JPS62209414A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPS62209414A
JPS62209414A JP5328986A JP5328986A JPS62209414A JP S62209414 A JPS62209414 A JP S62209414A JP 5328986 A JP5328986 A JP 5328986A JP 5328986 A JP5328986 A JP 5328986A JP S62209414 A JPS62209414 A JP S62209414A
Authority
JP
Japan
Prior art keywords
liquid crystal
glass substrate
compressive stress
stress layer
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5328986A
Other languages
Japanese (ja)
Inventor
Zennosuke Mitani
善之介 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP5328986A priority Critical patent/JPS62209414A/en
Publication of JPS62209414A publication Critical patent/JPS62209414A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a considerable cost reduction and to obtain a liquid crystal display element having high reliability and excellent mechanical strength by using a glass substrate which contains 0.3-7wt% alkaline component and is formed with a surface compressive stress layer on the surface as a glass substrate of the liquid crystal display element. CONSTITUTION:The glass substrate 1 contg. the alkaline component, i.e., com ponents of Na2O and K2O at a low ratio is immersed in a KNO3 melt to form the surface compressive stress layer 1a from the surface of the glass substrate 1 down to the prescribed depth. An electrode 3 is provided on such surface compressive stress layer 1a and further an oriented film 4 is provided on the electrode 3. Such glass substrates 1 are stuck to each other by a sealing material 5 and a liquid crystal 6 is injected into the spacing between the glass substrates 1 to manufacture the liquid crystal display element. The surface compressive stress layer 1a is obtd. by substituting the alkaline ions on the surface of the glass substrates 1 with the ions of the larger ion radius, for example, K ions. The alkaline component of the glass is preferably 0.3-7wt%, more preferably 4-4.5wt%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラス基板を用いた液lf&表示素子に関し、
特にアルカリ成分の溶出防止用の絶縁被膜を不要にした
液晶表示素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a liquid lf & display element using a glass substrate.
In particular, the present invention relates to a liquid crystal display element that does not require an insulating coating for preventing elution of alkaline components.

〔従来技術〕[Prior art]

従来の液晶表示素子は第2図に示すように2枚のガラス
基板1上に5jOtなどの絶縁被膜2を形成し、この絶
縁被膜2上に電極3を形成し、更にこの電極3上には配
向膜4を設けてシール材5によりガラス基板1を貼り合
わせ、ガラス基板1の間隙に液晶6を注入した構成であ
る。一般にガラス基板1は、大量に安価に製造できるソ
ーダライムカラスが用いられている。このソーダライム
カラスにはアルカリ成分Na、0 +KtOが15wt
%以上含有されており、このためガラス基板1中のアル
カリ成分が液晶7中に溶出しないように絶縁被膜2がガ
ラス基板上1上に形成されている。
In a conventional liquid crystal display element, as shown in FIG. 2, an insulating film 2 such as 5jOt is formed on two glass substrates 1, an electrode 3 is formed on this insulating film 2, and an electrode 3 is formed on this insulating film 2. In this configuration, an alignment film 4 is provided, glass substrates 1 are bonded together using a sealing material 5, and liquid crystal 6 is injected into the gap between the glass substrates 1. Generally, the glass substrate 1 is made of soda lime glass, which can be manufactured in large quantities at low cost. This soda lime crow contains 15wt of alkaline components Na, 0 + KtO.
% or more, and for this reason, an insulating coating 2 is formed on the glass substrate 1 to prevent the alkali components in the glass substrate 1 from eluting into the liquid crystal 7.

