JPS62209311A - Vehicle inclination and acceleration sensor - Google Patents

Vehicle inclination and acceleration sensor

Info

Publication number
JPS62209311A
JPS62209311A JP61053151A JP5315186A JPS62209311A JP S62209311 A JPS62209311 A JP S62209311A JP 61053151 A JP61053151 A JP 61053151A JP 5315186 A JP5315186 A JP 5315186A JP S62209311 A JPS62209311 A JP S62209311A
Authority
JP
Japan
Prior art keywords
vehicle
pressure
signal
acceleration
sensitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61053151A
Other languages
Japanese (ja)
Inventor
Shoichi Hayakawa
正一 早川
Makoto Aso
真 麻生
Makoto Watanabe
誠 渡辺
Masaru Takahashi
勝 高橋
Takenori Kuno
剛典 久野
Noriyuki Shimonomoto
詞之 下ノ本
Michihiko Tanagi
棚木 充彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP61053151A priority Critical patent/JPS62209311A/en
Publication of JPS62209311A publication Critical patent/JPS62209311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To operate not only the inclination of a vehicle upon reception of a stop signal from a car speed sensor but also acting acceleration upon reception of a running signal, by arranging a pressure-sensitive element between an inertial body and a receiving container. CONSTITUTION:A car speed 0 is inputted to a microcomputer (calculator) 12 from a car speed sensor 13 and, if a container 3 is inclined by an angle theta, the component force Mg sintheta of the wt. of an inertial body pressurizes a pressure-sensitive element 2a and a signal is inputted to the calculator 12. If the pressure and direction applied to each pressure-sensitive element 2 are synthesized as a vector, the moving direction and angle of inclination of the inertial body due to inclination are found. When the signal during running is inputted and the inertial body is accelerated to the right, the pressure-sensitive element 2a supplies a detection signal to operate acceleration and, when the inertial body is accelerated in the direction of an diagonal line FE, the elements 2a, 2b detect this state and calculate the intensity and direction of acceleration from the intensity and direction of pressure to output the same to an accelerometer 14 and various actuators 15. By this constitution, the inclination of the vehicle and the acceleration thereof in the horizontal direction can be detected with one apparatus.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両の傾斜と加速度を検出する車両傾斜加速
度センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vehicle tilt acceleration sensor that detects the tilt and acceleration of a vehicle.

〔従来の技術〕[Conventional technology]

従来、車両などの傾斜を検出するためには、傾斜センサ
として特開゛昭58−21812号公報に開示されるよ
うな角度検出装置があり、また加速度を検出するために
は、加速度センサとして特開昭60−149976号公
報に開示されるものがある。車両の傾斜と加速度とを検
出したい場合、これらの2種類のセンサを車両に別々に
設ければよい。しかし、これでは車両に2種類のセンサ
を設けなければならないので、最良の方法とはいえない
Conventionally, in order to detect the inclination of a vehicle, etc., there has been an angle detection device as a tilt sensor as disclosed in Japanese Patent Application Laid-Open No. 58-21812, and in order to detect acceleration, there has been an angle detection device as a special acceleration sensor. There is one disclosed in JP-A-60-149976. If it is desired to detect the inclination and acceleration of the vehicle, these two types of sensors may be provided separately in the vehicle. However, since this requires two types of sensors to be installed in the vehicle, it is not the best method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで、本発明は前述の問題点に鑑み1種類のセンサで
車両の走行状態に応じて傾斜と加速度とを選択的に検出
できる車両傾斜加速度センサを提供することを目的とす
る。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a vehicle tilt acceleration sensor that can selectively detect tilt and acceleration depending on the running state of the vehicle using one type of sensor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前述の目的を達成するために、車両に固定され
る容器と、 この容器内に収納゛される慣性体と、 この慣性体と前記容器との間に配置され、この慣性体が
多方向におよぼす圧力を電気的な圧力信号に変換する複
数の感圧素子と、 前記車両の状態に応じて第1および第2の信号を発生す
る車両状態検出手段と、 この車両状態検出手段からの前記第1の信号を受けると
、前記感圧素子からの前記圧力信号に基づいて、前記車
両の傾斜方向および傾斜角度を演算し、前記車両状態検
出手段からの前記第2の信号を受けると、前記感圧素子
からの前記圧力信号に基づいて、前記車両に作用する加
速度方向および加速度を演算する演算手段とを具備する
という技術的手段を採用する。
In order to achieve the above-mentioned object, the present invention includes a container fixed to a vehicle, an inertial body housed in the container, and a multi-purpose inertial body disposed between the inertial body and the container. a plurality of pressure sensing elements that convert pressure exerted in a direction into an electrical pressure signal; a vehicle state detection means that generates first and second signals according to the state of the vehicle; and a vehicle state detection means that generates signals from the vehicle state detection means. Upon receiving the first signal, calculate the tilt direction and tilt angle of the vehicle based on the pressure signal from the pressure sensing element, and upon receiving the second signal from the vehicle state detection means, A technical means is adopted that includes a calculation means for calculating the acceleration direction and acceleration acting on the vehicle based on the pressure signal from the pressure sensing element.

