JPS62208830A - Fine hole electric discharge machine - Google Patents

Fine hole electric discharge machine

Info

Publication number
JPS62208830A
JPS62208830A JP5020586A JP5020586A JPS62208830A JP S62208830 A JPS62208830 A JP S62208830A JP 5020586 A JP5020586 A JP 5020586A JP 5020586 A JP5020586 A JP 5020586A JP S62208830 A JPS62208830 A JP S62208830A
Authority
JP
Japan
Prior art keywords
electrode
machining
workpiece
forming
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5020586A
Other languages
Japanese (ja)
Other versions
JPH074702B2 (en
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP5020586A priority Critical patent/JPH074702B2/en
Publication of JPS62208830A publication Critical patent/JPS62208830A/en
Publication of JPH074702B2 publication Critical patent/JPH074702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To allow high-precision and high-speed machining of a different-shape hole and a deep hole by providing a formed cross section shape molding electrode before a bore machining electrode and a work meet together and providing a mold machining power supply and a bore machining power supply jointly or separately. CONSTITUTION:A bore machining electrode 1 is guided by a feed roller 4 via guides 2, 3, and its outer shape is mold-machined by a molding electrode 6. Immediately after the bore machining electrode 1 penetrates the molding electrode 6, it faces a work 7 arranged nearby, and bore machining with the same shape as the molding electrode 6 is performed. A mold machining power supply 10 and the bore machining electrode 1 and connected as a positive electrode for the molding electrode 6, and a bore machining power supply 11 and the work 7 and connected as a positive electrode for bore machining. Or, one power supply can be switched for mold machining and bore machining in turn. Accordingly, the bore machining electrode 1 molded by the molding electrode 6 is immediately used for machining using the molding electrode 6 as a guide, thus stably and correctly guided high-precision and high-speed boring can be performed.

Description

【発明の詳細な説明】 細孔加工する放電加工装置に関する。[Detailed description of the invention] The present invention relates to an electric discharge machining device for machining small holes.

〔従来技術〕[Prior art]

従来の細孔加工には予め線引加工等により所要形状、寸
法に成形した細線電極を用い、これを孔明形状によって
直線、又は曲線状にガイドしながら放電孔明加工するよ
うにしている。
Conventional fine hole machining uses a thin wire electrode that has been formed into a desired shape and size by wire drawing or the like in advance, and is guided in a straight line or curved shape depending on the hole shape during discharge hole machining.

〔問題点〕〔problem〕

放電加工に於ては、通常電極消耗がある。長い細線電極
を用い、これを途中変形なく正確にガイドすることは容
易ではなく、通常は変形し曲りを伴なう。特に線径断面
が異形状の場合等正確なガイドが困難で、このようなガ
イドが正確に行かないとき加工孔精度が低下するととも
に安定放電ができず、加工速度が低下し、深孔加工が困
難になる。
In electrical discharge machining, there is usually electrode wear. It is not easy to accurately guide a long thin wire electrode without deforming it along the way, and it is usually accompanied by deformation and bending. Accurate guidance is difficult, especially when the wire diameter cross section is irregularly shaped, and when such guidance is not accurate, the accuracy of the machined hole decreases and stable electrical discharge is not possible, the machining speed decreases, and deep hole machining becomes difficult. It becomes difficult.

〔問題点の解決手段〕[Means for solving problems]

本発明はかかる点に鑑みて提案されたもので、細線加工
用電極の被加工体と対向する手前に於て、所要の総型断
面形状の成形用電極を設け、該成形用電極と前記細線加
工用電極との間に細線加工用電源を兼用するか、又は別
個の細線加工電極の成形放電加工用電源を設け、細線加
工電極を連続的に途中で成形加工したまま被加工体に供
給して孔明加工を施す・ようにしたことを特徴とするも
のである。
The present invention has been proposed in view of this point, and includes providing a forming electrode having a desired general cross-sectional shape on the front side of the thin wire processing electrode facing the workpiece, and connecting the forming electrode with the thin wire. Either use a power source for fine wire machining between the machining electrode, or provide a separate power source for forming electric discharge machining for the fine wire machining electrode, and supply the thin wire machining electrode continuously to the workpiece while being formed midway. It is characterized in that it is perforated with a hole.

〔実施例〕〔Example〕

以下図面の一実施例により本発明を説明する。 The present invention will be explained below with reference to an embodiment of the drawings.

