS6221021B2 - - Google Patents

Info

Publication number
JPS6221021B2
JPS6221021B2 JP7735978A JP7735978A JPS6221021B2 JP S6221021 B2 JPS6221021 B2 JP S6221021B2 JP 7735978 A JP7735978 A JP 7735978A JP 7735978 A JP7735978 A JP 7735978A JP S6221021 B2 JPS6221021 B2 JP S6221021B2
Authority
JP
Japan
Prior art keywords
component
weight
acid
mol
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7735978A
Other languages
Japanese (ja)
Other versions
JPS555914A (en
Inventor
Masaru Suzuki
Juzo Shimizu
Tomoyuki Minami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP7735978A priority Critical patent/JPS555914A/en
Publication of JPS555914A publication Critical patent/JPS555914A/en
Publication of JPS6221021B2 publication Critical patent/JPS6221021B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は透明性良好なポリエステル中空成形体
に関するものである。 さらに詳しくは透明性、制電性、耐衝撃性、に
優れたポリエステル中空成形体に関するものであ
る。 ポリエステル、特にポリエチレンテレフタレー
トは優れた物理的性質、化学的性質を有している
ので繊維、フイルム、プラスチツク成形分野など
で多用されている。 従来、プラスチツク中空成形体向け樹脂として
は主としてポリ塩化ビニルが用いられてきたが、
近年塩化ビニルモノマーの溶出問題により、特に
食品向け中空成形容器の分野で制限を受けるよう
になつてきた。 ポリエチレンテレフタレートは前述のとおり優
れた諸特性を有しているにもかかわらず、中空成
形分野への進出が十分でなかつた。この原因はポ
リマの溶融時の粘度が低いことおよび極めて結晶
化が速く製品が白化しやすいためであつた。 この問題に対してはモールダー業界において各
種のある程度の改良がなされ、一応ポリ塩化ビニ
ルの代替としての機能をもつようになつたが、依
然としてポリエチレンテレフタレートには極めて
帯電しやすく成型時、加工時、使用時において大
きな障害となる問題および結晶化による白化、耐
衝撃性といつた問題が残存しているのである。 一方、これらの問題を改善するためにスルホン
酸塩誘導体およびポリアルキレングリコールを使
用する例が、特公昭44−31828、特開昭52−
47069、特開昭52−47072、特開昭52−134662、特
開昭52−151365などに例示されている。特公昭44
−31828には実質的にポリエステルに不溶性の高
分子量ポリアルキレングリコールを用いた例が述
べられているが、この場合得られるポリエステル
は、制電性はある程度改良されているが白濁して
おり透明性が悪いため使用できない。 特開昭52−47069、特開昭52−47072にはスルホ
ン酸塩誘導体と分子量400〜8000のポリアルキレ
ングリコールの組成物によるフイルムが例示され
ている。 この場合、確かにある程度の静電性は付与でき
るが、溶融成形後の冷却過程において白化しやす
く、中空成形用途として必須のガラスライクの透
明性は得られないのである。 また、特開昭52−134662にはスルホン酸塩誘導
体のみをポリエステルに添加し、温度100℃〜250
℃で熱処理を行なうことにより制電性が得られる
例が述べられている。 しかしながら、この方法も溶融成形後の冷却過
程における白化は何ら改良されず、また耐衝撃性
も向上されない。 本発明者らは、以上述べたような中空成形材料
としての各種欠点を同時に解決し、制電性、透明
性、耐衝撃性の優れたポリエステル成形体を提供
するため鋭意検討した結果、本発明に到達したも
のである。すなわち、本発明はテレフタル酸また
はその低級アルキルエステルとエチレングリコー
ルの反応によつて得られる実質的にポリエチレン
テレフタレートであり、 (A) アルキルベンゼンスルホン酸アルカリ金属塩
0.01〜5.0重量%、 (B) 全ジオール成分に対しジエチレングリコール
成分2.0〜4.5モル%、および、 (C) 一般式 HOCH2CH2O−R−OCH2CH2OH (ただし、Rは
The present invention relates to a polyester hollow molded article with good transparency. More specifically, the present invention relates to a polyester hollow molded article having excellent transparency, antistatic properties, and impact resistance. Polyester, particularly polyethylene terephthalate, has excellent physical and chemical properties and is therefore widely used in the fields of fiber, film, and plastic molding. Conventionally, polyvinyl chloride has been mainly used as the resin for plastic hollow molded bodies, but
