JPS6220978B2 - - Google Patents

Info

Publication number
JPS6220978B2
JPS6220978B2 JP53126308A JP12630878A JPS6220978B2 JP S6220978 B2 JPS6220978 B2 JP S6220978B2 JP 53126308 A JP53126308 A JP 53126308A JP 12630878 A JP12630878 A JP 12630878A JP S6220978 B2 JPS6220978 B2 JP S6220978B2
Authority
JP
Japan
Prior art keywords
catalyst
reactor
weight
reaction
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53126308A
Other languages
Japanese (ja)
Other versions
JPS5463001A (en
Inventor
Henrii Suroo Rin
Uein Sukoentaaru Gareon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JPS5463001A publication Critical patent/JPS5463001A/en
Publication of JPS6220978B2 publication Critical patent/JPS6220978B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルコールまたはアルデヒドと、アン
モニア、第一または第二アミンとを還元雰囲気中
で触媒の存在下に反応させることによるアミンの
製法および該製法により製造されたアミンに関す
る。 アルコールからアミンを製造するための多くの
触媒材料が先行技術において開示されている。英
国特許明細書第436414号はアルコールからのアミ
ンの製造に有用な多数の触媒、代表的には銅を含
む水素化触媒を開示している。米国特許明細書第
3128311号はニツケル、銅および酸化クロム、酸
化チタン、酸化トリウム、酸化亜鉛または酸化マ
ンガンを含む触媒の存在下でのアルコールとアン
モニアの反応を開示している。米国特許第
3520933号はピロ酸または多重酸と組合せて用い
た時にアルコールからアミンへの転化に有用な銅
等の多数の金属およびアルカリ性添加剤を開示し
ている。 先行技術開示文献のいずれにも、本発明の銅と
錫の特定組合せ物が高められた選択率または触媒
安定性を生ずる相乗効果を生ずることを示唆して
いない。 かように本発明は、炭素原子数25までのアルコ
ール、アルデヒドまたはケトンと、アンモニアま
たは炭素原子数1―8の第一または第二アミンと
を還元雰囲気中で反応させることによるアミンの
製法において、多孔担体上に担持された0.05―50
重量%の銅および0.05―50重量%の錫を含む触媒
の存在下に反応を実施することを特徴とする製法
に関する。 本発明の触媒は適切な担体上に担持して用いら
れる。銅の重量%(全触媒重量に対する基礎銅金
属)は0.05%w―50%wさらに好ましくは0.5%
w―20%wである。錫の重量%(全触媒重量に対
する基礎錫金属)は0.05%w―50%wさらに好ま
しくは0.5%w―20%wである。存在する場合の
アルカリまたはアルカリ土類金属の重量%は
0.003―30%w好ましくは0.01―10%wである。
触媒は酸化物、金属またはその混合物の形で用い
られるであろう。 アルカリおよびアルカリ土類金属は周期律表の
AおよびA族金属でありこれらの金属の塩、
例えばリチウム、ナトリウム、カリウム、ルビジ
ウム、セシウム、マグネシウム、カルシウム、カ
リウムおよびバリウムの塩として提供される。ナ
トリウム塩が好ましい。 本発明の製法に適切な担体は、反応条件下で反
応に用いられる出発材料および反応生成物に対し
て抵抗性である、多孔性で耐熱性の慣用的担体か
ら選択される。担体は天然または合成のものであ
り得る。非常に適切な担体は珪質および/または
アルミナ質組成物を含む。適切な担体の特殊例と
しては酸化アルミニウム、木炭、軽石、マグネシ
ウム、ジルコニア、多孔質珪藻土、フラー土、炭
化珪素、シリカおよび/または炭化珪素含有の多
孔質凝集物、粘土、人工および天然ゼオライト、
セラミツクス、等がある。触媒の製造に特に有用
な耐火担体は珪質および/またはアルミナ質材料
特にガンマ―アルミナ含有のものである。 触媒は多くの適切な方法により例えば粉末また
はペレツト状担体上に金属成分を共沈殿させるか
または水溶液からの担体と例えば炭酸ナトリウム
または水酸化ナトリウムとの共沈殿によつて製造
できる。担体に活性金属の適切な塩の溶液を含浸
させ、次に含浸担体を100℃―600℃で乾燥および
焼成するのが好ましい方法である。 好適な溶剤は水であるが、或種の有機溶剤も適
切であろう。水系のために有用な塩は塩化物、臭
化物、硝酸塩、酢酸塩または乳酸塩である。アル
カリ金属の錫酸塩および亜錫酸塩は、錫とアルカ
リ金属の両方を提供するのに特に有用である。代
りに、活性金属の塩と担体の溶液を100℃―600℃
でスプレー乾燥および焼成することも可能であ
る。 本発明に用いられる触媒は還元雰囲気例えば水
素またはアンモニア雰囲気中で使用前に加熱する
ことにより活性化できる。好適な雰囲気は水素で
ある。活性化温度は250℃―600℃であり、活性化
に所要な時間は温度に依存し、温度が高ければ高
い程時間は短かくて済む。代表的には、有用な時
間は0.1時間―24時間であることが判明し、但し
この範囲外の時間も有用であるが経済上の理由で
この範囲が好ましい。 好適な反応体炭化水素材料は炭素原子数25好ま
しくは20までの脂肪族、脂環式またはアルアリフ
アチツクのアルコールまたはアルデヒドである。
これらの出発材料は不飽和で例えば1つまたは2
つのオレフイン性二重結合を有し得る。これらは
また反応条件下に不活性である置換基例えばエー
テル橋を経て結合した炭素原子数1―4のアルキ
ル基を含み得る。炭素原子数20までの脂肪族また
は脂環式アルコールが特に工業上重要である。適
切なアルコール/アルデヒドの例としてはエタノ
ール/エタナール、プロパノール/プロパナー
ル、イソプロパノール、ブタノール/ブタナー
ル、イソブタノール/イソブタナール、2―エチ
ルヘキサノール/2―エチルヘキサナール、デカ
ノール/デカナール、ドデカノール/ドデカナー
ル、ヘキサデカノール/ヘキサデカナール、シク
ロペントール、シクロヘキサノール、シクロ―オ
クタノール、シクロドデカノール、ベンジルアル
コール/ベンジルアルデヒド、フエニルエチルア
ルコール/フエニルエチルアルデヒド、1,4―
ブタンジオール/1,4―ブタンジアール、1,
6―ヘキサンジオール/1,6―ヘキサンジアー
ル、1,5―ペンタジオール/1,5―ペンタジ
アールおよび1,8―オクタンジオール/1,8
―オクタンジアールが挙げられる。 好適な反応体アミン材料は第一または第二アミ
ンである。炭素原子数1―12のアルキルアミン、
シクロアルキルアミン、またはアルアルキルアミ
ン、分子中に特に炭素原子1―4および1つのア
ミン基を有するアルキルアミンが好ましい。適切
なアミンの例はモノメチルアミン、ジメチルアミ
ン、メチルエチルアミン、モノエチルアミンおよ
びジエチルアミンである。好適な反応体アミンは
モノメチルアミンおよびジメチルアミンである。 反応体アルコールまたはアルデヒドは少なくと
も当量のアンモニアまたは反応体アミンと反応さ
せることが得策であり、また過剰量にて用い、例
えば反応体ヒドロキシルまたはカルボニル基当り
50モル好ましくは20モルまでのアンモニアまたは
反応体アミンを用いることも得策である。 反応は160℃―350℃にて実施するのが得策であ
る。好適な温度は180℃―300℃である。反応圧力
は1―275バール(100―27500kPa)好ましくは
10―70バールである。水素の存在下に反応を実施
するのが好ましい。1―200バール好ましくは5
―70バールの水素分圧を用いるのが得策である。
アルコール、アルデヒドまたはケトンに対する水
素のモル比を1より大にするのが得策である。不
活性ガス例えば窒素、アルゴンで反応系を部分的
に加圧し得る。 反応はバツチ式にてまたは連続操作にて実施し
得る。例えばバツチ式法においては、撹拌オート
クレーブにアルコール、アルデヒドまたはケト
ン、アミンまたはアンモニアおよび触媒を充填し
水素で加圧し、そして反応温度に加熱し得る。所
望時間反応を続けた後、オートクレーブを冷却し
過剰量の水素を除去し、そして生成物を慣用法に
て仕上げて得る。連続法の場合には例えば垂直高