第1図に於て、1は細線加工電極の母材で、長6>線材
を用い、途中で複数のガイド2,3により直線ガイドさ
れる。4は送給用のローラで、サーボモータ5によりサ
ーボしながら供給する。6は成形加工の雄型断面形状の
穴を有する電極で、穴内に前記ガイドされた細線加工電
極1を貫通させ、この成形加工Ti極6を貫通した部分
に被加工体7を固定し、細線加工電極1の先端を対向し
て加工する。8は被加工体7を固定する中空加工台で、
サーボモータ9により被加工体7を細線加工電極1に対
して上方に加工追従サーボ送りを与える。10は細線加
工電極1を成形加工するために成形用電極6との間に設
けられ成形加工用電源、通電極性は通常加工電極1を正
極とする極性に通電する。
In FIG. 1, reference numeral 1 denotes a base material of a thin wire-processed electrode, which uses a length 6 wire rod and is linearly guided by a plurality of guides 2 and 3 along the way. Reference numeral 4 denotes a feeding roller, which is fed while being servoed by a servo motor 5. Reference numeral 6 denotes an electrode having a molded hole with a male cross-sectional shape, the guided thin wire processed electrode 1 is passed through the hole, a workpiece 7 is fixed to the part that has passed through the formed Ti electrode 6, and the thin wire Processing is performed with the tips of the processing electrodes 1 facing each other. 8 is a hollow processing table that fixes the workpiece 7;
A servo motor 9 applies machining follow-up servo feed of the workpiece 7 upward to the fine wire machining electrode 1 . Reference numeral 10 denotes a power source for forming, which is provided between the thin wire processing electrode 1 and the forming electrode 6 to form the thin wire processing electrode 1, and is normally energized with the processing electrode 1 as the positive electrode.

11は細孔加工用電源で、被加工体7と加工電極1との
間に通常は被加工体7を正極とする極性に接続する。勿
論加工材質等によって逆極性通電をすることがある。1
2は加工タンクで、成形電極6の周りを支持板によって
区切り、タンクを上下二段に分離し、上段にパイプ13
より加工液を供給し、成形電極らを流下する液を被加工
体7の加工部分に供給する。勿論細孔加工電極1にパイ
プ電極を用いるときはパイプ内を噴流するようにするこ
とができる。
Reference numeral 11 denotes a power source for pore machining, which is normally connected between the workpiece 7 and the processing electrode 1 with the workpiece 7 as the positive electrode. Of course, reverse polarity energization may occur depending on the material to be processed. 1
2 is a processing tank, the area around the molded electrode 6 is partitioned by a support plate, the tank is divided into upper and lower stages, and a pipe 13 is installed in the upper stage.
The machining liquid is supplied from the molded electrode, and the liquid flowing down the molded electrodes is supplied to the machining portion of the workpiece 7. Of course, when a pipe electrode is used as the pore machining electrode 1, it is possible to use a jet flow inside the pipe.

第2図は、所望孔形状をした成形電極6の上断面図で、
電極中心に、四角、円、折線・・・・・・・・・等の希
望する任意の穴をダイス状に形成し、これを細線加工電
極1を貫通して成形加工する。
FIG. 2 is a top sectional view of a molded electrode 6 having a desired hole shape.
A desired arbitrary hole such as a square, circle, broken line, etc. is formed in the center of the electrode in the shape of a die, and the thin wire-processed electrode 1 is penetrated through this hole to be formed.

上方から細線加工電極1の送給加工する場合、上下に形
成した成形電極6と被加工体7とは成可近接配置する方
がよい。
When feeding and processing the thin wire processing electrode 1 from above, it is preferable that the forming electrode 6 and the workpiece 7 formed above and below are arranged as close as possible.

細線加工電極1に送りを与えるターボモータ5は、電極
1と成形電極6間、又は被加工体7に送り与えるサーボ
モータ9は電極1と被加工体7間の電圧等の検出信号を
利用して制御する。送給ローラ4によって送られる細線
加工電極1はガイド2.3によってガイドされながら、
先ず成形電極6と対向して外形形状の成形加工が行なわ
れる。加工されて形状精度を高精度にした線電極は先端
部分をそのまま成形電極6を貫通して被加工体7と対向
し、被加工体7の位置合せした部分に放電加工し穿孔す
るようにする。成形電極6は第2図に示すような任意の
形状のものが利用でき、この成形電極6と同一形状の穿
孔加工を被加工体B−施すことができる。又、成形電極
6は被加工体7に充分に近接配置することができ、ここ
で放電加工により高精度に形成すると共に、この成形電
極6が貫通する加工電極1のガイドを兼用し高精度にガ
イドすることができる。従って、この線電極1先端で加
工される加工孔はストレートに高精度をもって加工形成
することができる。勿論電極のガイド形状によっては任
意に曲り孔等も加工することができる。
The turbo motor 5 that feeds the thin wire processing electrode 1 uses detection signals such as voltage between the electrode 1 and the forming electrode 6, or the servo motor 9 that feeds the workpiece 7 between the electrode 1 and the workpiece 7. control. The fine wire processed electrode 1 sent by the feeding roller 4 is guided by the guide 2.3 while
First, the outer shape of the electrode 6 is molded facing the molded electrode 6. The wire electrode, which has been processed to have a highly accurate shape, passes through the shaped electrode 6 with its tip end facing the workpiece 7, and performs electrical discharge machining to make a hole in the aligned part of the workpiece 7. . The shaped electrode 6 can have any shape as shown in FIG. 2, and the workpiece B can be perforated to have the same shape as the shaped electrode 6. In addition, the shaped electrode 6 can be placed sufficiently close to the workpiece 7, and is formed with high precision by electrical discharge machining.The shaped electrode 6 also serves as a guide for the machined electrode 1 that passes through it, so that it can be formed with high precision. can guide you. Therefore, the hole to be machined at the tip of the wire electrode 1 can be formed straight with high accuracy. Of course, depending on the guide shape of the electrode, a bent hole or the like can be formed as desired.