In recent years, the problem of elution of vinyl chloride monomers has led to restrictions, particularly in the field of blow-molded containers for food products. Although polyethylene terephthalate has various excellent properties as mentioned above, it has not been sufficiently advanced into the field of blow molding. This was due to the low viscosity of the polymer when melted and the extremely rapid crystallization and whitening of the product. To solve this problem, various improvements have been made in the molding industry to some extent, and it has come to function as a substitute for polyvinyl chloride, but polyethylene terephthalate is still extremely susceptible to electrostatic charges during molding, processing, and use. However, there still remain problems such as whitening due to crystallization and impact resistance, which can sometimes be a major hindrance. On the other hand, there are examples of using sulfonate derivatives and polyalkylene glycols to improve these problems.
47069, JP-A-52-47072, JP-A-52-134662, JP-A-52-151365, etc. Special Public Service 1977
-31828 describes an example using a high molecular weight polyalkylene glycol that is substantially insoluble in polyester, but the polyester obtained in this case has improved antistatic properties to some extent, but is cloudy and transparent. It cannot be used because it is bad. JP-A-52-47069 and JP-A-52-47072 exemplify films made from compositions of sulfonate derivatives and polyalkylene glycols having a molecular weight of 400 to 8,000. In this case, it is true that a certain degree of electrostatic property can be imparted, but it tends to whiten during the cooling process after melt molding, and glass-like transparency, which is essential for blow molding applications, cannot be obtained. In addition, in JP-A-52-134662, only sulfonate derivatives were added to polyester, and the temperature was 100℃ to 250℃.
An example is described in which antistatic properties are obtained by heat treatment at ℃. However, this method does not improve whitening during the cooling process after melt molding, nor does it improve impact resistance. The inventors of the present invention have made extensive studies to simultaneously solve the various drawbacks of blow molding materials as described above and to provide a polyester molded product with excellent antistatic properties, transparency, and impact resistance, and as a result, they have developed the present invention. has been reached. That is, the present invention is essentially polyethylene terephthalate obtained by the reaction of terephthalic acid or its lower alkyl ester with ethylene glycol, and (A) an alkali metal salt of alkylbenzenesulfonic acid.
0.01 to 5.0% by weight, (B) 2.0 to 4.5 mol% of diethylene glycol component based on the total diol component, and (C) General formula HOCH 2 CH 2 O-R-OCH 2 CH 2 OH (However, R is