圧塔に触媒を充填し頂部からアルコールと反応体
アミンを供給する。同時に水素を塔内に同方向流
または向流にて計量供給する。水素を循環させる
のが得策である。反応中に、適切な温度および圧
力条件を保つ。反応生成物を塔底から除去し、水
素を除去し慣用法にて仕上げる。代替的連続法に
おいては、触媒を分散せしめられた反応混合物を
塔内の充填剤または邪魔板上にしたたらせる。 本発明を次の例によりさらに説明する。 例1 (触媒の調製法) 16gの硝酸銅Cu(NO32・3H2Oと15mlのH2Oか
ら得られた溶液を、45gの18×30メツシユのアル
ミナ(表面積263m2/g、細孔容積0.26ml/g)
の含浸に用いた。充分に混合して塩がアルミナ上
に均一に分布するようにして含浸を実施した。含
浸アルミナを垂直管に入れ、温度を30分のうちに
80℃、100℃、125℃、150℃、175℃、200℃、250
℃、300℃、400℃および500℃の順序で徐々に上
げながら空気を含浸アルミナ上に400ml/分の率
で通じた。焼成材料を室温に冷却し18mlのH2Oに
3gの錫酸ナトリウムを溶かした液を含浸させ
た。前記の焼成工程を繰返し次いで窒素で希釈さ
れた水素ガス混合物で125―500℃にて2時間にわ
たり段階的に触媒を還元した。 例 2 45gのレイノルズRA―1アルミナ(18×30メ
ツシユ、表面積約260m2/g、細孔容積約0.26
ml/g)に、16gの硝酸銅を16mlのH2Oに溶かし
た溶液を含浸させることによつて触媒を製造し
た。材料を前記の如くに焼成し、1mlのH2Oと1
mlのHNO3に溶かした酒石酸第1錫の溶液を再含
浸させた。再含浸後の材料を例1の如くに焼成し
還元した。触媒(10ml)を、液体時間当り空間速
度(LHSV)1.1およびジメチルアミンとラウリ
ルアルデヒドとのモル比3:1の細流相反応器に
充填した。反応器を180℃に保つた。水素を100
ml/分の率にて反応器に導入し圧力を26バールに
保つた。1時間の操作後にアルデヒドの転化率
(モル)は98.9%であり、ジメチルドデシルアミ
ンへの選択率(モル)は77.3%であつた。2時間
の操作後に転化率は100%であり選択率は70%で
あつた。 例 3 48gのレイノルズRA―1アルミナ(18×30メ
ツシユ)に、4.6gの硝酸銅と20mlのNH4OHとを
加熱し次に1gの錫酸ナトリウムを添加すること
によつて得た溶液を含浸させることにより触媒を
製造した。この材料を例1の如くに焼成し還元し
た。触媒は2.4%wのCu、0.71%wのSnおよび0.7
%wのNaを含んだ。容積25mlの細流相反応器に
触媒(10ml)を充填し、そしてジメチルアミンと
ドデカノールをLHSV1.1およびアミンとアルコ
ールとのモル比3:1にて反応器に供給した。反
応器を約250℃に保つた。水素を100ml/分の率に
て反応器に供給し圧力を26バールに保つた。2.5
時間の操作後にアルコールのモル転化率は95.4%
でありジメチルドデシルアミンへのモル選択率は
78%であつた。 例 4 30gのレイノルズRA―1アルミナに、2gの硝
酸銅を15mlのNH4OHに溶かしこれに0.5gの錫酸
ナトリウムを添加した液を含浸させることにより
触媒を製造した。触媒を例1の如くに焼成し還元
した。触媒は4%wのCu、1.2%wのSnおよび
0.87%wのNaを含んだ。容積25mlの細流反応器
に触媒(10ml)を充填し、ジメチルアミンと1―
ドデカノールをLHSV1.1およびアミンとアルコ
ールとのモル比1.4:1にて反応器に供給した。
反応器温度を244℃に保つた。水素を100ml/分の
率で反応器に供給し圧力を26バールに保つた。
1.5時間の操作後にアルコールのモル転化率は
60.3%でありジメチルドデシルアミンへのモル選
択率は94%であつた。反応器温度を250℃に上げ
そして1.5時間後に転化率は79.1%でありジメチ
ルドデシルアミンへの選択率は89.4%であつた。
2.5時間の操作後に、アルコールのモル転化率は
82%でありジメチルドデシルアミンへのモル選択
率は88.9%であつた。 同一触媒を用い、但しジメチルアミン、トリメ
チルアミンおよび1―ドデカノールをモル比3:
2,3:1にて供給して前記の手順を繰返すこと
により、2.5時間の操作後に転化率89.7%および
ジメチルドデシルアミンへの選択率85.7%を得
た。 例 5 10mlのH2Oに溶かした1.5gの錫酸ナトリウムの
液を24gの18×30メツシユのAl2O3(RA―1)に
添加し例1の如くに焼成し還元した。これは2.9
%wのSnと0.9%wのNaを含んだ。容積25mlの細
流相反応器に触媒(10ml)を充填し、ジメチルア
ミンと1―ドデカノールをLHSV1.1およびアミ
ンとアルコールとのモル比3:1にて反応器に供
給した。水素を100ml/分の率にて反応器に供給
し圧力を26バールに保つた。反応器温度257℃に
てアルコール転化はみられなかつた。300℃(1
時間の操作)にてアルコールのモル転化率は9%
でありメチルドデシルアミンとジメチルドデシル
アミンとにほぼ等しく分布された。 例 6 例1の如くにして触媒を製造した。触媒は7.6
%wのCu、2.7%wのSnおよび0.9%wのNaを含
んだ。触媒(25ml)を細流相反応器(25ml容積)
に充填しジメチルアミンと1―ドデカノールを
LHSV0.6およびアミンとアルコールのモル比
3:1にて反応器に供給した。水素を180ml/分
にて反応器に供給し圧力を28バールに保つた。結
果は次表の如くであつた。
The present invention relates to a process for producing amines by reacting alcohols or aldehydes with ammonia, primary or secondary amines in the presence of a catalyst in a reducing atmosphere, and to amines produced by this process. Many catalyst materials have been disclosed in the prior art for producing amines from alcohols. GB Patent Specification No. 436,414 discloses a number of catalysts, typically copper-containing hydrogenation catalysts, useful for the production of amines from alcohols. US Patent Specification No.
No. 3,128,311 discloses the reaction of alcohol and ammonia in the presence of nickel, copper and a catalyst containing chromium oxide, titanium oxide, thorium oxide, zinc oxide or manganese oxide. US Patent No.
No. 3,520,933 discloses a number of metal and alkaline additives, such as copper, useful in the conversion of alcohols to amines when used in combination with pyro acids or multiple acids. None of the prior art disclosures suggests that the particular combination of copper and tin of the present invention produces a synergistic effect resulting in increased selectivity or catalyst stability. Thus, the present invention provides a process for producing amines by reacting alcohols, aldehydes or ketones having up to 25 carbon atoms with ammonia or primary or secondary amines having 1 to 8 carbon atoms in a reducing atmosphere, 0.05-50 supported on porous carrier