尚、K@線加工電極1は中実体でもパイプでも利用でき
、パイプの場合はバイブ内から加工液の噴流ができ、加
工安定性を向上する。又、電極外形が円形の場合は回転
を与えながら加工することができ、被加工体7を回転し
ながら加工することができる。
The K@ wire machining electrode 1 can be used as a solid body or as a pipe, and in the case of a pipe, a jet of machining liquid can be generated from within the vibrator, improving machining stability. Further, when the electrode has a circular outer shape, processing can be performed while applying rotation, and the workpiece 7 can be processed while being rotated.

又、前記実施例に於ては、細線加工電極の成形加工用電
源と被加工体の細孔加工用電源とを別々に設けたが、電
源を兼用することができる。兼用する場合の加工として
は切換器を設け、成形電極6による細線電極1の所要長
さの成形加工を行なって貫通する細線加工電極1の送り
を停止し、電極先端に被加工体1、を送って被加工体7
の加工を行ない、更に電極1消耗時に、電源の切換をし
て加工電極1の成形加工を行なうというように電極成形
と穿孔加工とを電源の切換、加工送りの切換により交互
に繰返して加工することができる。
Further, in the above embodiment, the power source for forming the thin wire processing electrode and the power source for forming the fine holes in the workpiece are provided separately, but the power source can be used in combination. In the case of dual use, a switch is installed, the forming electrode 6 is used to form the thin wire electrode 1 to the required length, the feeding of the penetrating thin wire processing electrode 1 is stopped, and the workpiece 1 is placed at the tip of the electrode. Send workpiece 7
Then, when the electrode 1 is consumed, the power source is switched and the processing electrode 1 is formed.Thus, electrode forming and punching are repeated alternately by switching the power source and processing feed. be able to.

又、成形電極6による加工量は、通常微小量の表面加工
にすぎないから、成形加工と穿孔加工とを同時に行なう
場合、成形加工間隙の加工状態は無視して被加工体1の
間隙から検出した信号によつてモータ制御し追従送りし
て加工するようにすることができる。
In addition, since the amount of machining by the forming electrode 6 is usually only a small amount of surface machining, when forming and punching are performed simultaneously, the machining state of the forming gap is ignored and detection is performed from the gap of the workpiece 1. The motor can be controlled by the generated signal to carry out follow-up feeding and machining.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、細孔明は加工に於て、m線加工
電極の被加工体と対向する手前に所要の雄型断面形状の
成形用電極を設け、該成形用電極によって前記細線加工
電極との間に放電を行なって細線加工電極の成形加工し
た後、そのまま成形用電極を通過した細線加工電極先端
を被加工体に対向して放電加工により細孔加工するよう
にしたことを特徴とするものであるから、細孔加工電極
には単純形電極を使用でき、これを成形しながら任意の
断面形状の細孔加工を簡単容易に行なうことができる。
As described above, the present invention provides a molding electrode having a required male cross-sectional shape in front of the m-line processing electrode facing the workpiece during fine-hole processing, and the forming electrode is used to perform the fine-wire processing. A feature is that after forming a fine wire machining electrode by generating electric discharge between the electrode and the electrode, the tip of the fine wire machining electrode that has passed through the forming electrode is faced to the workpiece and a fine hole is machined by electric discharge machining. Therefore, a simple electrode can be used as the pore-machining electrode, and pores of any cross-sectional shape can be easily and easily formed while molding the electrode.