〔作用〕[Effect]

本発明装置は、車両が停車中か走行中かなどの状態を車
両状態検出手段が検出し、この車両状態検出手段の第1
と第2の信号に基づいて、演算手段は感圧素子からの圧
力信号から傾斜を演算するか、加速度を演算するかを判
断する。そして、感圧素子からの圧力信号から、傾斜か
加速度かのいずれかを選択的に演算する。ここで、本発
明は、車両の傾斜及び加速度の方向は、複数の感圧素子
が慣性体から受ける各々の圧力信号を合成することによ
り演算する。
In the device of the present invention, a vehicle state detecting means detects a state such as whether the vehicle is stopped or running, and a first
Based on the second signal, the calculating means determines whether to calculate the slope or the acceleration from the pressure signal from the pressure sensitive element. Then, either inclination or acceleration is selectively calculated from the pressure signal from the pressure sensitive element. Here, in the present invention, the direction of inclination and acceleration of the vehicle is calculated by combining respective pressure signals received by a plurality of pressure sensing elements from an inertial body.

〔発明の効果〕〔Effect of the invention〕

本発明は、複数の感圧素子および慣性体を組合せるとと
もに、車両の状態に応じて感圧素子の検出する圧力信号
が車両の傾斜に依存するのか、車両に作用するのかを判
定しているので、傾斜センサ、加速度センサを個別に設
けることなく傾斜と加速度を選択的に検出することがで
きる。
The present invention combines a plurality of pressure-sensitive elements and an inertial body, and determines whether the pressure signal detected by the pressure-sensitive element depends on the inclination of the vehicle or acts on the vehicle depending on the state of the vehicle. Therefore, tilt and acceleration can be selectively detected without separately providing a tilt sensor and an acceleration sensor.

〔実施例〕〔Example〕

以下本発明の実施例を図に基づいて詳述する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

本実施例は、車両状態検出手段である車速センサと組合
されて、車両の停車時には傾斜センサとして作動し、車
両の走行時には車両の加速度センサとして作動する車両
センサである。
This embodiment is a vehicle sensor that is combined with a vehicle speed sensor serving as a vehicle state detection means, and operates as an inclination sensor when the vehicle is stopped, and as an acceleration sensor of the vehicle when the vehicle is running.

まず、第2図、第3図は本実施例の車両センサ本体Sの
断面図である。
First, FIGS. 2 and 3 are cross-sectional views of the vehicle sensor main body S of this embodiment.