The process is characterized in that the reaction is carried out in the presence of a catalyst containing % by weight of copper and 0.05-50% by weight of tin. The catalyst of the present invention is used by being supported on a suitable carrier. The weight percent of copper (basic copper metal relative to total catalyst weight) is 0.05% w - 50% w, more preferably 0.5%
w - 20% w. The weight percent of tin (basic tin metal relative to total catalyst weight) is 0.05%w-50%w, more preferably 0.5%w-20%w. The weight percent of alkali or alkaline earth metals, if present, is
0.003-30%w, preferably 0.01-10%w.
Catalysts may be used in the form of oxides, metals or mixtures thereof. Alkali and alkaline earth metals are group A and A metals of the periodic table and salts of these metals,
For example, it is provided as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, potassium and barium salts. Sodium salts are preferred. Supports suitable for the process of the invention are selected from porous, heat-resistant conventional supports that are resistant under the reaction conditions to the starting materials and reaction products used in the reaction. The carrier may be natural or synthetic. Very suitable supports include siliceous and/or alumina compositions. Particular examples of suitable carriers are aluminum oxide, charcoal, pumice, magnesium, zirconia, diatomaceous earth, Fuller's earth, silicon carbide, silica and/or porous aggregates containing silicon carbide, clays, artificial and natural zeolites,
Ceramics, etc. Particularly useful refractory supports for the preparation of catalysts are siliceous and/or aluminous materials, especially those containing gamma-alumina. The catalyst can be prepared in a number of suitable ways, for example by co-precipitating the metal component onto a powder or pellet support or by co-precipitating the support from an aqueous solution with, for example, sodium carbonate or sodium hydroxide. A preferred method is to impregnate the support with a solution of a suitable salt of the active metal, then dry and calcinate the impregnated support at 100°C-600°C. The preferred solvent is water, although certain organic solvents may also be suitable. Useful salts for aqueous systems are chloride, bromide, nitrate, acetate or lactate. Alkali metal stannites and stannites are particularly useful in providing both tin and alkali metals. Alternatively, a solution of the active metal salt and carrier can be heated to 100℃-600℃.
It is also possible to spray dry and bake. The catalyst used in the present invention can be activated by heating in a reducing atmosphere, such as a hydrogen or ammonia atmosphere, before use. The preferred atmosphere is hydrogen. The activation temperature is 250°C to 600°C, and the time required for activation depends on the temperature; the higher the temperature, the shorter the time. Typically, useful times have been found to be between 0.1 hours and 24 hours, although times outside this range are also useful, but this range is preferred for economic reasons. Suitable reactant hydrocarbon materials are aliphatic, cycloaliphatic or aliphatic alcohols or aldehydes having 25 and preferably up to 20 carbon atoms.
These starting materials are unsaturated, e.g.
may have two olefinic double bonds. They may also contain substituents which are inert under the reaction conditions, for example a C1-4 alkyl group attached via an ether bridge. Aliphatic or cycloaliphatic alcohols having up to 20 carbon atoms are of particular industrial importance. Examples of suitable alcohols/aldehydes include ethanol/ethanal, propanol/propanal, isopropanol, butanol/butanal, isobutanol/isobutanal, 2-ethylhexanol/2-ethylhexanal, decanol/decanal, dodecanol/dodecanal, hexadecanol. /hexadecanal, cyclopentol, cyclohexanol, cyclo-octanol, cyclododecanol, benzyl alcohol/benzyl aldehyde, phenylethyl alcohol/phenylethyl aldehyde, 1,4-