【式】【formula】

【式】【formula】

【式】基)で示される少くと も1種の化合物成分を0.05〜10.0モル% 含有してなりかつ少なくとも該(B)成分および(C)成
分が共重縮合しているポリエステルからなるポリ
エステル中空成形体である。 本発明に用いられる実質的なポリエチレンテレ
フタレートとはテレフタル酸およびエチレングリ
コールとのエステル化反応後、またジカルボン酸
の低級アルキルエステルたとえばジメチルテレフ
タレート、ジエチルテレフタレートなどとエチレ
ングリコールとのエステル交換反応後得られるビ
スジオールエステルおよび/またはその低重合体
を特定重合触媒の存在下で高温、真空下にて重縮
合せしめることにより得られるものであつて、テ
レフタル酸残基以外のジカルボン酸残基が少量存
在してもよい。 テレフタル酸残基以外のジカルボン酸残基とし
てはイソフタル酸、フタル酸、2・6−ナフタリ
ンジカルボン酸、トリメリツト酸、ピロメリツト
酸、アジピン酸、セバシン酸などの残基があり、
またp−オキシエトキシ安息香酸などのオキシカ
ルボン酸成分などのオキシ酸成分も使用できる。 また、ジオール成分としてはエチレングリコー
ル成分が主体であるが他のグリコールも少量併用
してもよい。この例としてプロピレングリコー
ル、トリメチレングリコール、テトラメチレング
リコール、シクロヘキサジメタノール成分などが
あげられる。 本発明に用いる(A)成分すなわちアルキルベンゼ
ンスルホン酸アルカリ金属塩とは、特にアルキル
基は炭素数6〜20のものが好ましく、その例とし
てはヘキシルベンゼンスルホン酸、オクチルベン
ゼンスルホン酸、ノニルベンゼンスルホン酸、デ
シルベンゼンスルホン酸、ドデシルベンゼンスル
ホン酸、ステアリルベンゼンスルホン酸などのナ
トリウム、カリウム、リチウム塩があげられる。 このうち、特に制電性、ポリマ色調の点でドデ
シルベンゼンスルホン酸ナトリウムが効果的であ
る。 アルキルベンゼンスルホン酸アルカリ金属塩の
量は0.01〜5.0重量%で好ましくは0.03〜2.0重量
%である。0.01重量%未満の場合は制電性は得ら
れず、また5.0重量%を越える場合はポリエステ
ル中空成形体にぬめり感が出ることおよび透明性
が悪化するなどの欠点が生じるため好ましくな
い。 本発明に用いられる(B)成分ジエチレングリコー
ル成分は全ジオール成分に対し2.0〜4.5モル%で
あり、(C)成分の一般式 HOCH2CH2O−R−OCH2CH2OH (ただし、Rは
Polyester blow molding made of a polyester containing 0.05 to 10.0 mol% of at least one compound component represented by the group [Formula] and in which at least the (B) component and (C) component are copolycondensed. It is the body. Substantially polyethylene terephthalate used in the present invention refers to bisbenzene obtained after esterification reaction with terephthalic acid and ethylene glycol, or after transesterification reaction between lower alkyl esters of dicarboxylic acids, such as dimethyl terephthalate, diethyl terephthalate, etc., and ethylene glycol. It is obtained by polycondensing diol ester and/or its low polymer in the presence of a specific polymerization catalyst at high temperature under vacuum, and contains a small amount of dicarboxylic acid residues other than terephthalic acid residues. Good too. Dicarboxylic acid residues other than terephthalic acid residues include residues such as isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, trimellitic acid, pyromellitic acid, adipic acid, and sebacic acid.
Oxyacid components such as oxycarboxylic acid components such as p-oxyethoxybenzoic acid can also be used. Furthermore, although the diol component is mainly an ethylene glycol component, small amounts of other glycols may also be used in combination. Examples include propylene glycol, trimethylene glycol, tetramethylene glycol, and cyclohexadimethanol components. The component (A) used in the present invention, that is, the alkali metal salt of alkylbenzenesulfonic acid, preferably has an alkyl group having 6 to 20 carbon atoms, and examples thereof include hexylbenzenesulfonic acid, octylbenzenesulfonic acid, and nonylbenzenesulfonic acid. , decylbenzenesulfonic acid, dodecylbenzenesulfonic acid, stearylbenzenesulfonic acid, and other sodium, potassium, and lithium salts. Among these, sodium dodecylbenzenesulfonate is particularly effective in terms of antistatic properties and polymer color tone. The amount of alkali metal alkylbenzenesulfonic acid salt is from 0.01 to 5.0% by weight, preferably from 0.03 to 2.0% by weight. If it is less than 0.01% by weight, antistatic properties cannot be obtained, and if it exceeds 5.0% by weight, disadvantages arise such as a slimy feeling in the polyester hollow molded article and poor transparency, which is not preferable. The diethylene glycol component (B) used in the present invention is 2.0 to 4.5 mol% of the total diol components, and the general formula of the component (C) is HOCH 2 CH 2 O-R-OCH 2 CH 2 OH (wherein R is