又、被加工体の手前に設ける成形用Ti極がこれを細線
加工電極が貫通することによってガイドとなり加工電極
を成形加工したままの形状に安定に正確にガイドするこ
とができ、これにより穿孔加工を高鞘密に高速度に行な
うことができる。
In addition, the forming Ti electrode provided in front of the workpiece becomes a guide when the thin wire processing electrode passes through it, and the processing electrode can be stably and accurately guided to the shape as formed, thereby making it possible to perform the drilling process. can be carried out with high sheath density and high speed.

従って、本発明によれば、ワイヤカット放電加工用のス
タート孔明け、線引ダイス、燃料噴則ノズル、人絹ノズ
ル、その地異形ノズル等の加工に広く応用できる効果が
ある。
Therefore, the present invention has the effect that it can be widely applied to machining of starting holes for wire-cut electric discharge machining, wire drawing dies, fuel injection nozzles, silk nozzles, irregularly shaped nozzles, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例構成図、第2図の(イ) (
ロ) (ハ)(ニ)(ホ)は一部の各種実施例図である
。 1・・・・・・・・・細線加工用電極 2.3・・・・・・・・・ガイド 5・・・・・・・・・サーボモータ 6・・・・・・・・・成形電極 7・・・・・・・・・被加工体 8・・・・・・・・・加工台 9・・・・・・・・・サーボモータ io、i1・・・・・・・・・電源 12・・・・・・・・・加工タンク 13・・・・・・・・・加工液供給パイプ特  許  
出  願  人 株式会社井上ジャパックス研究所 代表者 井 上   潔 1、事件の表示 昭和61年   特許願第50.205号2、発明の名
称 穿孔放電加工装置 3、補正する者 事件との関係    特許出願人 住 所 神奈川県横浜市緑区長津田町字道正5289番
地名 称 (048)株式会社井上ジャパックスQ所4
、補正により増加する発明の数   「0」、パ   
  へ ち する。 (2)明細用全文を別紙の通り補正する。 訂正明細書 1、発明の名称 穿孔放電加工装置 2、特許請求の範囲 ガイドされる穿孔加工電極の先端を被加工体に対向した
間隙にパルス放電を行ないながら、前記穿孔加工電極と
被加工体間に相対的加工追従送りを与えながら加工する
穿孔放電加工装置に於て、前記穿孔加工電極の前記被加
工体と対向する手前に所要の雄型断面形状の成形用電極
を設け、該成形用電極と前記穿孔加工電極との間に穿孔
加工用電源を兼用するか又は別個の穿孔加工電極の成形
放電加工用電源を設け、前記成形用電極を兼用するか又
は別個の穿孔加工電極を被加工体に対向して放電加工す
るようにしたことを特徴とする穿孔放電加工装置。 3、発明の詳細な説明 〔発明の利用分野〕 本発明は穿孔加工電極の先端により被加工体に穿孔加工
する放電加工装置に関する。 〔従来技術〕 従来の穿孔加工には予め線引加工等により所要形状、寸
法に成形した穿孔加工電極を用い、これを孔明形状によ
って直線、又は曲線状にガイドしながら放電孔明加工す
るようにしている。 〔問題点〕 放電加工に於ては、通常、電極消耗がある。長い穿孔加
工電極を用い、これを途中変形なく正確にガイドするこ
とは容易ではなく、通常は変形し曲りを伴う。特に線径
断面が異形状の場合等正確なガイドが困難で、このよう
なガイドが正確にいかないとぎ加工孔精度が低下すると
ともに安定放電かできず、加工速度が低下し、深孔加工
が困難になる。 〔問題点の解決手段〕 本発明はかかる点に鑑みて提案されたもので、穿孔加工
用電極の被加工体と対向する手前に於て、所要の雄型断
面形状の成形用電極を設け、該成形用電極と前記穿孔加
工用電極との間に穿孔加工用電源を兼用するか、又は別
個の穿孔加工電極の成形放電加工用電源を設け、穿孔加
工電極を連続的に途中で成形加工したまま被加工体に供
給して孔明加工を施すようにしたことを特徴とするもの
である。 〔実施例〕 以下図面の一実施例により本発明を説明する。 第1図に於て、1は穿孔加工電極の母材で、長い線材を
用い、途中で複数のガイド2,3により直線ガイドされ
る。4は送給用のローラで、サーボモータ5によりサー
ボしながら供給する。6は成形加工の雄型断面形状の穴
を有する電極で、穴内に前記ガイドされた穿孔加工電極
1を貫通させ、この成形加工電極6を貫通した部分に被
加工体7を固定し、穿孔加工電極1の先端を対向して加
工する。8は被加工体1を固定する中空加工台で、サー
ボモータ 9により被加工体1を穿孔加工電極1に対し
て上方に加工追従サーボ送りを与える。10は穿孔加工
電極1を成形加工するために成形用電極6との間に設け
られ成形加工用電源、通電極性は通常加工電極1を正極
とする極性に通電する。 11は穿孔加工用電源で、被加工体7と加工電極1との
間に通常は被加工体7を正極とする極性に接続する。勿
論加工材質等によって逆極性通電をすることがある。1
2は加工タンクで、成形電極6の周りを支持板によって
区切り、タンクを上下二段に分離し、上段にバイブ13
より加工液を供給し、成形電極6を流下する液を被加工
体7の加工部分に供給する。勿論穿孔加工電極1にパイ
プ電極を用いるときはパイプ内を噴流するようにするこ
とができる。 第2図は、所望孔形状をした成形電極6の上断面図で、
電橋中心に、四角、円、折線・・・・・・・・・等の希
望する任意の穴をダイス状に形成し、これを穿孔加工T
iff1lを貫通して成形加工する。 上方から穿孔加工電極1の送給加工する場合、上下に形
成した成形電極6と被加工体7とは成可く近接配置する
方がよい。 穿孔加工電極1に送りを与えるサーボモータ 5は、電
極1と成形電極6間、又は被加工体7に送りを与えるサ
ーボモータ 9は電極1と被加工体1間の電圧等の検出
信号を利用して制御する。送給ローラ4によって送られ
る穿孔加工電極1はガイド2,3によってガイドされな
がら、先ず成形ff1ff16と対向して外形形状の成
形加工が行なわれる。 加工されて形状精度を高精度にした線電極は先端部分を
そのまま成形電極6を貫通して被加工体7と対向し、被
加工体7の位置合せした部分に放電加工し穿孔するよう
にする。成形電極6は第2図に示すような任意の形状の
ものが利用でき、この成形電極6と同一形状の穿孔加工
を被加工体7に施すことができる。又、成形電極6は被
加工体7に充分に近接配置することができ、ここで放電
加工により高精度に形成すると共に、この成形電極6が
貫通する加工電極1のガイドを兼用し高精度にガイドす
ることができる。従って、この穿孔加工電極1先端で加
工される加工孔はストレートに高精度をもって加工形成
することかできる。勿論’11極のガイド形状によって
は任意に曲り孔等も加工することができる。 尚、穿孔加工層4f!1は中実体でもパイプでも利用で
き、バイブの場合はバイブ内から加工液の噴流ができ、
加工安定性を向上する。又、電極外形が円形の場合は回
転を与えながら加工することができ、被加工体7を回転
しながら加工することができる。 又、前記実施例に於ては、穿孔加工電極の成形加工用電
源と被加工体の穿孔加工用電源とを別々に設けたが、電
源を兼用することができる。兼用する場合の加工として
は切換器を設け、成形電極6による穿孔加工電極1の所
要長さの成形加工を行なって貫通する穿孔加工電極1の
送りを停止し、電橋先端に被加工体7を送って被加工体
7の加工を行ない、更に電極1消耗時に、電源の切換を
して加工電極1の成形加工を行なうというように電橋成
形と穿孔加工とを電源の切換、加工送りの切換により交
互に繰返して加工することができる。 勿論、この電ti成形と穿孔加工とを交互に繰返して加
工することは、前記の加工用電源を2つ別々に設けた場
合にも適用することかできる。 又、成形電極6による加工部は、通常微小母の表面加工
にすぎないから、成形加工と穿孔加工とを同時に行なう
場合、成形加工間隙の加工状態は無視して被加工体7の
間隙から検出した信号によってモータ制御し追従送りし
て加工するようにすることができる。 〔発明の効果〕 以上のように本発明は、穿孔加工に於て、穿孔加工電極
の被加工体と対向する手前に所要の雄型断面形状の成形
用電極を設け、該成形用電極によって前記穿孔加工電極
との間に放電を行なって穿孔加工電極の成形加工した後
、そのまま成形用電極を通過した穿孔加工電極先端を被
加工体に対向して放電加工により穿孔加工するようにし
たことを特徴とするものであるから、穿孔加工電極には
単純形電極を使用でき、これを成形しながら任意の断面
形状の穿孔加工を簡単容易に行なうことができる。又、
被加工体の手前に設ける成形用電極がこれを穿孔加工電
極が貫通することによってガイドとなり加工電極を成形
加工したままの形状に安定に正確にガイドすることがで
き、これにより穿孔加工を高精密に高速度に行なうこと
ができる。 従って、本発明によれば、ワイヤカット放電加工用のス
タート孔明け、線引ダイス、燃料噴射ノズル、人絹ノズ
ル、その他界形孔等の加工に広く応用できる効果がある
。 4、図面の簡単な説明 第1図は本発明の一実施例構成図、第2図の(イ)(ロ
) (ハ)(ニ) (ホ)はその一部の各種実施例図で
ある。 1・・・・・・・・・穿孔加工用電極 2.3・・・・・・・・・ガイド 5・・・・・・・・・サーボモータ 6・・・・・・・・・成形電極 7・・・・・・・・・被加工体 8・・・・・・・・・加工台
Figure 1 is a configuration diagram of an embodiment of the present invention, and Figure 2 (A) (
B) (C) (D) (E) are diagrams of some various embodiments. 1... Electrode for fine wire processing 2.3... Guide 5... Servo motor 6... Forming Electrode 7... Workpiece 8... Processing table 9... Servo motor io, i1... Power supply 12... Processing tank 13... Machining fluid supply pipe patent
Applicant Kiyoshi Inoue, representative of Inoue Japax Laboratory Co., Ltd. 1, Indication of the case, 1988 Patent Application No. 50.205 2, Title of the invention: Drilling electrical discharge machining device 3, Relationship with the person making the amendment Patent application Address 5289 Michisho, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa Prefecture Name (048) Inoue Japax Co., Ltd. Q-sho 4