容器3は内部の水平方向断面が正方形の箱体3aと、こ
の蓋体3bとから成る。この箱体3aは車体4の一部の
水平面に固定され、この内部の第1の側面Aには第1の
感圧素子2aが接着剤により固着され、以下筒2の側面
Bには第2の感圧素子2、第3の側面Cには第3の感圧
素子2C1第4の側面りには第4の感圧素子2dがそれ
ぞれ接着材により固着されている。そして、これらの感
圧素子2が固着された箱体3aの中に、すべての感圧素
子2の内側の面と接する大きさの球体lが入れられ、蓋
体3bにより蓋がされる。ここで、球体1は慣性体とし
て作用する鉄製であり、箱体3が傾いた時や、外部から
加速度を受けた時に、この球体1の移動方向の感圧素子
を変形させるのに十分な質量をもっている。
The container 3 consists of a box 3a whose internal horizontal cross section is square and a lid 3b. This box body 3a is fixed to a horizontal surface of a part of the vehicle body 4, and a first pressure sensitive element 2a is fixed to a first side surface A inside this box body 3a with an adhesive, and a second pressure sensitive element 2a is fixed to a side surface B of the cylinder 2. A third pressure sensitive element 2C1 is fixed to the third side surface C, and a fourth pressure sensitive element 2d is fixed to the fourth side surface C by adhesive. A sphere l having a size that contacts the inner surfaces of all the pressure sensitive elements 2 is placed in the box 3a to which these pressure sensitive elements 2 are fixed, and is covered with a lid 3b. Here, the sphere 1 is made of iron and acts as an inertial body, and has enough mass to deform the pressure-sensitive element in the direction of movement of the sphere 1 when the box 3 is tilted or when it receives acceleration from the outside. have.

第4図は、本実施例の感圧素子2の断面図である。この
感圧素子2は、圧力によって変形し、これによって電気
抵抗値が変化する板状の感圧導電性ゴム31と、この両
面に設けられる変形可能な2枚の平板電極32.33と
これらを覆う絶縁被覆34から成る。そして、平板電極
32.33は、リード、vI35.36と接続される。
FIG. 4 is a sectional view of the pressure sensitive element 2 of this example. This pressure-sensitive element 2 includes a plate-shaped pressure-sensitive conductive rubber 31 that is deformed by pressure and changes its electrical resistance value, and two deformable flat plate electrodes 32 and 33 provided on both sides of the rubber. It consists of an insulating sheath 34 covering it. The plate electrodes 32.33 are then connected to leads, vI35.36.

なお、第2図。In addition, Fig. 2.

第3図において、各感圧素子2のリード線35゜36は
、箱体3aに設けられた穴から一括して取り出されてい
るが、便宜上、第2図、第3図ではこの図示を省略した
。これらの感圧素子2は第5図にしめされるように、感
圧素子2を変形させる圧力Fが増すと電気抵抗値Rが減
少するという特性を有している。
In FIG. 3, the lead wires 35 and 36 of each pressure-sensitive element 2 are taken out all at once from a hole provided in the box body 3a, but for convenience, this illustration is omitted in FIGS. 2 and 3. did. As shown in FIG. 5, these pressure-sensitive elements 2 have a characteristic that as the pressure F that deforms the pressure-sensitive element 2 increases, the electrical resistance value R decreases.

第1図は、前述の車両センサ本体Sを含む車両傾斜加速
度センサのシステム全体を示すブロック図である。車両
センサSの各感圧素子2の抵抗値の変化は、電田の変化
としてA−D変換器1)に入力され、ここで、デジタル
変換されて、演算手段であるマイクロコンピュータ12
に入力される。
FIG. 1 is a block diagram showing the entire system of a vehicle tilt acceleration sensor including the vehicle sensor main body S described above. Changes in the resistance value of each pressure-sensitive element 2 of the vehicle sensor S are input as changes in electric fields to an A-D converter 1), where they are digitally converted and sent to a microcomputer 12, which is a calculation means.
is input.

マイクロコンピュータ12には、車速センサ13から車
速に応じた電気信号が入力されている。そして、このマ
イクロコンピュータ12の出力は、車両の状態を表示す
る傾斜計や加速度計等のメータ14、例えばショックア
ブソーバなどを制御するアクチュエータや、傾斜状態を
報知するブザーなどに接続される。
The microcomputer 12 receives an electrical signal from a vehicle speed sensor 13 that corresponds to the vehicle speed. The output of the microcomputer 12 is connected to a meter 14 such as an inclinometer or an accelerometer that displays the state of the vehicle, an actuator that controls a shock absorber, and a buzzer that notifies the state of inclination.

以下、本実施例の作動を図に基づいて詳述する。Hereinafter, the operation of this embodiment will be explained in detail based on the drawings.