Butanediol/1,4-butanedial, 1,
6-hexanediol/1,6-hexanediol, 1,5-pentadiol/1,5-pentadiol and 1,8-octanediol/1,8
-Octanedial is an example. Suitable reactant amine materials are primary or secondary amines. Alkylamines having 1-12 carbon atoms,
Preference is given to cycloalkylamines or aralkylamines, especially those having from 1 to 4 carbon atoms and one amine group in the molecule. Examples of suitable amines are monomethylamine, dimethylamine, methylethylamine, monoethylamine and diethylamine. Preferred reactant amines are monomethylamine and dimethylamine. It is advisable to react the reactant alcohol or aldehyde with at least an equivalent amount of ammonia or reactant amine and to use an excess amount, e.g. per reactant hydroxyl or carbonyl group.
It is also expedient to use up to 50 mol, preferably 20 mol, of ammonia or reactant amine. It is advisable to carry out the reaction at 160°C-350°C. The preferred temperature is 180°C-300°C. The reaction pressure is preferably 1-275 bar (100-27500kPa)
10-70 bar. Preferably, the reaction is carried out in the presence of hydrogen. 1-200 bar preferably 5
It is advisable to use a hydrogen partial pressure of -70 bar.
It is advisable to have a molar ratio of hydrogen to alcohol, aldehyde or ketone greater than 1. The reaction system may be partially pressurized with an inert gas such as nitrogen, argon. The reaction can be carried out batchwise or in continuous operation. For example, in a batch process, a stirred autoclave may be charged with alcohol, aldehyde or ketone, amine or ammonia and catalyst, pressurized with hydrogen, and heated to reaction temperature. After continuing the reaction for the desired time, the autoclave is cooled, excess hydrogen is removed, and the product is worked up in conventional manner. In the case of a continuous process, for example, a vertical high-pressure column is packed with a catalyst and the alcohol and reactant amine are fed from the top. At the same time, hydrogen is metered into the column in co-current or counter-current flow. It is a good idea to circulate hydrogen. Maintain appropriate temperature and pressure conditions during the reaction. The reaction product is removed from the bottom, freed from hydrogen and worked up in conventional manner. In an alternative continuous method, the catalyst-dispersed reaction mixture is allowed to drip onto packing or baffles within the column. The invention is further illustrated by the following example. Example 1 (Catalyst Preparation Method) A solution obtained from 16 g of copper nitrate Cu(NO 3 ) 2.3H 2 O and 15 ml of H 2 O was mixed with 45 g of 18×30 mesh alumina (surface area 263 m 2 /g, Pore volume 0.26ml/g)
It was used for impregnation. Impregnation was carried out with thorough mixing to ensure that the salt was evenly distributed on the alumina. The impregnated alumina is placed in a vertical tube and the temperature is increased within 30 minutes.
80℃, 100℃, 125℃, 150℃, 175℃, 200℃, 250
Air was passed over the impregnated alumina at a rate of 400 ml/min while gradually increasing the temperature in the order of 300°C, 400°C and 500°C. Cool the calcined material to room temperature and add to 18 ml H2O .
It was impregnated with a solution containing 3 g of sodium stannate. The above calcination step was repeated and the catalyst was then reduced stepwise with a hydrogen gas mixture diluted with nitrogen at 125-500°C for 2 hours. Example 2 45 g of Reynolds RA-1 alumina (18 x 30 mesh, surface area approximately 260 m 2 /g, pore volume approximately 0.26
The catalyst was prepared by impregnating a solution of 16 g of copper nitrate in 16 ml of H2O . The material was calcined as above and mixed with 1 ml of H 2 O and 1