〔発明が解決しようとする間融点〕[Melting point that the invention seeks to solve]

しかし、このようにガラス基板上に絶縁?lli膜を形
成しても、ガラス基板中のアルカリ成分の溶出防止は完
全ではなく、このためアルカリ成分による液晶の分解、
配向膜の性能劣化、電極近傍の沿面抵抗が低下して、に
じみ現象などが発生し、液晶表示素子の寿命を短かくし
てしまうという問題点がある。特に大型の液晶表示素子
においては、綴着で膜厚の均一な絶縁被膜の形成が不M
)能であるため、上記問題点が発生しやすい。そこで、
アルカリ成分を含有しないガラス基板を用いれば上記問
題点を解決できるが、アルカリ成分を全く含有しないガ
ラス基板は溶融温度が高くなり、ガラス基板の製造が困
難となると同時に、機械的強度の低下を招くという問題
点があった。
But is it insulated on a glass substrate like this? Even if an LLI film is formed, the elution of alkaline components in the glass substrate cannot be completely prevented, and therefore, the decomposition of the liquid crystal due to the alkaline components,
There are problems in that the performance of the alignment film deteriorates, the creeping resistance near the electrodes decreases, and bleeding phenomena occur, shortening the life of the liquid crystal display element. Especially in large liquid crystal display elements, it is difficult to form an insulating film with a uniform thickness by binding.
), the above problems are likely to occur. Therefore,
The above problems can be solved by using a glass substrate that does not contain an alkali component, but a glass substrate that does not contain any alkali component has a high melting temperature, making it difficult to manufacture the glass substrate and at the same time causing a decrease in mechanical strength. There was a problem.

〔問題点を解決するための手段〕[Means for solving problems]

アルカリ成分の含有量が0.3 w t%〜7 w t
%でかつ、その表面に表面圧縮応力層を形成したカラス
基板を液晶表示素子のガラス基板とする。
Alkaline component content is 0.3 wt% to 7 wt%
% and on which a surface compressive stress layer is formed is used as a glass substrate of a liquid crystal display element.

〔作用〕[Effect]

ガラス基板のアルカリ成分含有量を少なくし、かつアル
カリ成分を少なくすることによるガラス基板の機械的強
度、特に曲げ強度の劣化をガラス基板表面に表面圧縮応
力層を形成することにより改善する。即ち、外部からガ
ラス基板に対して応力が加った場合、基板表面の張力は
、先ず表面圧縮応力を打ち消す為に用いられ、その分だ
け基板の曲げ強度が大きくなる。
The alkali component content of the glass substrate is reduced, and the deterioration of the mechanical strength, especially the bending strength, of the glass substrate due to the reduction of the alkali component is improved by forming a surface compressive stress layer on the surface of the glass substrate. That is, when stress is applied to the glass substrate from the outside, the tension on the substrate surface is first used to cancel out the surface compressive stress, and the bending strength of the substrate increases accordingly.

〔実施例〕 第1図においてlはアルカリ成分、即ちNa、0とに2
0の成分の少ないガラス基板で、このガラス基板1をK
NOs融液中に浸漬して、ガラス基板1の表面から所定
の深さに表面圧縮応力層1aを形成する。この発面圧絹
応力層la上に電極3を設け、更にこの電極3上に配向
膜4を設けてシール材5によりガラス基板1を貼り合わ
せ、カラス基板1の間隙に液晶6を注入して液晶表示素
子を作製する。表面圧縮応力層1aはガラス基板1の表
面のアルカリイオンを、よりイオン半径の大きな、たと
えばにイオン[[*することによって得られる。
[Example] In Fig. 1, l is an alkaline component, that is, Na, 0 and 2
This glass substrate 1 is a glass substrate with a small amount of 0 components.
A surface compressive stress layer 1a is formed at a predetermined depth from the surface of the glass substrate 1 by immersing it in an NOs melt. An electrode 3 is provided on this developed surface pressure silk stress layer la, an alignment film 4 is further provided on this electrode 3, a glass substrate 1 is bonded with a sealing material 5, and a liquid crystal 6 is injected into the gap between the glass substrates 1. Fabricate a liquid crystal display element. The surface compressive stress layer 1a is obtained by converting alkali ions on the surface of the glass substrate 1 into ions having a larger ionic radius, for example, [[*].

次に、具体的な実施例を表1に基づいて説明する。ここ
で、曲げ強さと視認性は試料A−Gのガラス基板によっ
て作製された液晶表示素子についてのデータである。試
料Aはアルカリ含有量が4wt%、板厚Q、7 tnm
で表面圧縮応力層を設けないガラス基板であり、曲げ強
さは9kg/−であった。
Next, specific examples will be described based on Table 1. Here, the bending strength and visibility are data for liquid crystal display elements manufactured using the glass substrates of samples A to G. Sample A has an alkali content of 4 wt%, plate thickness Q, and 7 tnm.
This was a glass substrate without a surface compressive stress layer, and its bending strength was 9 kg/-.