まず、車速センサ13の電気信号が車速がOであること
を示す第1信号がマイクロコンピュータ12に入力され
ている場合、車両センサSは傾斜センサとして作動する
First, when the first electrical signal from the vehicle speed sensor 13 indicating that the vehicle speed is O is input to the microcomputer 12, the vehicle sensor S operates as a tilt sensor.

第3図の車両センサSの図中右側が角度θで高くなった
とする。球体1の質量をM、重力加速度をgとすると、
その重ff1Mgは、図のようにθだけ傾き、箱体3a
の底面方向の分力Mgcosθと、第1の側面Aの方向
の分力1v(gsinθとを生じる。この分力Mg5t
nθにより第1の側面Aに固着された第1の感圧素子2
は変形され、この変形による抵抗値の変化は、電圧の変
化としてマイクロコンピュータ12に入力される。マイ
クロコンピュータ12は、この電圧から第1の感圧素子
2aに加わる圧力を求め、さらに容器3つまり車両4の
重力加速度に対する傾斜角度と傾斜方向とを演算する。
Assume that the right side of the vehicle sensor S in FIG. 3 is raised at an angle θ. If the mass of sphere 1 is M and the gravitational acceleration is g, then
Its weight ff1Mg is tilted by θ as shown in the figure, and the box body 3a
A component force Mg cos θ in the direction of the bottom surface and a component force 1v (g sin θ) in the direction of the first side surface A are generated.
The first pressure sensitive element 2 fixed to the first side surface A by nθ
is deformed, and the change in resistance value due to this deformation is input to the microcomputer 12 as a change in voltage. The microcomputer 12 determines the pressure applied to the first pressure-sensitive element 2a from this voltage, and further calculates the angle and direction of inclination of the container 3, that is, the vehicle 4, relative to the gravitational acceleration.

第2図の車両センサSの図中右側上方の点Eが左側下方
の点Fを支点にして角度θ高く傾斜したとすると、球体
1の重量は箱体3aの底面と、第1の側面Aと、第2の
側面Bとの方向の分力を生じる。この分力により、第1
の感圧素子2と第2の感圧素子2とが変形し、それぞれ
の抵抗値の変化は電圧の変化としてマイクロコンピュー
タ12に入力される。マイクロコンピュータ12は、そ
れぞれの感圧素子2a、2bに加わる圧力を求め、これ
らから車両4の重量加速度に対する傾斜角度と傾斜方向
とを演算する。各感圧素子2と球体4との相対的な位置
関係により、各感圧素子2が球体4から受ける圧力の分
布は、傾斜の角度と方向とで変化する。従って、各感圧
素子2に加わる圧力と方向をベクトルとして合成すれば
、傾斜による球体4の移動方向がわかり、傾斜の角度と
方向とが求まる。
Assuming that the point E on the upper right side of the vehicle sensor S in FIG. 2 is tilted at a high angle θ with the point F on the lower left side as a fulcrum, the weight of the sphere 1 is between the bottom surface of the box body 3a and the first side surface A. and a component force in the direction of the second side surface B is generated. With this component force, the first
The pressure sensitive element 2 and the second pressure sensitive element 2 are deformed, and the change in their respective resistance values is input to the microcomputer 12 as a change in voltage. The microcomputer 12 determines the pressure applied to each pressure sensitive element 2a, 2b, and calculates the tilt angle and tilt direction of the vehicle 4 with respect to the weight acceleration from these. Depending on the relative positional relationship between each pressure sensitive element 2 and the sphere 4, the distribution of pressure that each pressure sensitive element 2 receives from the sphere 4 changes depending on the angle and direction of inclination. Therefore, by combining the pressure and direction applied to each pressure-sensitive element 2 as a vector, the direction in which the sphere 4 moves due to the inclination can be determined, and the angle and direction of the inclination can be determined.

そして、これらの演算した結果を傾斜計14に出力し、
運転者に車両の傾斜を伝える。また、この時の傾斜が車
両の運転に危険な角度、あるいは盗難その他による異常
な傾斜であると判断した場合には、ブザー15を鳴らす
Then, the results of these calculations are output to the inclinometer 14,
Informs the driver of the vehicle's inclination. Further, if it is determined that the tilt at this time is a dangerous angle for driving the vehicle or an abnormal tilt due to theft or the like, the buzzer 15 sounds.