It was re-impregnated with a solution of stannous tartrate in ml of HNO3 . The reimpregnated material was calcined and reduced as in Example 1. The catalyst (10 ml) was charged to a trickle phase reactor with a liquid hourly space velocity (LHSV) of 1.1 and a molar ratio of dimethylamine to lauryl aldehyde of 3:1. The reactor was kept at 180°C. 100 hydrogen
It was introduced into the reactor at a rate of ml/min and the pressure was maintained at 26 bar. After 1 hour of operation, the conversion (mol) of aldehyde was 98.9% and the selectivity (mol) to dimethyldodecylamine was 77.3%. After 2 hours of operation, the conversion was 100% and the selectivity was 70%. Example 3 A solution obtained by heating 4.6 g of copper nitrate and 20 ml of NH 4 OH and then adding 1 g of sodium stannate was added to 48 g of Reynolds RA-1 alumina (18 x 30 mesh). The catalyst was prepared by impregnation. This material was calcined and reduced as in Example 1. The catalyst is 2.4% w Cu, 0.71% w Sn and 0.7
Contains %w Na. A trickle phase reactor with a volume of 25 ml was charged with catalyst (10 ml) and dimethylamine and dodecanol were fed to the reactor at a LHSV of 1.1 and a molar ratio of amine to alcohol of 3:1. The reactor was maintained at approximately 250°C. Hydrogen was fed to the reactor at a rate of 100 ml/min and the pressure was maintained at 26 bar. 2.5
The molar conversion rate of alcohol after operation for hours is 95.4%
and the molar selectivity to dimethyldodecylamine is
It was 78%. Example 4 A catalyst was prepared by impregnating 30 g of Reynolds RA-1 alumina with a solution prepared by dissolving 2 g of copper nitrate in 15 ml of NH 4 OH and adding 0.5 g of sodium stannate. The catalyst was calcined and reduced as in Example 1. The catalyst was 4% w Cu, 1.2% w Sn and
Contains 0.87%w Na. A trickle reactor with a volume of 25 ml was charged with catalyst (10 ml) and dimethylamine and 1-
Dodecanol was fed to the reactor at a LHSV of 1.1 and an amine to alcohol molar ratio of 1.4:1.
The reactor temperature was maintained at 244°C. Hydrogen was fed to the reactor at a rate of 100 ml/min and the pressure was maintained at 26 bar.
After 1.5 hours of operation, the molar conversion of alcohol is
The molar selectivity to dimethyldodecylamine was 60.3% and 94%. The reactor temperature was raised to 250°C and after 1.5 hours the conversion was 79.1% and the selectivity to dimethyldodecylamine was 89.4%.
After 2.5 hours of operation, the molar conversion of alcohol is
The molar selectivity to dimethyldodecylamine was 82% and 88.9%. The same catalyst was used, but dimethylamine, trimethylamine and 1-dodecanol were used in a molar ratio of 3:
By repeating the above procedure feeding at a ratio of 2,3:1, a conversion of 89.7% and a selectivity to dimethyldodecylamine of 85.7% was obtained after 2.5 hours of operation. Example 5 A solution of 1.5 g of sodium stannate dissolved in 10 ml of H 2 O was added to 24 g of 18×30 mesh of Al 2 O 3 (RA-1) and calcined and reduced as in Example 1. This is 2.9
Contains %w Sn and 0.9%w Na. A trickle phase reactor with a volume of 25 ml was charged with catalyst (10 ml) and dimethylamine and 1-dodecanol were fed to the reactor at a LHSV of 1.1 and a molar ratio of amine to alcohol of 3:1. Hydrogen was fed to the reactor at a rate of 100 ml/min and the pressure was maintained at 26 bar. No alcohol conversion was observed at a reactor temperature of 257°C. 300℃ (1
The molar conversion rate of alcohol is 9% under
It was distributed almost equally between methyldodecylamine and dimethyldodecylamine. Example 6 A catalyst was prepared as in Example 1. Catalyst is 7.6
It contained %w Cu, 2.7%w Sn and 0.9%w Na. Trickle phase reactor (25ml volume) with catalyst (25ml)
Filled with dimethylamine and 1-dodecanol.
A LHSV of 0.6 and a molar ratio of amine to alcohol of 3:1 were fed to the reactor. Hydrogen was fed to the reactor at 180 ml/min and the pressure was maintained at 28 bar. The results were as shown in the table below.