試料Bはアルカリ含有量が試料Aと同一、板厚がQ、3
 tnmで、450℃のKNOs fi液中にIOH浸
漬して20μの表面圧縮応力層を形成したもので5曲げ
強さは20 kg / mllであった。試料Cはアル
カリ含有量が試料Aと同一、板厚1.1朋で450°G
 KNO3融液中に4時間浸漬して10μの表面圧縮応
力層を形成したもので、曲げ強さは15 kg / m
tlであった。試料りはアルカリ含有量が7 w t%
、板厚0.7龍で試料Cと同一条件で10μの表面圧縮
応力層を形成したもので、曲げ強さは25.2 kg 
/mdであった。また、試料Fはアルカリ含有量が0.
3wtチ、板厚1.11111で450℃のKN O3
融液中に15H浸漬してシの表面圧縮応力層を形成した
もので、曲げ強さは15icg/vdlであった。
Sample B has the same alkali content as sample A, and the plate thickness is Q, 3.
tnm, which was immersed in IOH in KNOs fi solution at 450 °C to form a 20μ surface compressive stress layer, and the bending strength was 20 kg/ml. Sample C has the same alkali content as sample A, has a plate thickness of 1.1mm, and is heated at 450°G.
It was immersed in KNO3 melt for 4 hours to form a 10μ surface compressive stress layer, and the bending strength was 15 kg/m.
It was tl. The alkali content of the sample was 7 wt%.
, with a plate thickness of 0.7mm and a 10μ surface compressive stress layer formed under the same conditions as sample C, with a bending strength of 25.2 kg.
/md. In addition, sample F has an alkali content of 0.
3wt, plate thickness 1.11111, KN O3 at 450℃
It was immersed in the melt for 15 hours to form a surface compressive stress layer, and the bending strength was 15 icg/vdl.

以上の試料A−Fはいずれも視認性(色むらの度合い)
は良好であったが、表面圧縮応力層を設けない試料Aだ
けは曲げ強さが9 #/ilJ!と最も小さかった。
The above samples A-F are all visible (degree of color unevenness)
However, only sample A, which does not have a surface compressive stress layer, had a bending strength of 9 #/ilJ! and was the smallest.

一般に、通常のソーダライムガラスの曲げ強さは5〜1
0kg/−程度である。しかし、表面圧縮応力層1aを
形成した試料B−Fはいずれも曲げ強さが15にg /
 mt1以上あり、表面圧縮応力層を設けない一般のソ
ーダライムガラスに比べて曲げ強さが1.5〜2倍と著
しく大きくなっている。また、試料Gはアルカリ含有量
が4wt%、板厚0.71で450℃のKNO,融液中
に48H浸漬して30μの表面圧縮応力層を形成したも
ので、曲げ強さは25.6 kg/rndとなったが、
色むらが著しく、実用に供されない。
Generally, the bending strength of ordinary soda lime glass is 5 to 1
It is about 0 kg/-. However, the bending strength of all samples B-F with the surface compressive stress layer 1a was 15 g/
mt1 or more, and the bending strength is 1.5 to 2 times greater than that of general soda lime glass that does not have a surface compressive stress layer. In addition, sample G has an alkali content of 4 wt%, a plate thickness of 0.71, and is immersed in a KNO melt at 450°C for 48 hours to form a surface compressive stress layer of 30μ, and its bending strength is 25.6. kg/rnd,
The color unevenness is significant and it cannot be put to practical use.