次に、車速センサ13の電気信号が車速がOではなく、
車両が走行状態にあることを示す第2信号がマイクロコ
ンピュータ12に入力されている場合、車両センサSは
加速度センサとして作動する。車両4が第3図右側へ加
速したとする。すると、容器3は車両4に固定されてお
り、この内部の球体1は慣性を有しているため、球体1
は第3図左側へつまり第1の側面Aに向かって移動しよ
うとする。そして、この移動方向の第1の側面Aとの間
にある第1の感圧素子2aを変形させる。
Next, the electric signal of the vehicle speed sensor 13 indicates that the vehicle speed is not O,
When the second signal indicating that the vehicle is in a running state is input to the microcomputer 12, the vehicle sensor S operates as an acceleration sensor. Assume that the vehicle 4 accelerates to the right in FIG. Then, since the container 3 is fixed to the vehicle 4 and the sphere 1 inside has inertia, the sphere 1
tries to move toward the left side in FIG. 3, that is, toward the first side A. Then, the first pressure sensitive element 2a located between it and the first side surface A in this moving direction is deformed.

この第1の感圧素子2の変形による抵抗値の変化をマイ
クロコンピュータ12は電圧の変化として検出する。マ
イクロコンピュータ12は、この電圧から球体1が第1
の感圧素子2を変形させる圧力を求め、これと反対方向
の加速度の大きさを演算する。
The microcomputer 12 detects a change in resistance value due to the deformation of the first pressure sensitive element 2 as a change in voltage. The microcomputer 12 determines that the sphere 1 is the first
The pressure that deforms the pressure sensitive element 2 is determined, and the magnitude of the acceleration in the opposite direction is calculated.

第2図の点Fから点已に向かって加速度が働いたとする
と、球体1はその慣性によって点Fの方向に移動しよう
とし、第1の感圧素子2aと第2の感圧素子2bとを変
形させる。マイクロコンピュータ12は、この変形によ
る抵抗値の変化を電圧の変化として検出し、それぞれの
感圧素子2を変形させる圧力の方向と強さから、球体1
に働いた加速度の方向と大きさを演算により合成する。
Assuming that acceleration is applied from point F to point A in FIG. Transform. The microcomputer 12 detects the change in resistance value due to this deformation as a change in voltage, and determines the shape of the sphere 1 based on the direction and strength of the pressure that deforms each pressure-sensitive element 2.
The direction and magnitude of the acceleration acting on the object are calculated and synthesized.

そして、これらの演算した結果を、加速度計14やこの
加速度に応じて作動する各種アクチュエータ15等に出
力する。
Then, the results of these calculations are output to the accelerometer 14, various actuators 15, etc. that operate according to this acceleration.

本実力缶例は、以上の構成および作動により、1基の車
両センサSにより、車両4の傾斜と水平方向の加速度と
を検出することができる。
With the above-described configuration and operation, this practical example can detect the inclination and horizontal acceleration of the vehicle 4 using one vehicle sensor S.

また、本実施例の車両センサSは簡単な構造であり、し
かも感圧素子2として弾性体である感圧導電性ゴムを使
用し、唯一の可動部である球体1は感圧素子2と接して
おり、その移動範囲は感圧素子2の変形する範囲に限ら
れるため、機械的強度に優れた、振動等に対する検出誤
差の小さいものである。
Further, the vehicle sensor S of this embodiment has a simple structure, and uses pressure-sensitive conductive rubber, which is an elastic body, as the pressure-sensitive element 2, and the spherical body 1, which is the only movable part, is in contact with the pressure-sensitive element 2. Since the movement range is limited to the range in which the pressure sensitive element 2 deforms, it has excellent mechanical strength and has a small detection error against vibrations and the like.

本実施例では、球体1に外接する立方体の4つの垂直面
の位置に感圧素子2を設けたが、第6図。
In this embodiment, the pressure-sensitive elements 2 are provided at four vertical surfaces of a cube circumscribing the sphere 1, as shown in FIG.