【式】【formula】

【式】【formula】

【式】基) で示される化合物成分は0.05〜10.0モル%であ
る。 ジエチレングリコール成分が2.0モル%未満お
よび(C)成分の1・4−ビス(ヒドロキシエトキ
シ)ベンゼン、4・4′−ビス(ヒドロキシエトキ
シ)ジフエニルスルホンおよび2・2−ビス(4
−ヒドロキシエトキシフエニル)プロパン化合物
の少くとも1種の化合物が0.05モル%未満の場合
は、肉厚3mm以上の中空成形体において失透現象
を起こし好ましくなく、また十分な制電性効果も
認められず実用的でない。 また、ジエチレングリコール成分が4.5モル%
を越える場合および(C)成分で示される化合物が
10.0モル%を越える場合は中空成形体の寸法安定
性、機械強度が著しく低下してしまうため好まし
くない。 該成分はポリエステル中空成形体の耐衝撃性、
透明性、アルキルベンゼンスルホン酸アルカリ金
属塩との制電性発現相剰効果を付与できる特徴を
有し、両成分を併用して該効果を発揮できるもの
である。 特にジエチレングリコール成分および(C)成分で
示される化合物の合計モル%が2.5〜8モル%の
とき最大効果が発揮できるものである。 前記ポリエステル組成物の製造には、一般にポ
リエステルの製造法として知られる任意の方法を
採用できる。 たとえば、 (1) テレフタル酸を主とするカルボン酸とジオー
ル成分とを常圧または加圧下でエステル化しビ
スジオールエステルおよび/またはその低重合
体とした後重縮合せしめる方法。 (2) テレフタル酸を主とするカルボン酸の低級ア
ルキルエステルとジオール成分とをエステル交
換反応させてビスジオールエステルおよび/ま
たはその低重合体となし、次いで重縮合せしめ
る方法。 などを用いることができる。 アルキルベンゼンスルホン酸アルカリ金属塩、
ジエチレングリコール、一般式で示される1・4
−ビス(ヒドロキシエトキシ)ベンゼン、4・
4′−ビス(ヒドロキシエトキシ)ジフエニルスル
ホンおよび2・2−ビス(4−ヒドロキシエトキ
シフエロル)プロパンは重縮合終了前の任意の段
階で添加できる。 重縮合触媒としてはアンチモン化合物、ケイ素
化合物、ゲルマニウム化合物、チタン化合物など
従来公知の触媒が使用できる。 このうちでチタン化合物、ゲルマニウム化合物
がポリマに対する透明性、色調の点で特に好まし
い。 好ましいTi化合物としてはテトラブチルチタ
ネート、テトラメチルチタネート、四塩化チタ
ン、蓚酸チタン、酢酸チタン、トリメリツト酸チ
タン、およびこれらの加水分解物または誘導体が
例示される。 Ge化合物としては酸化ゲルマニウム、ゲルマ
ニウムアルコキサイド、ゲルマン酸金属塩などが
例示される。 さらにこれらの組成物に対してリン化合物、た
とえば、亜リン酸、リン酸およびこれらのエステ
ル化物などを、リン原子としてポリマ中の全金属
原子成分に対して少くとも0.1モル倍共存させる
ことはポリマの耐熱性色調に対してより好適であ
る。 また、この他必要に応じてフインダードフエノ
ール系で代表されるような酸化防止剤、ポリシロ
キサンの他、顔料、染料、不活性無機微粒子など
も適宜使用することができる。 本発明の中空成形用材料はかくして得られるポ
リエステルよりなるものである。 中空成形体の製造法は押出中空成形法あるいは
射出中空成形、あるいは射出/押出併用中空成形
法が適用されるが、真空成形、ブロー成形、1軸
または2軸延伸成形と組合せて用いることができ
る。 たとえば、延伸配向中空成形体製造法の例とし
ては、(1)パリソンの押出または射出成形、(2)パリ
ソンの再加熱、(3)軸方向の延伸、(4)吹込金型閉
鎖、(5)圧縮空気吹込み、(6)冷却、(7)金型開放、(8)
取出し工程などがあげられる。 かくして得られたポリエステル中空成形品は制
電性、透明性、耐衝撃性に優れ、特に食品、化粧
品、雑貨などの充填、包装材料として優れ特に店
頭に放置した場合塵埃の付着がなく、通常のポリ
エチレンテレフタレートに比べて落下衝撃に対し
ても極めて優れているものである。 以下実施例をあげて本発明を具体的に説明す
る。 なお、実施例の説明に先立ち特性値の測定法に
ついて説明する。 (1) 表面固有抵抗 川口電気製作所製MMA−15型超微小電流
計を用い室温20℃、湿度65%のもとに1時間放
置した厚み0.2mmのシートサンプルを測定す
る。 (2) ダスト付着テスト シートあるいは成形品にケイ砂をつけて、そ
の付着状態をしらべる。 (3) ヘイズ ASTM−D−1003−59Tに準じ厚み7mmの射
出板について測定した。 (4) 極限粘度 ポリマの極限粘度はO−クロロフエノール溶
媒を用い、25℃で測定した値である。 (5) 衝撃強度 厚み0.2mmの未延伸シートを5mm巾にサンプ
リングし、シヤルピー衝撃強度試験機で求めた
値である。 判定 2.2〜2.5Kg−cm/mm2以上 優れる◎ 1.8〜2.2Kg−cm/mm2 良い〇 1.3〜1.8Kg−cm/mm2 やや劣る△ 1.3Kg−cm/mm2以下 劣る× 実施例 1 テレフタル酸とエチレングリコールのエステル
化によつて得られたエチレンテレフタレート低重
合体(反応率97.5%EGユニツト/TPAユニツト
のモル比1.2)を反応器に250℃で100重量部貯留
してある。 一方、TPA158重量部とエチレングリコール71
重量部をよく混ぜ合せ得られたスラリーを一定速
度で連続的に該反応器に添加し、常圧下250℃で
エステル化反応を行ない、生成する水を精留塔か
ら連続的に系外へ留出させた。 スラリーの供給時間は3時間40分でエステル化
反応は4時間で終了した。 得られたエステル化反応生成物100重量部を重
縮合反応器に移し、ジエチレングリコール1.0重
量部、テトラブチルチタネート0.01重量部を添加
し、さらに5分後ドデシルベンゼンスルホン酸ナ
トリウム1.0重量部、2・2−ビス(4−ヒドロ
キシエトキシフエニル)プロパン6.5重量部、メ
チルフエニルポリシロキサン0.01重量部を添加
し、常法により最終温度285℃、真空度0.5mmHg
のもとに重縮合反応を行ない、極限粘度0.658の
ポリマを得た。 該ポリマの組成はジエチレングリコール含量が
3.5モル%で、2・2−ビス(4−ヒドロキシエ
トキシフエニルプロパン)成分は約5.5モル%、
ドデシルベンゼンスルホン酸ソーダ1.06重量%、
金属チタン15ppmであつた。 該ポリマを170℃、3時間真空乾燥後シリンダ
温度275℃の射出成型機を用いブロー成形を行な
い、重量30g、内容積200c.c.のボトル状容器を得
た。 該ボトルのダスト付着テストを行なつたところ
ケイ砂の付着は極めて少なく制電性に優れてお
り、かつボトルの透明性、色調も良好で外観とし
てはガラスライクであつた。また、別に成型した
厚み0.2mmのシートの衝撃強度は2.3Kg−cm/mm2
あり、本発明以外の通常のポリエチレンテレフタ
レートシートの衝撃強度1.8Kg−cm/mm2よりはる
かに優れていることがわかつた。 実施例 2 実施例1と同様な方法でドデシルベンゼンスル
ホン酸ナトリウム、一般式の化合物およびジエチ
レングリコールの成分組成比を変更した極限粘度
0.68〜0.70のポリマ(実験No.1〜26)を得た。重
合触媒に二酸化ゲルマニウムを用いポリマ中のゲ
ルマニウム金属塩は75ppmであつた。 結果を表−1に示す。
The compound component represented by [Formula] group is 0.05 to 10.0 mol%. The diethylene glycol component is less than 2.0 mol% and the components (C) are 1,4-bis(hydroxyethoxy)benzene, 4,4'-bis(hydroxyethoxy)diphenylsulfone and 2,2-bis(4
-If the content of at least one type of (hydroxyethoxyphenyl)propane compound is less than 0.05 mol%, devitrification occurs in hollow molded bodies with a wall thickness of 3 mm or more, which is undesirable, and sufficient antistatic effect is not observed. It is not possible and practical. In addition, the diethylene glycol component is 4.5 mol%