即ち、表面圧縮応力層を20μより大きく形成するには
高温のKNOs融液中に長時間浸漬する必要がある為、
ガラス基板1の表面が浸蝕されて、基板表面のうねりが
ひどくなり、2枚のガラス基板を貼合わせた際にセルの
間隙のバラツキが著しくなって、逆に色むらが発生する
ということが判明した。また、表面圧縮応力層の深さが
1μ以下では曲げ強さが通常のソーダライムガラスと同
等であり、表面圧縮応力層を設ける意味がない。したが
って、表面圧縮応力層の深さは1μ〜20μが良く、好
ましくは10μ〜20μが良い。また、ガラスのアルカ
リ成分、即ちNa、OとKtOの含有量は7wt%より
多いとアルカリ成分溶出防止用の絶縁被膜を必要とし、
0.3wt%より少ないと所望の表面圧縮応力層を形成
するのが困難となる。したがって、ガラスのアルカリ成
分は0.3wt%〜7 w t%が良く、好ましくは4
wt%〜4.5wt%が良い。これらの好ましい実施例
、即ちガラス基板のアルカリ成分が4wt%〜4.5w
t%で表面圧縮応力層の深さが10〜20μの場合、曲
げ強さが15 kg / mll 〜20 kg / 
mftとなり、視認性の点でも色むらがなく良好な結果
が得られる。
That is, in order to form a surface compressive stress layer larger than 20μ, it is necessary to immerse the material in a high-temperature KNOs melt for a long time.
It was found that the surface of the glass substrate 1 was eroded, causing severe waviness on the substrate surface, and when two glass substrates were bonded together, the gap between the cells became noticeably uneven, causing color unevenness. did. Further, if the depth of the surface compressive stress layer is 1 μm or less, the bending strength is equivalent to that of ordinary soda lime glass, and there is no point in providing the surface compressive stress layer. Therefore, the depth of the surface compressive stress layer is preferably 1 μ to 20 μ, preferably 10 μ to 20 μ. In addition, if the content of alkaline components in the glass, that is, Na, O and KtO, is more than 7 wt%, an insulating coating is required to prevent the elution of the alkali components.
If it is less than 0.3 wt%, it will be difficult to form a desired surface compressive stress layer. Therefore, the alkaline component of the glass is preferably 0.3 wt% to 7 wt%, preferably 4 wt%.
Wt% to 4.5wt% is good. In these preferred embodiments, the alkali component of the glass substrate is 4wt% to 4.5w.
When the depth of the surface compressive stress layer is 10~20μ at t%, the bending strength is 15 kg/ml~20 kg/ml.
mft, and good results with no color unevenness can be obtained in terms of visibility.

〔効果〕〔effect〕

以上のように、本発明の液晶表示素子は、アルカリ成分
の少ないガラス基板を用いているので、アルカリ成分溶
出防止用の絶縁被膜を設けなくても実用上問題がなく、
しかも、アルカリ成分の減少による、ガラス基板の曲げ
強さの低下をガラス基板上に表面圧縮応力層を設けるこ
とにより改善し、曲げ強さを向上せしむる。したがって
、SiO2等の絶縁被膜を必衰としない為、大幅なコス
ト低減が図れると共に高信頼性で機械的強度の優れた液
晶表示素子を得ることができる。
As described above, since the liquid crystal display element of the present invention uses a glass substrate with a low alkaline component, there is no practical problem even if an insulating coating for preventing alkaline component elution is not provided.
Moreover, by providing a surface compressive stress layer on the glass substrate, the decrease in the bending strength of the glass substrate due to the reduction of the alkali component can be improved, and the bending strength can be improved. Therefore, since the insulating film such as SiO2 is not necessarily attenuated, it is possible to achieve a significant cost reduction and to obtain a liquid crystal display element with high reliability and excellent mechanical strength.