第7図のように球体1に外接する三角柱の3つの垂直面
の位置に感圧素子2を設けてもよい。
As shown in FIG. 7, the pressure sensitive elements 2 may be provided at three vertical surfaces of a triangular prism circumscribing the sphere 1.

また、球体1と外接する四面体以上の多面体の各面の位
置に感圧素子2を配設すれば、上下方向の振動等を含む
すべての方向の加速度を検出することができる。また、
本実施例の感圧素子は、感圧伝導性ゴムの圧力−抵抗特
性を利用したものであるが、一般に圧電素子と呼ばれる
ピエゾ半導体等を利用したものでもよい。また、車両状
態検出手段は、車速センサに限らずエンジンの作動の有
無を検出する回転センサや、運転者の有無を検出するセ
ンサ等を用いて、エンジンの作動時や運転者の乗車中に
はこれらを示す第2信号を発生させ、これら以外の時に
は第1信号を発生させて、加速度と傾斜とを区別して検
出することも可能である。
Further, by disposing the pressure sensitive element 2 at each surface of a polyhedron of tetrahedron or more that circumscribes the sphere 1, it is possible to detect acceleration in all directions including vibrations in the vertical direction. Also,
Although the pressure-sensitive element of this embodiment utilizes the pressure-resistance characteristics of pressure-sensitive conductive rubber, it may also utilize a piezo semiconductor generally called a piezoelectric element. In addition, the vehicle condition detection means is not limited to the vehicle speed sensor, but also uses a rotation sensor that detects whether the engine is operating or a sensor that detects the presence or absence of the driver. It is also possible to generate a second signal indicating these, and generate a first signal at other times, so that acceleration and inclination can be detected separately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック構成図、第2
図は一実施例の車両センサの水平方向断面図、第3図は
第2図のn−n断面図、第4図は第2図に示した車両セ
ンサに用いる感圧素子の断面図、第5図は第4図に示し
た感圧素子の圧カー砥抗の関係を示す特性図、第6図は
他の実施例の車両センサの水平方向断面図、第7図は第
6図のVI−Vl断面図である。 S・・・車両センサ、1・・・慣性体、2・・・感圧素
子。 3・・・容器、4・・・車体、12・・・演算手段、1
3・・・車両状態検出手段。 代理人弁理士 岡  部   隆 S:卓出L4 1  )1.4鵡 2:S圧!#、↓ 3:9  器 4:車 梼 +2 : !fA N 4−n 13:庫1)工旭謹出手珍 第1図
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG.
The figure is a horizontal cross-sectional view of a vehicle sensor according to an embodiment, FIG. 3 is a cross-sectional view taken along the line nn in FIG. 2, and FIG. 5 is a characteristic diagram showing the relationship between the pressure-sensitive element and the pressure car grinding force shown in FIG. 4, FIG. 6 is a horizontal sectional view of a vehicle sensor of another embodiment, and FIG. 7 is a VI of FIG. 6. -Vl sectional view. S... Vehicle sensor, 1... Inertial body, 2... Pressure sensitive element. 3... Container, 4... Vehicle body, 12... Calculating means, 1
3...Vehicle state detection means. Representative Patent Attorney Takashi Okabe S: Excellent L4 1) 1.4 Parrot 2: S Pressure! #, ↓ 3:9 Vessel 4: Car 梼+2: ! fA N 4-n 13: Warehouse 1) Koukasahi Kinde Techin Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1) 車両に固定される容器と、 この容器内に収納される慣性体と、 この慣性体と前記容器との間に配置され、この慣性体が
多方向におよぼす圧力を電気的な圧力信号に変換する複
数の感圧素子と、 前記車両の状態に応じて第1および第2の信号を発生す
る車両状態検出手段と、 この車両状態検出手段からの前記第1の信号を受けると
、前記感圧素子からの前記圧力信号に基づいて、前記車
両の傾斜方向および傾斜角度を演算し、前記車両状態検
出手段からの前記第2の信号を受けると、前記感圧素子
からの前記圧力信号に基づいて、前記車両に作用する加
速度方向および加速度を演算する演算手段とを具備する
ことを特徴とする車両傾斜加速度センサ。
(1) A container fixed to a vehicle, an inertial body housed in this container, and an electrical pressure signal that is placed between this inertial body and the container and measures the pressure exerted by this inertial body in multiple directions. a plurality of pressure sensing elements for converting the pressure into the vehicle; vehicle state detection means for generating first and second signals in accordance with the state of the vehicle; and upon receiving the first signal from the vehicle state detection means, the The direction and angle of inclination of the vehicle are calculated based on the pressure signal from the pressure sensing element, and upon receiving the second signal from the vehicle state detection means, the pressure signal from the pressure sensing element is calculated. 1. A vehicle tilt acceleration sensor, comprising: calculation means for calculating an acceleration direction and acceleration acting on the vehicle based on the above information.
(2) 前記車両状態検出手段は、前記第1の信号とし
て車両停車状態を示す停車信号、前記第2の信号として
車両走行状態を示す走行信号を発生する車速センサであ
ることを特徴とする特許請求の範囲第1項記載の車両傾
斜加速度センサ。
(2) A patent characterized in that the vehicle state detection means is a vehicle speed sensor that generates a stop signal indicating the vehicle stop state as the first signal and a running signal indicating the vehicle running state as the second signal. A vehicle tilt acceleration sensor according to claim 1.
JP61053151A 1986-03-11 1986-03-11 Vehicle inclination and acceleration sensor Pending JPS62209311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61053151A JPS62209311A (en) 1986-03-11 1986-03-11 Vehicle inclination and acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61053151A JPS62209311A (en) 1986-03-11 1986-03-11 Vehicle inclination and acceleration sensor

