JPS62209849A - Contact type image sensor - Google Patents

Contact type image sensor

Info

Publication number
JPS62209849A
JPS62209849A JP61051485A JP5148586A JPS62209849A JP S62209849 A JPS62209849 A JP S62209849A JP 61051485 A JP61051485 A JP 61051485A JP 5148586 A JP5148586 A JP 5148586A JP S62209849 A JPS62209849 A JP S62209849A
Authority
JP
Japan
Prior art keywords
light
photodetector
receiving element
image sensor
sensor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61051485A
Other languages
Japanese (ja)
Inventor
Hiroaki Kakinuma
柿沼 弘明
Yuichi Masaki
裕一 正木
Katsuaki Sakamoto
勝昭 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP61051485A priority Critical patent/JPS62209849A/en
Publication of JPS62209849A publication Critical patent/JPS62209849A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To realize a perfectly contact type and thin image sensor and eliminate requirements for working accuracy and complexity by a method wherein a light waveguide is formed on the surface of a sensor substrate where a photodetector is provided and guides a light from the horizontal direction on the same plane as the photodetector. CONSTITUTION:A photodetector 12 is provided on the surface of a sensor substrate 21 and further a light waveguide 28 is formed on the same surface of the substrate 21. The light waveguide 28 is composed of a dielectric thin film whose refractive index is larger than the refractive index of the sensor substrate 21 and is so formed on the surface of the sensor substrate 21 as to guide the light from a predetermined position onto the photodetector 24 and the surface of its portion above the photodetector 24 is formed into an uneven surface 29. Because of the uneven surface 29, the condition of total reflection is not conformed at this part and the light is discharged outside and reflected by a manuscript 31 surface and enters the light waveguide 28 again and is absorbed by the photodetector 24 below and converted into an electric signal. With this constitution, an image sensor, while it is a perfect contact type image sensor which does not need an optical system, which has a light introduction means requiring no working accuracy of manufacture and causing no complexity can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ファクシミリなどの画像を読み取るための
密着型イメージセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a contact type image sensor for reading images of facsimiles and the like.

(従来の技術) ファクシミリなどにおいて、原稿t−1対lで読み取る
ことができる密着型イメージセンサは、従来のCCDセ
ンサと異なり、光学的縮小系が不要で、センサ部を薄型
化できるので、装置を小型化することが可能となる。し
かも、受光素子アレイとして水素化アモルファスシリコ
ンを用いると、低温(200〜300℃)で高感度の素
子を実現できる。
(Prior art) In facsimile machines, etc., a contact image sensor that can read originals in a ratio of t-1 to l differs from conventional CCD sensors in that it does not require an optical reduction system and can make the sensor section thinner. It becomes possible to downsize the. Furthermore, when hydrogenated amorphous silicon is used as the light-receiving element array, a highly sensitive element can be realized at low temperatures (200 to 300°C).

ところで、原稿を読み取るためには、原稿面に光を照射
することが必要である。第2図(a) 、 (b) 。
By the way, in order to read a document, it is necessary to irradiate the surface of the document with light. Figure 2 (a), (b).

(e)に従来の主な光照射方法を示す。第2図(a)は
、例えば実開昭60−1077号公報に記載されている
ように、LED12からの光を原稿11で反射させ1反
射光をセルフォックレンズプレイ15を介してガラス基
板14上の受光素子13へと導く構造である。第2図(
b)は、例えば実開昭59−156213号公報に記載
されているように、原稿11からの反射光をオグティ力
ルファイパーアレイ16を通して受光素子13へ導く方
法であり、図中12は第2図(−と同様にLED、14
はガラス基板である。第2図(c)は、例えば特開皓6
0−91360号公報に記載されているように、LED
12よりの光をガラス基板14の裏側から導入し、絶縁
保護膜17に密着させた原稿11からの反射光を直接受
光素子13へ導く構造である。
(e) shows the main conventional light irradiation methods. FIG. 2(a) shows, for example, as described in Japanese Utility Model Application Publication No. 60-1077, light from an LED 12 is reflected on a document 11 and one reflected light is passed through a Selfoc lens play 15 to a glass substrate 14. This structure leads to the light receiving element 13 above. Figure 2 (
b) is a method of guiding the reflected light from the original 11 to the light receiving element 13 through the Oguti fiber array 16, as described in, for example, Japanese Utility Model Application No. 59-156213; Figure (- as well as LED, 14
is a glass substrate. FIG. 2(c) shows, for example, JP-A-6
As described in Publication No. 0-91360, LED
12 is introduced from the back side of the glass substrate 14, and the reflected light from the original 11 that is in close contact with the insulating protective film 17 is guided directly to the light receiving element 13.