以下余白 表1゜Margin below Table 1゜

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の液晶表示素子の断面図、第2図は従来
例の液晶表示素子の断面図を表わす。 1・・・ガラス基板 1a・・・表面圧縮応力/1 2・・・絶縁被膜 3・・・電極 4・・・配向膜 5・・・シール材 6・・・液晶 代表者 片間 勝太部 茅 1 図 半2 図
FIG. 1 is a sectional view of a liquid crystal display element of the present invention, and FIG. 2 is a sectional view of a conventional liquid crystal display element. 1...Glass substrate 1a...Surface compressive stress/1 2...Insulating coating 3...Electrode 4...Alignment film 5...Sealing material 6...Liquid crystal representative Katama Katsube Thatch 1 figure and a half 2 figures

Claims (1)

【特許請求の範囲】[Claims] 内面に各々電極を形成した2枚のガラス基板間に液晶を
介在させてなる液晶表示素子において、前記ガラス基板
は、アルカリ成分を0.3wt%〜7wt%含有し、か
つその表面に表面圧縮応力層が形成されることを特徴と
する液晶表示素子。
In a liquid crystal display element in which a liquid crystal is interposed between two glass substrates each having an electrode formed on the inner surface, the glass substrate contains an alkali component of 0.3 wt% to 7 wt%, and has a surface compressive stress on its surface. A liquid crystal display element characterized in that a layer is formed.
JP5328986A 1986-03-10 1986-03-10 Liquid crystal display element Pending JPS62209414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5328986A JPS62209414A (en) 1986-03-10 1986-03-10 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5328986A JPS62209414A (en) 1986-03-10 1986-03-10 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPS62209414A true JPS62209414A (en) 1987-09-14

Family

ID=12938560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5328986A Pending JPS62209414A (en) 1986-03-10 1986-03-10 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPS62209414A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716333A3 (en) * 1994-12-09 1996-12-18 Seiko Instr Inc Display device and method of manufacturing the same
EP0793132A1 (en) * 1996-02-29 1997-09-03 Seiko Instruments Inc. Display device and method of manufacturing the same
EP0850892A1 (en) * 1996-12-26 1998-07-01 Canon Kabushiki Kaisha Electron source subtrate and electron source and image-forming apparatus such substrate as well as method of manufacturing the same
FR2768857A1 (en) * 1997-09-23 1999-03-26 Thomson Tubes Electroniques Display panel production process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716333A3 (en) * 1994-12-09 1996-12-18 Seiko Instr Inc Display device and method of manufacturing the same
EP0793132A1 (en) * 1996-02-29 1997-09-03 Seiko Instruments Inc. Display device and method of manufacturing the same
EP0850892A1 (en) * 1996-12-26 1998-07-01 Canon Kabushiki Kaisha Electron source subtrate and electron source and image-forming apparatus such substrate as well as method of manufacturing the same
FR2768857A1 (en) * 1997-09-23 1999-03-26 Thomson Tubes Electroniques Display panel production process
WO1999015472A1 (en) * 1997-09-23 1999-04-01 Thomson Multimedia Method for producing a display panel comprising a faceplate with enhanced dimensional stability

Similar Documents

Publication Publication Date Title
US3995941A (en) Liquid crystal cells
US4116546A (en) Electrochromic device with cationic ion exchange resin separator
US4505538A (en) Electrochromic display devices
EP0102452B1 (en) Multiplexable liquid crystal cell
US4233339A (en) Method for making electrochromic films having improved etch resistance
JPS62209414A (en) Liquid crystal display element
US4037930A (en) Liquid crystal display cells
US4240713A (en) Electrode barrier layer for hydrogen-colored electrochromic displays
DE2538331A1 (en) LIQUID CRYSTAL DISPLAY ELEMENT
DE2437636A1 (en) Nematic liquid crystal indicator cell - has soda glass electrodes coated with silica to reduce cost and improve stability
US4236792A (en) Electrochromic display and method for making same
CA1279694C (en) Terminal pin seal for a hermetic terminal assembly
US4718751A (en) Optical panel and method of fabrication
JPH03146435A (en) Glass for substrate
DE3232343C2 (en) Glass composition for a photoetching mask
JPH0158135B2 (en)
US4392721A (en) Electrochromic cell having a mixed solid ion-conducting layer
JP2751077B2 (en) Processing method of glass spacer for flat panel display
US4814237A (en) Thin-film electroluminescent element
JPS6084529A (en) Liquid crystal element
JPS6029089B2 (en) liquid crystal display device
US3798482A (en) Gas-discharge display panels
JPS5779914A (en) Production of liquid crystal display cell
JPS6053937A (en) Production of photochromic glass
JPH0133815B2 (en)