Publications (1)

Publication Number Publication Date
JPS62209311A true JPS62209311A (en) 1987-09-14

Family

ID=12934834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61053151A Pending JPS62209311A (en) 1986-03-11 1986-03-11 Vehicle inclination and acceleration sensor

Country Status (1)

Country Link
JP (1) JPS62209311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149568A (en) * 1986-12-13 1988-06-22 Agency Of Ind Science & Technol Method and apparatus for detecting three-dimensional acceleration
JP2007233625A (en) * 2006-02-28 2007-09-13 Saxa Inc Security device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149568A (en) * 1986-12-13 1988-06-22 Agency Of Ind Science & Technol Method and apparatus for detecting three-dimensional acceleration
JP2007233625A (en) * 2006-02-28 2007-09-13 Saxa Inc Security device

Similar Documents

Publication Publication Date Title
EP2878939B1 (en) Force detecting device, robot, eletronic component conveying apparatus
US5441300A (en) Three-dimensional acceleration sensor and airbag using the same
US20050217378A1 (en) Inertial sensor
US20090087253A1 (en) Ball and socket joint with sensor device, process for load measurement and process for wear measurement
JPH0448597B2 (en)
WO1991010118A1 (en) Apparatus for detecting physical quantity that acts as external force and method of testing and producing this apparatus
US20060162450A1 (en) Acceleration sensor and inclination-detecting method
JP3089399B2 (en) 3-component seismometer
US5811910A (en) Mechanical shock sensor
JPS62209311A (en) Vehicle inclination and acceleration sensor
CN110243343A (en) Sensor module, dipmeter and works monitoring arrangement
US20040238235A1 (en) Load sensor
JPS60244863A (en) Impact detector
US11933809B2 (en) Inertial sensor
WO2021261556A1 (en) Inertial force sensor
JPS6315131A (en) Multicomponent force detector and multicomponent force detection apparatus using the same
JPS6389282A (en) Tactile sensor
JP4774733B2 (en) Compound sensor
JPH07234244A (en) Acceleration sensor
JP2802954B2 (en) Test method for a sensor having a force acting body and a sensor capable of implementing the method
JPH0584870B2 (en)
JPH01197661A (en) Acceleration sensor
JP2539560B2 (en) Semiconductor acceleration sensor and airbag system
JPH08160070A (en) Acceleration sensor
JPS60166817A (en) Inclination detector