, the number of inventions that will increase due to the amendment is “0”,
I'm going to go to bed. (2) Amend the full text for the specification as shown in the attached sheet. Amended Description 1, Title of the Invention, Drilling Electrical Discharge Machining Apparatus 2, Claims While performing a pulse discharge with the tip of the guided drilling electrode in the gap facing the workpiece, the process is performed between the drilling electrode and the workpiece. In a drilling electric discharge machining device that performs machining while giving a relative machining follow-up feed to the material, a forming electrode having a desired male cross-sectional shape is provided in front of the drilling electrode facing the workpiece, and the forming electrode A power supply for drilling or a separate power supply for forming electrical discharge machining of the drilling electrode is provided between the drilling electrode and the drilling electrode, and a power supply for forming electrical discharge machining of the drilling electrode is also used or the separate drilling electrode is connected to the workpiece. A drilling electric discharge machining device characterized in that electric discharge machining is performed while facing the. 3. Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to an electrical discharge machining apparatus that performs drilling on a workpiece using the tip of a drilling electrode. [Prior art] Conventional drilling uses a drilling electrode that has been previously formed into the required shape and dimensions by wire drawing, etc., and guides it in a straight line or curved shape according to the drilling shape while electrical discharge drilling is performed. There is. [Problem] In electrical discharge machining, electrode wear usually occurs. It is not easy to accurately guide a long perforated electrode without deforming it along the way, and it is usually accompanied by deformation and bending. Accurate guidance is difficult, especially when the wire diameter cross section is irregularly shaped, and such guides are not accurate, resulting in a decrease in the accuracy of the hole being drilled, and stable electrical discharge, which reduces the machining speed and makes deep hole machining difficult. It becomes difficult. [Means for solving the problem] The present invention has been proposed in view of the above points, and includes providing a forming electrode with a required male cross-sectional shape on the front side of the drilling electrode facing the workpiece, A power supply for drilling is also used between the forming electrode and the drilling electrode, or a separate power supply for forming electric discharge machining of the drilling electrode is provided, and the drilling electrode is continuously formed in the middle. This is characterized in that the material is fed directly to the workpiece to perform the perforation process. [Example] The present invention will be explained below with reference to an example of the drawings. In FIG. 1, reference numeral 1 denotes the base material of the perforated electrode, which is made of a long wire and is linearly guided along the way by a plurality of guides 2 and 3. Reference numeral 4 denotes a feeding roller, which is fed while being servoed by a servo motor 5. Reference numeral 6 denotes an electrode having a hole having a male cross-sectional shape for molding, the guided perforation electrode 1 is passed through the hole, a workpiece 7 is fixed to the part that has passed through the molding electrode 6, and the perforation is performed. The tips of the electrodes 1 are processed so as to face each other. Reference numeral 8 denotes a hollow processing table on which the workpiece 1 is fixed, and a servo motor 9 applies machining-following servo feed of the workpiece 1 upward to the drilling electrode 1 . Reference numeral 10 denotes a power supply for forming, which is provided between the perforating electrode 1 and the forming electrode 6 to form the perforation electrode 1, and is normally energized to the polarity with the processing electrode 1 as the positive electrode. Reference numeral 11 denotes a power source for drilling, which is normally connected between the workpiece 7 and the machining electrode 1 with the workpiece 7 as the positive electrode. Of course, reverse polarity energization may occur depending on the material to be processed. 1
2 is a processing tank, the area around the molded electrode 6 is partitioned by a support plate, the tank is divided into upper and lower stages, and a vibrator 13 is installed in the upper stage.
A machining liquid is supplied from the molding electrode 6, and the liquid flowing down the molded electrode 6 is supplied to the machining portion of the workpiece 7. Of course, when a pipe electrode is used as the perforation electrode 1, it is possible to use a jet flow inside the pipe. FIG. 2 is a top sectional view of a molded electrode 6 having a desired hole shape.