【表】 例 7 例1の如くにして触媒を製造した。触媒は8.3
%wのCu、2.3%wのSnおよび1%wのNaを含ん
だ。触媒(10ml)を容積25mlの細流相反応器に充
填しジメチルアミンとn―ブタノールを
LHSV1.1およびアミンとアルコールとのモル比
3:1にて反応器に供給した。水素を反応器に
100ml/分の率にて供給し圧力を26バールに保つ
た。反応器温度250℃および1時間の操作後にア
ルコール転化率は68.8%mでありジメチルブチル
アミンへの選択率は約100%mであつた。273℃お
よび1時間後に転化率は93.4%mであり選択率は
99%mより大であつた。 例 8 25gのレイノルズRA―1アルミナ(18×30メ
ツシユ)に、4mlのH2Oに8gの硝酸銅を溶かした
液および次に、3mlのH2Oおよび1mlのHNO3
に1.1gの酒石酸第一錫を溶かした液を含浸させ
た。この材料は例1の如くに焼成し還元した。こ
れは5.4%wのCu、1.5%wのSnおよび0.5%wの
Naを含んだ。この触媒をAとした。 わずかに異なる濃度を用いて前記の手順を繰返
した。触媒は9.3%wのCu、1.6%wのSnおよび
0.3%wのNaを含んだ。この触媒をBとした。 触媒(10ml)を個々に細流相反応器(25ml)に
充填した。モノメチルアミンと1―ドデカノール
を3:1のモル比で供給した。LHSVは1.1であ
つた。水素を100ml/分の率で反応器に供給し圧
力を26バールに保つた。結果は次表に示す如くで
あつた。
Table: Example 7 A catalyst was prepared as in Example 1. Catalyst is 8.3
It contained %w Cu, 2.3%w Sn and 1%w Na. The catalyst (10 ml) was charged into a trickle phase reactor with a volume of 25 ml, and dimethylamine and n-butanol were added.
A LHSV of 1.1 and a molar ratio of amine to alcohol of 3:1 were fed to the reactor. hydrogen to reactor
The pressure was maintained at 26 bar by feeding at a rate of 100 ml/min. After a reactor temperature of 250 DEG C. and 1 hour of operation, the alcohol conversion was 68.8% and the selectivity to dimethylbutylamine was about 100%. After 1 hour at 273℃, the conversion rate was 93.4%m, and the selectivity was
It was larger than 99% m. Example 8 To 25 g of Reynolds RA-1 alumina (18 x 30 mesh) was added 8 g of copper nitrate in 4 ml of H 2 O and then 1.1 g of copper nitrate in 3 ml of H 2 O and 1 ml of HNO 3 . It was impregnated with a solution containing stannous tartrate. This material was calcined and reduced as in Example 1. This is 5.4% w Cu, 1.5% w Sn and 0.5% w
Contains Na. This catalyst was designated as A. The above procedure was repeated using slightly different concentrations. The catalyst was 9.3% w Cu, 1.6% w Sn and
Contains 0.3%w Na. This catalyst was designated as B. Catalyst (10 ml) was individually charged into a trickle phase reactor (25 ml). Monomethylamine and 1-dodecanol were fed in a 3:1 molar ratio. LHSV was 1.1. Hydrogen was fed to the reactor at a rate of 100 ml/min and the pressure was maintained at 26 bar. The results were as shown in the following table.