(発明が解決しようとする問題点) しかるに、第2図(&)の第1の方法では、センサ基板
としてのガラス基板14と原稿11の間隔が広くなり、
薄型化が難しいという欠点がある。また、第2図(b)
の第2の方法では、前記第1の方法よりも原稿11とセ
ン、す基板との間隔は小さくなるが、高価になる欠点が
ある。さらに、第2図(c)の第3の方法は、光学系が
不要であるため薄型化が可能になるという特徴があるが
、各受光素子13の中央部にLED 12よりの光を通
すための穴18を開ける必要があるため製造が面倒であ
り、かつ加工精度が要求されるという欠点がある。
(Problems to be Solved by the Invention) However, in the first method shown in FIG.
The drawback is that it is difficult to make it thin. Also, Figure 2(b)
In the second method, the distance between the document 11 and the sensor substrate is smaller than in the first method, but it has the disadvantage of being expensive. Furthermore, the third method shown in FIG. 2(c) has the feature that it can be made thinner because it does not require an optical system. Since it is necessary to drill holes 18, manufacturing is troublesome, and processing accuracy is required.

この発明は上記の点に鑑みなされたもので、その目的は
、第2図(c)の従来例のように光学系を必要としない
完全密着型であシながら、製造上の加工精度の要求や複
雑さを招くことのない光の導入方法を有する密着型イメ
ージセンサを提供することにある。
This invention was made in view of the above points, and its purpose is to provide a complete contact type that does not require an optical system like the conventional example shown in FIG. It is an object of the present invention to provide a contact type image sensor having a method of introducing light that does not cause problems or complications.

(問題点を解決するための手段) この発明では、センサ基板の表面上に受光素子を設け、
さらにそのセンサ基板の同一表面上に光導波路を形成す
る。この光導波路は、前記センサ基板の屈折率より大き
い屈折率を有する誘電体薄膜からなり、前記センサ基板
の表面上に、その所定位置から前記受光素子上に至るよ
うに形成され、受光素子上部部分の表面は凹凸面に形成
される。
(Means for solving the problem) In the present invention, a light receiving element is provided on the surface of the sensor substrate,
Further, an optical waveguide is formed on the same surface of the sensor substrate. The optical waveguide is made of a dielectric thin film having a refractive index greater than the refractive index of the sensor substrate, and is formed on the surface of the sensor substrate from a predetermined position to above the light receiving element, and is formed in an upper portion of the light receiving element. The surface is formed into an uneven surface.

(作用) このような光導波路には、受光素子と反対側の端から、
外部光源からの光が導入される。すると、光は、先導波
路の上下面で全反射を繰り返しなから光導波路中を進み
、受光素子上部へと導かれる。
(Function) In such an optical waveguide, from the end opposite to the light receiving element,
Light from an external light source is introduced. Then, the light undergoes repeated total reflection on the upper and lower surfaces of the guide waveguide, travels through the optical waveguide, and is guided to the upper part of the light receiving element.

ところが、受光素子上部の光導波路表面は凹凸面に形成
されているため、該部分で全反射の条件が満たなくなり
、光は外部へ放出される。放出された光は、光導波路に
密着して設けられる原稿面で反射し、反射光は、再び光
導波路に入9、その下の受光素子に吸収され、電気信号
に変換される。
However, since the surface of the optical waveguide above the light-receiving element is formed into an uneven surface, the conditions for total reflection are no longer satisfied at this portion, and the light is emitted to the outside. The emitted light is reflected by the surface of the document provided in close contact with the optical waveguide, and the reflected light enters the optical waveguide again 9, is absorbed by the light receiving element below, and is converted into an electrical signal.

(実施例) 以下この発明の一実施例を図面を参藤して説明する。第
1図はこの発明の一実施例を示す横断面図である。この
図において、21はセンサ基板としてのガラス基板で、
その表面上の所定部分には受光部構造体22が設けられ
°る。この受光部構造体22は、前記ガラス基板21の
表面上に形成された共通電極23、この共通電極23に
接続されて前記基板21上に形成され九m −81: 
Hなどの半導体よりなる横一列の多数の受光素子24、
この各受光素子24上面のITOなどの透明導電性膜2
5、この透明導電性膜25から(受光素子24の上面か
ら)受光素子24の側面を経て基板21の表面上に引出
された個別電極26、この個別電極26と受光素子26
を絶縁するstowなとの絶縁膜27より構成される。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing one embodiment of the present invention. In this figure, 21 is a glass substrate as a sensor substrate;
A light receiving structure 22 is provided at a predetermined portion on the surface thereof. The light receiving structure 22 includes a common electrode 23 formed on the surface of the glass substrate 21, a common electrode 23 connected to the common electrode 23, and formed on the substrate 21.
A large number of light receiving elements 24 in a horizontal row made of a semiconductor such as H,
A transparent conductive film 2 such as ITO on the top surface of each light receiving element 24
5. Individual electrodes 26 drawn out from the transparent conductive film 25 (from the top surface of the light receiving element 24) through the side surfaces of the light receiving element 24 onto the surface of the substrate 21; the individual electrodes 26 and the light receiving element 26;
It is composed of a stow insulating film 27 that insulates.

このような受光部構造体22t−形成したガラス基板2
1の表面上(受光部構造体22を設けたその表面上)に
は、Tr Ot t−混合したSing t 3〜数l
Oμmの厚さにスノ量ツタリング法などにより形成する
ことにより、fラス基板21の端部から前記受光部構造
体22の受光素子24上に至る前記810!薄膜からな
る光導波路28が形成される。この光導波路28は、前
記受光素子24上部部分の表面が、プラズマエツチング
あるいはウェットエツチングにより凹凸面29に形成さ
れる。また、光導波路28は、基板21端部に対応する
端部に、外部光源からの光ファイバ30の端が接着剤に
より接着されている。なお、光導波路28は、この例で
は、TtOtt−混合したSiへで形成したが、これに
限定されるものでなく、センサ基板例えばガラス基板2
1の屈折率より大きい屈折率を有する誘電体物質であれ
ばよい。
Such a light receiving part structure 22t-formed glass substrate 2
1 (on the surface on which the light-receiving part structure 22 is provided), Tr Ot t-mixed Sing t 3 to several l
By forming the 810 ! An optical waveguide 28 made of a thin film is formed. In this optical waveguide 28, the surface of the upper portion of the light receiving element 24 is formed into an uneven surface 29 by plasma etching or wet etching. Furthermore, the end of the optical fiber 30 from the external light source is bonded to the end of the optical waveguide 28 corresponding to the end of the substrate 21 with an adhesive. In this example, the optical waveguide 28 is formed using TtOtt-mixed Si, but the optical waveguide 28 is not limited to this, and may be formed using a sensor substrate such as a glass substrate 2.
Any dielectric material having a refractive index greater than 1 may be used.

このように構成された一実施例の動作を説明する。外部
光源からの光は、光ファイバ30を介してガラス基板2
1の端部(光導波路28の端部に一致する)から光導波
路28中へ導入される。すると、光は、先導波路28の
上下面で全反射を繰シ返しながら光導波路28中を進み
、受光素子24上部へと導かれる。ところが、受光素子
24上部の光導波路28表面は凹凸面29に形成されて
いるため、該部分で全反射の条件が満たなくなり、光は
凹凸面29を通して外部へ放出される。原稿31は、第
1図に示すように、光導波路28の凹凸面29に密着し
て移動している。したがって、前記放出された光は原稿
31面で反射し、反射光は、再び凹凸面29から光導波
路28に入シ、その下の受光素子24に吸収され、電気
信号に変換される。
The operation of one embodiment configured in this way will be explained. Light from an external light source is transmitted to the glass substrate 2 via an optical fiber 30.
1 (corresponding to the end of the optical waveguide 28) into the optical waveguide 28. Then, the light travels through the optical waveguide 28 while repeating total reflection on the upper and lower surfaces of the guide waveguide 28, and is guided to the upper part of the light receiving element 24. However, since the surface of the optical waveguide 28 above the light-receiving element 24 is formed with an uneven surface 29, the condition for total reflection is no longer satisfied at this portion, and the light is emitted to the outside through the uneven surface 29. As shown in FIG. 1, the original 31 is moving in close contact with the uneven surface 29 of the optical waveguide 28. Therefore, the emitted light is reflected by the surface of the original 31, and the reflected light enters the optical waveguide 28 again from the uneven surface 29, is absorbed by the light receiving element 24 below, and is converted into an electrical signal.

この場合問題になるのは、光導波路28から受光素子2
4への光の漏れであるが、第1図に示すように受光素子
24の個別電極26を、受光素子24と光導波路28間
に介在されるようにして引出し、個別電極26を遮光膜
として用いることにより容易に解決できる。
In this case, the problem is that from the optical waveguide 28 to the light receiving element 2.
4, as shown in FIG. 1, the individual electrodes 26 of the light receiving element 24 are pulled out so as to be interposed between the light receiving element 24 and the optical waveguide 28, and the individual electrodes 26 are used as a light shielding film. This can be easily solved by using

(発明の効果) 以上詳述したように、この発明の密着型イメージセンサ
によれば、センサ基板の受光素子を設けた表面上に光導
波路を形成し、該光導波路を介して、受光素子と同一表
面上で横方向から光を導くようにしたから、第2図(c
)の従来例と同様に完全密着型で薄型化が可能でありな
から、その従来例のように受光素子のそれぞれに採光穴
を設ける必要がなく、製造上の加工精度の要求や複雑さ
を無くすことができる。また、先導波路の受光素子上部
の凹凸面は素子ごとに分離して設ける必要はなく、横一
列に設けられる受光素子全体の幅で素子列の方向へ延び
た一次元的な形で良いので容易に実現できる。また、光
導波路としての誘電体薄膜はノ(ツシペーション膜を兼
ね、したがって、この発明のセンサによれば、/4ツシ
ベーション膜の形成を省略することができる。さらに、
この発明のセンサは廉価である。
(Effects of the Invention) As detailed above, according to the contact image sensor of the present invention, an optical waveguide is formed on the surface of the sensor substrate on which the light receiving element is provided, and the light receiving element and the light receiving element are connected to each other through the optical waveguide. Since we guided the light from the lateral direction on the same surface, Figure 2 (c
), it is completely contact type and can be made thinner like the conventional example, so there is no need to provide a lighting hole for each light receiving element as in the conventional example, and the requirements for processing accuracy and complexity in manufacturing can be reduced. It can be eliminated. In addition, the uneven surface on the top of the light-receiving element of the leading waveguide does not need to be provided separately for each element, and can be easily formed in a one-dimensional shape extending in the direction of the element array with the width of the entire width of the light-receiving element arranged in a horizontal row. can be realized. Further, the dielectric thin film serving as the optical waveguide also serves as a tsusipation film, and therefore, according to the sensor of the present invention, it is possible to omit the formation of a /4 sipation film.Furthermore,
The sensor of this invention is inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の密着型イメージセンサの一実施例を
示す横断面図、第2図(a) 、 (b) 、 ((り
は各々従来の主な光照射方法を示す断面図である。 21・・・ガラス基板、24・・・受光素子、28・・
・光導波路、29・・・凹凸面、30・・・光ファイバ
FIG. 1 is a cross-sectional view showing an embodiment of the contact type image sensor of the present invention, and FIG. 21... Glass substrate, 24... Light receiving element, 28...
- Optical waveguide, 29... uneven surface, 30... optical fiber.