Form any desired hole in the center of the electric bridge, such as a square, circle, broken line, etc., in the shape of a die, and then perform the drilling process T.
Molding is performed by penetrating through iff1l. When feeding the drilling electrode 1 from above, it is preferable that the molded electrode 6 and the workpiece 7 formed above and below are arranged as close as possible. A servo motor 5 provides feed to the drilling electrode 1. A servo motor 5 provides feed to the electrode 1 and the forming electrode 6 or to the workpiece 7. 9 uses detection signals such as voltage between the electrode 1 and the workpiece 1. and control. While being guided by guides 2 and 3, the perforating electrode 1 sent by the feeding roller 4 is first subjected to forming into an external shape facing the forming ff1ff16. The wire electrode, which has been processed to have a highly accurate shape, passes through the shaped electrode 6 with its tip end facing the workpiece 7, and performs electrical discharge machining to make a hole in the aligned part of the workpiece 7. . The shaped electrode 6 can have any shape as shown in FIG. 2, and the workpiece 7 can be perforated to have the same shape as the shaped electrode 6. In addition, the shaped electrode 6 can be placed sufficiently close to the workpiece 7, and is formed with high precision by electrical discharge machining.The shaped electrode 6 also serves as a guide for the machined electrode 1 that passes through it, so that it can be formed with high precision. can guide you. Therefore, the hole to be machined with the tip of the drilling electrode 1 can be formed straight and with high precision. Of course, depending on the guide shape of the '11 pole, a bent hole etc. can be formed as desired. In addition, the perforated layer 4f! 1 can be used as a solid body or a pipe, and in the case of a vibrator, the machining liquid can be jetted from inside the vibrator,
Improve processing stability. Further, when the electrode has a circular outer shape, processing can be performed while applying rotation, and the workpiece 7 can be processed while being rotated. Further, in the above embodiment, the power supply for forming the perforation electrode and the power supply for perforation of the workpiece are provided separately, but the power supply can be used in combination. In the case of dual use, a switch is installed, the forming electrode 6 is used to form the perforation electrode 1 to the required length, the feeding of the perforation electrode 1 is stopped, and the workpiece 7 is placed at the tip of the electric bridge. When the electrode 1 is exhausted, the power supply is switched and the processing electrode 1 is formed. By switching, processing can be repeated alternately. Of course, the process of alternatingly repeating electroforming and perforation can also be applied to the case where the two processing power sources described above are provided separately. In addition, since the part processed by the forming electrode 6 is usually only surface processing of a microscopic base, when forming and drilling are performed simultaneously, the processing state of the forming gap is ignored and detected from the gap of the workpiece 7. The motor can be controlled by the generated signal to perform follow-up feeding and machining. [Effects of the Invention] As described above, the present invention provides a forming electrode with a required male cross-sectional shape in front of the drilling electrode facing the workpiece in the drilling process, and the forming electrode is used to perform the above-mentioned After forming the perforating electrode by applying electrical discharge between it and the perforating electrode, the tip of the perforating electrode that has passed through the forming electrode is faced to the workpiece and perforated by electric discharge machining. Because of this feature, a simple electrode can be used as the perforation electrode, and while it is being molded, perforation of any cross-sectional shape can be easily performed. or,
The forming electrode provided in front of the workpiece becomes a guide when the drilling electrode passes through it, and the processing electrode can be stably and precisely guided to the shape as formed.This allows the drilling process to be carried out with high precision. can be performed at high speed. Therefore, the present invention has the effect of being widely applicable to drilling start holes for wire-cut electrical discharge machining, wire drawing dies, fuel injection nozzles, silk nozzles, and other machining of interfacial holes. 4. Brief explanation of the drawings Figure 1 is a configuration diagram of one embodiment of the present invention, and Figure 2 (A), (B), (C), (D), and (E) are diagrams of various embodiments of some of the same. . 1... Electrode for drilling 2.3... Guide 5... Servo motor 6... Molding Electrode 7...Workpiece 8...Processing table