【表】 例 9 例1の如くにして多くの触媒を製造した。触媒
は次の組成を有した。担体はAl2O3であつた。
Table: Example 9 A number of catalysts were prepared as in Example 1. The catalyst had the following composition. The support was Al2O3 .

【表】 触媒を個々に細流相反応器に充填した。メチル
アミンと1―ドデカノールをモル比3:1および
LHSV1.1にて供給した。水素を100ml/分の率に
て反応器に供給し圧力を26バールに保つた。結果
は次の如くであつた。
Table Catalysts were individually packed into a trickle phase reactor. Methylamine and 1-dodecanol in a molar ratio of 3:1 and
Supplied in LHSV1.1. Hydrogen was fed to the reactor at a rate of 100 ml/min and the pressure was maintained at 26 bar. The results were as follows.

【表】 例 10 1mlのH2O+1mlのHNO3に溶かした1.1gの酒
石酸第一錫と、16mlのH2Oに溶かした16gの硝酸
銅とを組合わせて、45gのAl2O3(RA―1)の含
浸に用いた。この材料を例1の如くに焼成した。
これは7.1%wのCu、0.94%wのSnおよび0.4%w
のNaを含んだ。触媒を細流相反応器に充填しア
ンモニアと1―ドデカノールをモル比3.5:1お
よびLHSV1.1にて反応器に供給した。水素を100
ml/分にて反応器に供給し圧力を26バールに保つ
た。結果は次表の如くであつた。
[Table] Example 10 1.1 g of stannous tartrate dissolved in 1 ml of H 2 O + 1 ml of HNO 3 and 16 g of copper nitrate dissolved in 16 ml of H 2 O are combined to produce 45 g of Al 2 O 3 ( It was used for impregnation of RA-1). This material was fired as in Example 1.
This is 7.1% w Cu, 0.94% w Sn and 0.4% w
Contains Na. The catalyst was charged into a trickle phase reactor and ammonia and 1-dodecanol were fed to the reactor in a molar ratio of 3.5:1 and LHSV of 1.1. 100 hydrogen
ml/min to the reactor and the pressure was maintained at 26 bar. The results were as shown in the table below.

【表】 例 11 7.6%wのCu、3.1%wのSnおよび1.6%wのNa
を含む触媒を用いて例10を繰返した。アンモニア
と1―ドデカノールをモル比1.5:2にて供給し
た。結果は次の如くであつた。
[Table] Example 11 7.6%w Cu, 3.1%w Sn and 1.6%w Na
Example 10 was repeated using a catalyst containing: Ammonia and 1-dodecanol were supplied at a molar ratio of 1.5:2. The results were as follows.

【表】【table】

Claims (1)

【特許請求の範囲】 1 炭素原子数25までのアルコールまたはアルデ
ヒドと、アンモニアまたは炭素原子数1―8の第
一または第二アミンとを還元雰囲気中で反応させ
ることによるアミンの製法において、多孔担体上
に担持された0.05―50重量%の銅および0.05―50
重量%の錫を含む触媒の存在下に反応を実施する
ことを特徴とする製法。 2 担体がアルミナである、特許請求の範囲第1
項記載の製法。 3 全触媒重量に対して銅が0.05―20重量%であ
り錫が0.5―20重量%である、特許請求の範囲第
1項または第2項に記載の製法。 4 触媒が付加的に、全触媒重量に対して0.003
―30重量%のアルカリまたはアルカリ土類金属を
含む、特許請求の範囲第1―3項のいずれか1つ
の項に記載の製法。 5 アルカリまたはアルカリ土類金属が0.01―10
重量%である、特許請求の範囲第4項記載の製
法。 6 還元雰囲気が水素である、特許請求の範囲第
1―5項のいずれか1つの項に記載の製法。 7 反応圧力が1―275バールである、特許請求
の範囲第1―6項のいずれか1つの項に記載の製
法。 8 反応を160℃―350℃にて実施する、特許請求
の範囲第1―7項のいずれか1つの項記載の製
法。
[Scope of Claims] 1. A process for producing an amine by reacting an alcohol or aldehyde having up to 25 carbon atoms with ammonia or a primary or secondary amine having 1 to 8 carbon atoms in a reducing atmosphere, comprising: 0.05-50 wt% copper supported on and 0.05-50
A process characterized in that the reaction is carried out in the presence of a catalyst containing % by weight of tin. 2 Claim 1 in which the carrier is alumina
Manufacturing method described in section. 3. The method according to claim 1 or 2, wherein copper is 0.05-20% by weight and tin is 0.5-20% by weight based on the total catalyst weight. 4 Catalyst additionally 0.003 to total catalyst weight
- 30% by weight of an alkali or alkaline earth metal. 5 Alkali or alkaline earth metal is 0.01-10
The manufacturing method according to claim 4, which is % by weight. 6. The manufacturing method according to any one of claims 1 to 5, wherein the reducing atmosphere is hydrogen. 7. Process according to any one of claims 1 to 6, wherein the reaction pressure is 1 to 275 bar. 8. The production method according to any one of claims 1 to 7, wherein the reaction is carried out at 160°C to 350°C.
JP12630878A 1977-10-17 1978-10-16 Manufacture of amine Granted JPS5463001A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84409377A 1977-10-17 1977-10-17

Publications (2)

Publication Number Publication Date
JPS5463001A JPS5463001A (en) 1979-05-21
JPS6220978B2 true JPS6220978B2 (en) 1987-05-11

Family

ID=25291799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12630878A Granted JPS5463001A (en) 1977-10-17 1978-10-16 Manufacture of amine

Country Status (8)