and when the compound represented by component (C) exceeds
If it exceeds 10.0 mol%, it is not preferable because the dimensional stability and mechanical strength of the hollow molded product will drop significantly. This component improves the impact resistance of the polyester hollow molded body,
It has the characteristics of being transparent and capable of imparting a mutual effect of developing antistatic properties with the alkali metal salt of alkylbenzenesulfonate, and can exhibit this effect by using both components in combination. In particular, the maximum effect can be exhibited when the total mol% of the diethylene glycol component and the compound represented by component (C) is 2.5 to 8 mol%. Any method generally known as a polyester manufacturing method can be used to manufacture the polyester composition. For example, (1) a method in which a carboxylic acid, mainly terephthalic acid, and a diol component are esterified under normal pressure or pressure to form a bisdiol ester and/or a low polymer thereof, and then polycondensed. (2) A method in which a lower alkyl ester of a carboxylic acid, mainly terephthalic acid, and a diol component are transesterified into a bisdiol ester and/or a low polymer thereof, and then polycondensed. etc. can be used. alkylbenzenesulfonic acid alkali metal salts,
Diethylene glycol, 1 and 4 represented by the general formula
-bis(hydroxyethoxy)benzene, 4.
4'-bis(hydroxyethoxy)diphenylsulfone and 2,2-bis(4-hydroxyethoxyferol)propane can be added at any stage before the end of polycondensation. As the polycondensation catalyst, conventionally known catalysts such as antimony compounds, silicon compounds, germanium compounds, and titanium compounds can be used. Among these, titanium compounds and germanium compounds are particularly preferred in terms of transparency and color tone for polymers. Preferred Ti compounds include tetrabutyl titanate, tetramethyl titanate, titanium tetrachloride, titanium oxalate, titanium acetate, titanium trimellitate, and hydrolysates or derivatives thereof. Examples of the Ge compound include germanium oxide, germanium alkoxide, and metal germanate. Furthermore, in these compositions, coexisting phosphorous compounds such as phosphorous acid, phosphoric acid, and their esters as phosphorous atoms at least 0.1 times the total amount of metal atoms in the polymer is necessary. It is more suitable for heat-resistant color tones. In addition, in addition to antioxidants such as found phenol type antioxidants, polysiloxanes, pigments, dyes, inert inorganic fine particles, etc. may be used as appropriate. The blow molding material of the present invention is made of the polyester thus obtained. Extrusion blow molding, injection blow molding, or injection/extrusion combined blow molding is applied to the manufacturing method of the blow molded body, but it can be used in combination with vacuum forming, blow molding, and uniaxial or biaxial stretch molding. . For example, methods for producing stretch-oriented hollow bodies include (1) extrusion or injection molding of the parison, (2) reheating of the parison, (3) axial stretching, (4) blow mold closure, (5) ) Compressed air blowing, (6) cooling, (7) mold opening, (8)
Examples include the extraction process. The thus obtained polyester hollow molded product has excellent antistatic properties, transparency, and impact resistance, and is particularly suitable as a filling and packaging material for foods, cosmetics, miscellaneous goods, etc. Especially when left in a store, it does not attract dust and can be used normally. Compared to polyethylene terephthalate, it is extremely resistant to drop impact. The present invention will be specifically described below with reference to Examples. Note that, prior to explaining the examples, a method for measuring characteristic values will be explained. (1) Surface resistivity Measure a 0.2 mm thick sheet sample that has been left for 1 hour at a room temperature of 20°C and a humidity of 65% using a Kawaguchi Electric Seisakusho MMA-15 ultra-micro ammeter. (2) Dust adhesion test Apply silica sand to the sheet or molded product and check the adhesion condition. (3) Haze Measured on an injection plate with a thickness of 7 mm according to ASTM-D-1003-59T. (4) Intrinsic viscosity The intrinsic viscosity of the polymer is a value measured at 25°C using O-chlorophenol solvent. (5) Impact strength This is the value determined by taking a 5 mm wide sample of an unstretched sheet with a thickness of 0.2 mm and using a Charpy impact strength tester. Judgment 2.2-2.5Kg-cm/mm 2 or more Excellent ◎ 1.8-2.2Kg-cm/mm 2 Good 1.3-1.8Kg-cm/mm 2 Slightly poor △ 1.3Kg-cm/mm 2 or less Poor × Example 1 Terephthal 100 parts by weight of ethylene terephthalate low polymer obtained by esterification of acid and ethylene glycol (reaction rate 97.5%, molar ratio of EG unit/TPA unit 1.2) was stored at 250°C in a reactor. On the other hand, 158 parts by weight of TPA and 71 parts by weight of ethylene glycol
The slurry obtained by thoroughly mixing the parts by weight is continuously added to the reactor at a constant rate, the esterification reaction is carried out at 250°C under normal pressure, and the water produced is continuously distilled out of the system from the rectification column. I let it out. The slurry supply time was 3 hours and 40 minutes, and the esterification reaction was completed in 4 hours. 100 parts by weight of the obtained esterification reaction product was transferred to a polycondensation reactor, 1.0 parts by weight of diethylene glycol and 0.01 parts by weight of tetrabutyl titanate were added, and after another 5 minutes, 1.0 parts by weight of sodium dodecylbenzenesulfonate and 2.2 parts by weight of sodium dodecylbenzenesulfonate were added. - Add 6.5 parts by weight of bis(4-hydroxyethoxyphenyl)propane and 0.01 part by weight of methylphenyl polysiloxane, and use the usual method at a final temperature of 285°C and a degree of vacuum of 0.5 mmHg.
A polycondensation reaction was carried out under the following conditions to obtain a polymer with an intrinsic viscosity of 0.658. The composition of the polymer is such that the diethylene glycol content is
3.5 mol%, 2,2-bis(4-hydroxyethoxyphenylpropane) component is about 5.5 mol%,
Sodium dodecylbenzenesulfonate 1.06% by weight,
It contained 15 ppm of titanium metal. The polymer was vacuum dried at 170°C for 3 hours and then blow molded using an injection molding machine with a cylinder temperature of 275°C to obtain a bottle-shaped container weighing 30g and having an internal volume of 200cc. When the bottle was subjected to a dust adhesion test, it was found that there was very little adhesion of silica sand, and the bottle had excellent antistatic properties.The bottle also had good transparency and color tone, and had a glass-like appearance. In addition, the impact strength of a separately molded sheet with a thickness of 0.2 mm is 2.3 Kg-cm/mm 2 , which is far superior to the impact strength of ordinary polyethylene terephthalate sheets other than the present invention, which is 1.8 Kg-cm/mm 2 . I understood. Example 2 Intrinsic viscosity obtained by changing the component composition ratios of sodium dodecylbenzenesulfonate, the compound of the general formula, and diethylene glycol in the same manner as in Example 1
Polymers of 0.68 to 0.70 (Experiments Nos. 1 to 26) were obtained. Germanium dioxide was used as a polymerization catalyst, and the germanium metal salt in the polymer was 75 ppm. The results are shown in Table-1.

【表】【table】

【表】 実験No.1〜4、8、12、13、18、19および23〜
26は本発明の範囲外の比較実験例である。 表1に示す如く、アルキルベンゼンスルホン酸
ナトリウム成分0.01〜5.0重量%、一般式で示す
化合物0.05〜10.0モル%、およびジエチレングリ
コール成分2.0〜4.5モル%を有する組成範囲のポ
リマは制電性、透明性、耐衝撃性、寸法安定性共
優れていることを確認した。 実施例 3 ジメチルテレフタレート150重量部、エチレン
グリコール87重量部、ジエチレングリコール0.8
重量部、酢酸マンガン4水塩0.06重量部を混合
し、窒素気流下において140〜220℃でメタノール
を留去しながらエステル交換反応を行なつた。 引き続き反応物を重合缶に移し、リン酸トリメ
チル0.045重量%、重合触媒として二酸化ゲルマ
ニウム0.03重量部およびドデシルベンゼンスルホ
ン酸ナトリウム2.25重量部、4・4′−ビス(ヒド
ロキシエトキシ)ジフエニルスルホン15重量部、
メチルフエニルポリシロキサン0.02重量部を加え
て系内を減圧昇温し、最終的に286℃、0.2mmHg
で4時間重縮合を行ない極限粘度0.672の透明性
に優れ、かつ黄着色の極めて少いポリマを得た。 該ポリマは4・4′−ビス(ヒドロキシエトキ
シ)ジフエニルスルホン5.6モル%、ジエチレン
グリコール成分3.4モル%の組成比を有してい
た。該ポリマの未延伸シート(厚み250ミクロ
ン)を90℃の条件で真空深絞り成形した箱型トレ
イに米菓を入れ、40℃×65%RH雰囲気下に放置
したが、塵埃の付着は極めて少く透明性も全く失
われなかつた。 また、同シートの衝撃強度は2.5Kg−cm/mm2
極めて優れていた。
[Table] Experiment No. 1-4, 8, 12, 13, 18, 19 and 23-
No. 26 is a comparative experimental example outside the scope of the present invention. As shown in Table 1, polymers having a composition range of 0.01 to 5.0% by weight of the sodium alkylbenzenesulfonate component, 0.05 to 10.0 mol% of the compound represented by the general formula, and 2.0 to 4.5 mol% of the diethylene glycol component have antistatic properties, transparency, It was confirmed that both impact resistance and dimensional stability are excellent. Example 3 150 parts by weight of dimethyl terephthalate, 87 parts by weight of ethylene glycol, 0.8 parts by weight of diethylene glycol
parts by weight and 0.06 parts by weight of manganese acetate tetrahydrate were mixed, and a transesterification reaction was carried out at 140 to 220°C under a nitrogen stream while distilling methanol off. Subsequently, the reactants were transferred to a polymerization reactor, and 0.045% by weight of trimethyl phosphate, 0.03 parts by weight of germanium dioxide as a polymerization catalyst, 2.25 parts by weight of sodium dodecylbenzenesulfonate, and 15 parts by weight of 4,4'-bis(hydroxyethoxy)diphenylsulfone were added. ,
Add 0.02 parts by weight of methylphenylpolysiloxane, reduce the pressure in the system, and raise the temperature until the final temperature is 286℃ and 0.2mmHg.
Polycondensation was carried out for 4 hours to obtain a polymer with an intrinsic viscosity of 0.672, excellent transparency, and extremely little yellowing. The polymer had a composition ratio of 5.6 mol% of 4,4'-bis(hydroxyethoxy)diphenylsulfone and 3.4 mol% of diethylene glycol component. Rice crackers were placed in a box-shaped tray made from an unstretched sheet (thickness 250 microns) of the polymer under vacuum deep drawing at 90°C and left in an atmosphere of 40°C x 65% RH, but there was very little dust adhesion. Transparency was not lost at all. Furthermore, the impact strength of the sheet was extremely excellent at 2.5 Kg-cm/mm 2 .

Claims (1)

【特許請求の範囲】 1 テレフタル酸またはその低級アルキルエステ
ルとエチレングリコールの反応によつて得られる
実質的にポリエチレンテレフタレートであり、 (A) アルキルベンゼンスルホン酸アルカリ金属塩
0.01〜5.0重量%、 (B) 全ジオール成分に対しジエチレングリコール
成分2.0〜4.5モル%、および (C) 一般式 HOCH2CH2O−R−OCH2CH2OH (ただし、Rは 【式】 【式】 【式】 基)で示される少なくとも1種の化合物成分を
0.05〜10.0モル%含有してなりかつ少なくとも
該(B)成分および該(C)成分が共重縮合しているポ
リエステルからなるポリエステル中空成形体。
[Scope of Claims] 1. Substantially polyethylene terephthalate obtained by the reaction of terephthalic acid or its lower alkyl ester with ethylene glycol, (A) an alkali metal salt of alkylbenzenesulfonic acid;
0.01 to 5.0% by weight, (B) 2.0 to 4.5 mol% of diethylene glycol component based on the total diol component, and (C) General formula HOCH 2 CH 2 O-R-OCH 2 CH 2 OH (where R is [Formula] [Formula] [Formula] At least one compound component represented by the group
A polyester blow molded article comprising a polyester containing 0.05 to 10.0 mol% and in which at least the component (B) and the component (C) are copolycondensed.
JP7735978A 1978-06-28 1978-06-28 Polyester blow molding Granted JPS555914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7735978A JPS555914A (en) 1978-06-28 1978-06-28 Polyester blow molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7735978A JPS555914A (en) 1978-06-28 1978-06-28 Polyester blow molding

Publications (2)

Publication Number Publication Date
JPS555914A JPS555914A (en) 1980-01-17
JPS6221021B2 true JPS6221021B2 (en) 1987-05-11

Family

ID=13631706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7735978A Granted JPS555914A (en) 1978-06-28 1978-06-28 Polyester blow molding

Country Status (1)

Country Link
JP (1) JPS555914A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533205A (en) * 1991-06-20 1993-02-09 Ishikura Kk Clothing and its production

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652878B2 (en) * 1988-07-26 1997-09-10 鐘紡株式会社 Polyester hollow molded body
JP6458359B2 (en) * 2014-05-30 2019-01-30 東洋製罐グループホールディングス株式会社 Blow molded container manufacturing method and blow molded container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533205A (en) * 1991-06-20 1993-02-09 Ishikura Kk Clothing and its production

Also Published As

Publication number Publication date
JPS555914A (en) 1980-01-17

Similar Documents

Publication Publication Date Title
EP0595185B1 (en) Container made of a modified polyethylene terephthalate obtainable by blow moulding extrusion
JP2001510493A (en) Polyester products
JPH06172506A (en) Preparation of modified polybutylene terephthalate resin
JP2002539308A (en) 1,3-propanediol copolyester with improved gas barrier properties
JPS6221021B2 (en)
JPS6146495B2 (en)
JPH08127641A (en) Polyester container for medical care
JP5109219B2 (en) Polyester composition and film comprising the same
JPH11255880A (en) Preparation of copolymerized polyester
JP2016124966A (en) Mixed pellet containing pellets of polyester and resin composition
JP2641293B2 (en) Co-condensed polyester, its production method and its use
JP3059819B2 (en) Polyester thermoformed product
JPS6055536B2 (en) Method for producing polyester hollow molded body or its precursor molded body
JPH10101781A (en) Polyester resin and molding obtained therefrom
JPH03277626A (en) Production of polyester
JPH05279464A (en) Polyester and thermal molding sheet comprising the same
JP2613642B2 (en) Copolyesters and their uses
JP2003171541A (en) Molded item made of clear heat-resistant flexible polyester
JPH08113631A (en) Polyester copolymer and packaging material and packaging container made thereof
JPS59223724A (en) Copolyester hydrazide and stretching product thereof
JP3580910B2 (en) Polyester resin composition
JPH05239324A (en) Polyester resin composition for producing theremoforming sheet
TW202330712A (en) Copolyester resin, molded article, heat-shrinkable film, and fiber
JPH05140278A (en) Polyester resin for producing thermoforming sheet
JPH02269151A (en) Polyester resin composition and use thereof