Claims (1)

【特許請求の範囲】[Claims] ガイドされる細線加工電極の先端を被加工体に対向した
間隙にパルス放電を行ないながら、前記細線加工電極と
被加工体間に相対的加工追従送りを与えながら加工する
細孔放電加工装置に於て、前記細線加工電極の前記被加
工体と対向する手前に所要の総型断面形状の成形用電極
を設け、該成形用電極と前記細線加工電極との間に細孔
加工用電源を兼用するか又は別個の細線加工電極の成形
放電加工用電源を設け、前記成形用電極を移動通過して
成形加工された細線加工電極を被加工体に対向して放電
加工するようにしたことを特徴とする細孔放電加工装置
In a small-hole electrical discharge machining device that processes the tip of a guided fine wire machining electrode in a gap facing the workpiece while applying a relative machining follow-up feed between the fine wire machining electrode and the workpiece. A forming electrode having a desired overall cross-sectional shape is provided on the front side of the thin wire processing electrode facing the workpiece, and a power source for pore processing is also used between the forming electrode and the thin wire processing electrode. Alternatively, a separate power source for forming electric discharge machining of the thin wire machining electrode is provided, and the thin wire machining electrode that has been formed by moving past the forming electrode is subjected to electric discharge machining while facing the workpiece. Pore electrical discharge machining equipment.
JP5020586A 1986-03-07 1986-03-07 Perforation electric discharge machine Expired - Fee Related JPH074702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5020586A JPH074702B2 (en) 1986-03-07 1986-03-07 Perforation electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5020586A JPH074702B2 (en) 1986-03-07 1986-03-07 Perforation electric discharge machine