Claims (1)

【特許請求の範囲】 (a)センサ基板と、 (b)このセンサ基板の表面上に設けられた受光素子と
、 (c)前記センサ基板の屈折率より大きい屈折率を有す
る誘電体薄膜からなり、前記受光素子と同一側の前記セ
ンサ基板表面上に、その所定位置から前記受光素子上に
至るように形成され、受光素子上部部分の表面は凹凸面
に形成された光導波路と、 (d)この光導波路に、その受光素子と反対側の端部か
ら、光源からの光を導入する手段とを具備してなる密着
型イメージセンサ。
[Scope of Claims] Consisting of (a) a sensor substrate; (b) a light-receiving element provided on the surface of the sensor substrate; and (c) a dielectric thin film having a refractive index greater than the refractive index of the sensor substrate. , an optical waveguide formed on the surface of the sensor substrate on the same side as the light-receiving element, extending from a predetermined position onto the light-receiving element, the surface of the upper part of the light-receiving element having an uneven surface; (d) A contact image sensor comprising means for introducing light from a light source into this optical waveguide from the end opposite to the light receiving element.
JP61051485A 1986-03-11 1986-03-11 Contact type image sensor Pending JPS62209849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61051485A JPS62209849A (en) 1986-03-11 1986-03-11 Contact type image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61051485A JPS62209849A (en) 1986-03-11 1986-03-11 Contact type image sensor

Publications (1)

Publication Number Publication Date
JPS62209849A true JPS62209849A (en) 1987-09-16

Family

ID=12888260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61051485A Pending JPS62209849A (en) 1986-03-11 1986-03-11 Contact type image sensor

Country Status (1)

Country Link
JP (1) JPS62209849A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278076A (en) * 1988-04-28 1989-11-08 Ricoh Res Inst Of Gen Electron Photosensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278076A (en) * 1988-04-28 1989-11-08 Ricoh Res Inst Of Gen Electron Photosensor

Similar Documents

Publication Publication Date Title
EP0298458B1 (en) Image reading apparatus
US4232219A (en) Photosensor
JPH0510863B2 (en)
JP2584774B2 (en) Contact type photoelectric conversion device
US4233506A (en) Photo-sensor
JPS6016787B2 (en) Imaging device
US5233178A (en) Contact type image sensor and method of producing the same
KR0137190B1 (en) A direct-contact type image sensor device and an image sensor unit
JPS62209849A (en) Contact type image sensor
JPH0126547B2 (en)
US5149955A (en) Full contact image sensor device with light blocking means
JPH0514600A (en) Original reader
JPH07301730A (en) Waveguide type reducing image sensor
JPH0658950B2 (en) Contact image sensor
JPS5814073B2 (en) Photoelectric conversion device
JPS5846067B2 (en) Photoelectric conversion device
JPH0617323Y2 (en) Full contact image sensor
JPH023972A (en) Image reader
JPH01179356A (en) Hybrid integrated photoelectric converter array
JPS5923436Y2 (en) Photoelectric conversion device
JPS59131263A (en) Image pickup device
JPH03159168A (en) Complete contact type image sensor
JP2573342B2 (en) Light receiving element
JPS59211261A (en) Long close type image sensor
JP2979071B2 (en) Image reading device