Country Link
JP (1) JPS5463001A (en)
AU (1) AU521220B2 (en)
BE (1) BE871092A (en)
DE (1) DE2844984A1 (en)
FR (1) FR2405921A1 (en)
GB (1) GB2006773B (en)
IT (1) IT1099931B (en)
NL (1) NL7810356A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3060282D1 (en) * 1979-08-14 1982-05-19 Ugine Kuhlmann Process for the preparation of dimethylethyl amine
JPS60126247A (en) * 1983-12-12 1985-07-05 New Japan Chem Co Ltd Production of tertiary aliphatic amine
DE3432015A1 (en) * 1984-08-31 1986-03-13 Schering AG, 1000 Berlin und 4709 Bergkamen METHOD FOR PRODUCING AMINES
EP0281417A3 (en) * 1987-03-05 1989-12-27 Ethyl Corporation Process for making amines from alcohols and catalysts therefor
JP2764072B2 (en) * 1988-11-24 1998-06-11 三井化学株式会社 Method for producing polyoxyalkylene polyamine
FR2679901A1 (en) * 1991-07-29 1993-02-05 Ceca Sa PROCESS FOR THE PREPARATION OF DISSYMMETRICAL ALIPHATIC SECONDARY ALKYLAMINES.
AT399149B (en) * 1993-06-07 1995-03-27 Chemie Linz Gmbh METHOD FOR PRODUCING PRIMARY AMINE FROM ALDEHYDES
US7196033B2 (en) 2001-12-14 2007-03-27 Huntsman Petrochemical Corporation Advances in amination catalysis
JP4989889B2 (en) * 2005-12-28 2012-08-01 花王株式会社 Method for producing nitrogen-containing compound
JP4989888B2 (en) * 2005-12-28 2012-08-01 花王株式会社 Method for producing nitrogen-containing compound
EP2346602B1 (en) 2008-09-19 2014-03-19 Basf Se Method for the continuous production of an amine using an aluminium-copper catalyst
EP2506966B1 (en) 2009-12-03 2017-08-16 Basf Se Catalyst and method for producing an amine
CN102781571B (en) 2009-12-03 2015-06-17 巴斯夫欧洲公司 Catalyst and method for producing an amine
US9024090B2 (en) 2012-12-19 2015-05-05 Celanese International Corporation Catalysts and processes for producing butanol

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1046558A (en) * 1949-01-07 1953-12-08 Ici Ltd Improvements in the production of amines
DE2535073C3 (en) * 1975-08-06 1987-12-03 Hoechst Ag, 6230 Frankfurt Process for the preparation of tertiary aliphatic amines

Also Published As

Publication number Publication date
DE2844984A1 (en) 1979-04-19
BE871092A (en) 1979-04-09
JPS5463001A (en) 1979-05-21
GB2006773A (en) 1979-05-10
IT1099931B (en) 1985-09-28
GB2006773B (en) 1982-03-03
IT7828802A0 (en) 1978-10-16
FR2405921A1 (en) 1979-05-11
FR2405921B1 (en) 1981-11-13
NL7810356A (en) 1979-04-19
AU4073478A (en) 1980-04-24
AU521220B2 (en) 1982-03-25

Similar Documents

Publication Publication Date Title
US4229374A (en) Amine process using Cu-Sn-Na catalyst
JPS6220978B2 (en)
JP3223440B2 (en) Improved reductive amination catalyst
US5905159A (en) Method of producing 1,4-butanediol and tetrahydrofuran from furan
JPH05505975A (en) Gas-phase catalytic hydrogenation method of maleic anhydride to γ-butyrolactone with high conversion and high selectivity using active catalyst
JPH0465818B2 (en)
JPS58159432A (en) Preparation of branched dimerized alcohol
US5089454A (en) Catalytic composition for hydrogenation of chlorofluoroalkenes
US4206150A (en) Amine process using copper-molybdenum/tungsten catalyst
EP0286280B1 (en) Process for the production of amines
US5821391A (en) Process for preparing 3-oxyalkylpropan-1-ols
US8450518B2 (en) Method for preparing a carbamate, a catalyst applied in the method, a method for preparing the catalyst and use thereof
JP2014058488A (en) Method for producing 1,1,1,4,4,4-hexafluoro-2-butyne
EP0204046B1 (en) Process and catalyst for the conversion of cyclohexanol to cyclohexanone
US4206149A (en) Amine process using copper-rhenium catalyst
US5053377A (en) Catalytic compositions, process for obtaining them and process for hydrogenation of 1,1,2-trichloro-1,2,2-trifluoroethane by means of these compositions
US5146013A (en) Process for the production of chloroform from carbon tetrachloride, catalytic compositions and process for obtaining them
JPS6049178B2 (en) How to make amines
JP2002537972A (en) Catalyst carrier, supported catalyst and method for producing 1,2-epoxybutane
JPH06198171A (en) Silicon-aluminum catalyst and production of tertiary olefin using the catalyst
JPS6054947B2 (en) Amine manufacturing method
JP2001199939A (en) Method of producing monoisoprorylamine
JPS6049177B2 (en) Amine manufacturing method
JP5468324B2 (en) Process for producing N-alkyl-tert-butylamine
JPS5946134A (en) Method of improving activity of used-silver carrying catalyst