Publications (2)

Publication Number Publication Date
JPS62208830A true JPS62208830A (en) 1987-09-14
JPH074702B2 JPH074702B2 (en) 1995-01-25

Family

ID=12852608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5020586A Expired - Fee Related JPH074702B2 (en) 1986-03-07 1986-03-07 Perforation electric discharge machine

Country Status (1)

Country Link
JP (1) JPH074702B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453629A (en) * 1990-06-19 1992-02-21 Yasuo Ogasawara Wire electric discharge machining device and machine using same
JP2002122753A (en) * 2000-07-21 2002-04-26 Corning Cable Systems Llc Precision insert for forming batch multi-fiber optical connector and its manufacturing method
US7982157B2 (en) * 2004-12-15 2011-07-19 Robert Bosch Gmbh Method for machining a workpiece
US9946138B2 (en) 2009-12-22 2018-04-17 View, Inc. Onboard controller for multistate windows

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453629A (en) * 1990-06-19 1992-02-21 Yasuo Ogasawara Wire electric discharge machining device and machine using same
JP2002122753A (en) * 2000-07-21 2002-04-26 Corning Cable Systems Llc Precision insert for forming batch multi-fiber optical connector and its manufacturing method
US7982157B2 (en) * 2004-12-15 2011-07-19 Robert Bosch Gmbh Method for machining a workpiece
US9946138B2 (en) 2009-12-22 2018-04-17 View, Inc. Onboard controller for multistate windows

Also Published As

Publication number Publication date
JPH074702B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US4441004A (en) Multiple pipe element electrode assembly EDM method and apparatus
Yong et al. Micro electrochemical machining for tapered holes of fuel jet nozzles
US4992639A (en) Combined EDM and ultrasonic drilling
US4430180A (en) Apparatus for and method of electroerosively drilling a thin hole in a workpiece
Sato et al. The development of an electrodischarge machine for micro-hole boring
US4721838A (en) Tool for electrical discharge piercing of intricately-shaped holes and method of using same
JPS62208830A (en) Fine hole electric discharge machine
US3801489A (en) Tool for electrolytic drilling of holes
US3530271A (en) Electro-erosive working electrode having multiple individually insulated elements
US6320150B1 (en) Wire electric discharge machining apparatus, wire electric discharge machining method, and mold for extrusion
JP2001054808A (en) Nozzle hole machining method
GB2092048A (en) Electroerosively machining threedimensional cavities
JPS6034219A (en) Electric discharge machine
IL30636A (en) Method and apparatus for electroerosively machining a surface
US3487189A (en) Electro-erosive machining
Fang et al. Multiple slit electrochemical micromachining using a single wire and a constant inter-electrode voltage
JPS61178123A (en) Drilling electric discharge machine
JP4226875B2 (en) Material forming method by electric discharge machining
JPH0453649B2 (en)
Mithu et al. Fabrication of micro nozzles and micro pockets by electrochemical micromachining
JPS63180423A (en) Method of boring prepared hole for wire cut electric discharge machining
Kar et al. Prospects of Micromachining using Electrical Discharge Machining
JPH0248377B2 (en)
JPH04275827A (en) Electric discharge boring device
Chen et al. A novel approach for batch production of micro holes by micro EDM

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees