JPS6220828A - Continuous annealing furnace - Google Patents

Continuous annealing furnace

Info

Publication number
JPS6220828A
JPS6220828A JP15689885A JP15689885A JPS6220828A JP S6220828 A JPS6220828 A JP S6220828A JP 15689885 A JP15689885 A JP 15689885A JP 15689885 A JP15689885 A JP 15689885A JP S6220828 A JPS6220828 A JP S6220828A
Authority
JP
Japan
Prior art keywords
furnace
direct
furnaces
preheating
continuous annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15689885A
Other languages
Japanese (ja)
Other versions
JPH0121204B2 (en
Inventor
Shuzo Fukuda
福田 脩三
Masahiro Abe
阿部 正広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP15689885A priority Critical patent/JPS6220828A/en
Priority to EP86904373A priority patent/EP0233944B1/en
Priority to AT86904373T priority patent/ATE61416T1/en
Priority to PCT/JP1986/000352 priority patent/WO1987000555A1/en
Priority to CA000513536A priority patent/CA1255897A/en
Priority to BR8606772A priority patent/BR8606772A/en
Priority to US07/027,224 priority patent/US4760995A/en
Priority to CN 86104502 priority patent/CN1011982B/en
Priority to AU61432/86A priority patent/AU598981B2/en
Priority to DE8686904373T priority patent/DE3677959D1/en
Publication of JPS6220828A publication Critical patent/JPS6220828A/en
Publication of JPH0121204B2 publication Critical patent/JPH0121204B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To suppress the cross-interferences between furnaces and to improve the operability of the furnaces of a continuous annealing furnace successively provided with a preheating furnace, direct fire furnace and indirect heating furnace by providing intermediate chambers between the furnaces to prevent the transfer of in-furnace gases between the furnaces. CONSTITUTION:The preheating furnace 11, the direct fire furnace 12, the indirect heating and soaking furnace 13 and a gas jet cooling installation 14 are successively installed in succession of an inlet side installation to form the continuous annealing furnace. The 1st intermediate chamber 15a is provided between the preheating chamber 11 and the direct fire furnace 12. The 2nd intermediate chamber 15b is provided to the return part in the upper part of the furnace 12 and the 3rd intermediate chamber 15c is installed between the furnace 12 and the furnace 13. The transfer of the in-furnace gas to the other furnaces is obviated by such mechanism even if there is a fluctuation of the gaseous pressure in the furnaces. Since inverting rolls are enclosed by the intermediate chambers, the rolls are protected against the high temp. of the furnaces.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明(よ、例えば薄S4帯を連続的に焼鈍する連続
焼鈍炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to a continuous annealing furnace for continuously annealing, for example, a thin S4 strip.

〔従来の技術〕[Conventional technology]

第6図は従来の連続焼鈍炉の一例を示す説明図であり、
図において、(1)(ま入側設備、(2)はこの入側設
備に続いて設けられた加熱・均熱炉、(3)はこの加熱
・均熱炉に続いて設けられたガスレエツト冷却設備、(
4)(よこのガスジュッl−冷却設備に続いて設けられ
た冷却設備、(5)はこの冷却設備に続いて設けられた
過時効炉、(6)ばこの過時効炉に続いて設けられた出
鋼設備である。ここで、入側設備(1)にはクリーニン
グ設備が設けられ、加熱・均熱炉(2)の内部には、間
接的加熱源であるラジアンI−・チューブ(RT)が設
けられ、かっ、N 2 +H□の混合ガスが満たされ、
冷却設備(4)には内部水冷のロール等が使用されてい
る。
FIG. 6 is an explanatory diagram showing an example of a conventional continuous annealing furnace.
In the figure, (1) (inlet side equipment), (2) heating and soaking furnace installed following this input side equipment, and (3) gas racket cooling installed following this heating and soaking furnace. Facility,(
4) (Cooling equipment installed following the gas-cooling equipment next door, (5) Over-aging furnace installed following this cooling equipment, (6) Over-aging furnace installed following the tobacco over-aging furnace. This is a steel tapping facility.The entry side facility (1) is equipped with a cleaning facility, and inside the heating/soaking furnace (2) is a radian I-tube (RT) which is an indirect heating source. is provided and filled with a mixed gas of N 2 + H□,
The cooling equipment (4) uses internal water-cooled rolls and the like.

上記の連続焼鈍炉において、声帯(7)は入側設備(1
1においてクリーニング設W11ζより表面をクリーニ
ングされ、加熱・均熱炉(2)内に入り、加熱・均熱炉
(2)内て、N2+H2ガス雰囲気下−C、ラジアント
・チューブにより間接加熱され、ガスレエット冷却設備
(3)内に入ってガスジェットにより冷却され、冷却設
備(4)内に入って内部水冷のロール等により接触冷却
され、過時効炉(5)内に入って過時効処理され、出鋼
設備(6)(こおいてロールに巻き取られる。
In the above continuous annealing furnace, the vocal cords (7) are connected to the entrance equipment (1
In step 1, the surface is cleaned by the cleaning equipment W11ζ, enters the heating and soaking furnace (2), and is indirectly heated by a radiant tube in a N2 + H2 gas atmosphere in the heating and soaking furnace (2). It enters the cooling equipment (3) where it is cooled by a gas jet, enters the cooling equipment (4) where it is contact cooled by internal water-cooled rolls, enters the overaging furnace (5) where it is overaged, and then exits. Steel equipment (6) (where it is wound up into a roll.

上記のような従来の連続焼鈍炉て(よ、加熱・均fi 
F (2+において、n4帯(7)を間接加熱して焼鈍
するので、その焼鈍能力が不十分で、焼鈍コストが高く
、又、高ン品加熱が困難で、必要な焼鈍条件を満足させ
ることができないという問題点がある。此の場合、加熱
・均熱炉(2)を長大化して焼鈍能力を高めることも考
えられるが、必要な焼鈍能力が得られる、ように加熱・
均熱炉(2)を作るとなると、その加熱・均熱炉(2)
ばかなり大きなものとなり、その設備コス)・、ランニ
ングコスj・も膨大なものとな秒、!MNの焼鈍コス)
−を高めてしまうという問題点が出てくる。
Conventional continuous annealing furnace as mentioned above (heating and equalization)
F (In 2+, the N4 band (7) is annealed by indirect heating, so the annealing ability is insufficient, the annealing cost is high, and it is difficult to heat high-quality products, so it is difficult to satisfy the necessary annealing conditions. In this case, it is possible to increase the annealing capacity by increasing the length of the heating/soaking furnace (2).
When making a soaking furnace (2), the heating and soaking furnace (2)
It would be quite large, and the equipment cost and running cost would also be huge! MN annealing costume)
The problem arises that - is increased.

これらの問題点に鑑み、特公昭58−22524号公報
で、直火加熱方式の連続焼鈍炉が提案されている。
In view of these problems, Japanese Patent Publication No. 58-22524 proposes a continuous annealing furnace using direct flame heating.

この連続焼鈍炉は、鋼帯表裏面に高温燃焼ガス及び又は
高温燃焼フレームを衝突せしめて対流伝熱と高炉渇輻射
により鋼帯を均熱温度まて急速度で加熱する衝突噴流式
直火炉と、該直火炉からの高温排ガスを導入して輻射伝
熱により急速加熱開始温度まて予熱ずろ第2輻射式予熱
炉と、該予熱炉からの低扁排ガスを導入して鋼帯に噴射
して対流伝熱にまり鋼帯を常温程度に噴流予熱する第1
対流式予熱炉とよりなるものである。この連続焼鈍炉は
直火加熱方式を採用しているので、前記した間接加熱方
式の連続焼鈍炉と比較して、はるかに加熱効率が高い。
This continuous annealing furnace is an impinging jet direct-fired furnace that rapidly heats the steel strip to the soaking temperature through convection heat transfer and blast furnace radiation by colliding high-temperature combustion gas and/or high-temperature combustion flame against the front and back surfaces of the steel strip. A second radiant preheating furnace is introduced which introduces high-temperature exhaust gas from the direct-fired furnace and preheats it to a rapid heating start temperature by radiant heat transfer, and introduces low-profile exhaust gas from the preheating furnace and injects it onto the steel strip. The first step is to preheat the steel strip to room temperature due to convection heat transfer.
It consists of a convection preheating furnace. Since this continuous annealing furnace employs a direct heating method, the heating efficiency is much higher than that of the above-mentioned indirect heating method continuous annealing furnace.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、この連続焼鈍炉は直火で鋼帯を焼鈍するので、
n4帯の表面が酸化されてしまうという問題点がある。
However, since this continuous annealing furnace anneals the steel strip with direct flame,
There is a problem that the surface of the n4 band is oxidized.

上記公報においては、焼鈍に際して鋼帯に熱吸収塗布剤
を事前に塗るとされている。
The above publication states that a heat absorbing coating agent is applied to the steel strip in advance during annealing.

これが鋼帯の酸化を防止するために役立つかどうかは不
明であるが、鋼帯の酸化を防止するためには、鋼帯の表
面に何らかの酸化膜I):剤を塗る必要があると思われ
る。
It is unclear whether this is useful for preventing oxidation of the steel strip, but in order to prevent the oxidation of the steel strip, it seems necessary to apply some kind of oxide film I): agent to the surface of the steel strip. .

特に、直火炉で鋼帯を高温まで加熱して高温焼鈍を行っ
た場合に、鋼帯表面は激しく酸化されてしまう。この酸
化膜を均熱炉においてその雰囲気ガス(H2+H2)で
還元しようとしても、直火炉直後のロール上でロールピ
ックアップを生じ、鋼帯表面を傷つけてしまうことにな
る。また、上記の酸化膜を還元するためには、雰囲気ガ
ス中のH2濃度を高めなければならないが、そのように
すると安全性、ニス1−面で問題となる。以上の点から
、現在稼働している直火炉付連続焼鈍炉では、直火炉で
400〜500℃程度までしか加熱を行っていない。
In particular, when a steel strip is heated to a high temperature in a direct-fired furnace and subjected to high-temperature annealing, the surface of the steel strip is severely oxidized. Even if an attempt is made to reduce this oxide film with the atmospheric gas (H2+H2) in a soaking furnace, roll pickup will occur on the roll immediately after the direct firing furnace, and the surface of the steel strip will be damaged. Furthermore, in order to reduce the above-mentioned oxide film, it is necessary to increase the H2 concentration in the atmospheric gas, but doing so poses problems in terms of safety and the varnish surface. From the above points, in the continuous annealing furnace with a direct-fired furnace currently in operation, heating is only performed to about 400 to 500°C in the direct-fired furnace.

更に、従来方式では炉内ガスに関して、ラジアントチュ
ーブ均熱帯(間接加熱)の雰囲気ガスは直火炉へ流れ込
み、さらに直火炉の燃焼排ガスと上記雰囲気ガスとの混
合したものが予熱炉へと流れ、最終的に排出されている
。この場合、個々の?ff域の流量変動に伴い、相互干
渉を起こし、炉圧変動が激しく、管理しきれないという
問題をかかえている。また、予熱炉へ未燃分を含んだま
まの燃焼排ガスを導入し、鋼帯予熱を行った場合、予熱
炉出口での排ガス温度が低温になり、未燃分の完全燃焼
をさせにくくなる。
Furthermore, in the conventional method, regarding the furnace gas, the atmospheric gas in the radiant tube soaking zone (indirect heating) flows into the direct-fired furnace, and the mixture of the combustion exhaust gas from the direct-fired furnace and the above atmospheric gas flows into the preheating furnace, and the final is being discharged. In this case, individual? There is a problem in that mutual interference occurs due to flow rate fluctuations in the ff region, and furnace pressure fluctuations are severe and cannot be fully managed. Furthermore, when the steel strip is preheated by introducing combustion exhaust gas containing unburned components into the preheating furnace, the temperature of the exhaust gas at the outlet of the preheating furnace becomes low, making it difficult to completely burn the unburned components.

〔t81題点を解決するための手段〕 この発明に係る連続焼鈍炉は、予2A炉と直火炉とq■
接加熱均熱炉とをこの111aに有し薄鋼帯を連続焼鈍
する連続焼鈍炉において、上記各炉間に炉内ガスの移動
を阻止する中間室を設けたものである。
[Means for solving the t81 problem] The continuous annealing furnace according to the present invention includes a pre-2A furnace, a direct-fired furnace, and a
In this continuous annealing furnace, which has a contact heating and soaking furnace in this 111a and continuously anneales a thin steel strip, an intermediate chamber is provided between each of the furnaces to prevent movement of gas in the furnace.

また、この出願の別の発明に係る連続焼鈍炉ば、予熱炉
と直火炉と間接灼熱炉とをこの1+10に有し、R鋼帯
を連続焼鈍する連続焼鈍炉において、上記各炉間に炉内
ガスの移動を阻止する中間室を設け、上記直火炉と上記
予熱炉との間に、上記直火炉内の燃焼排ガスを完全燃焼
させて上記予熱炉内に供給するアフターバーニング室を
設けたものである。
Further, in the continuous annealing furnace according to another invention of this application, the continuous annealing furnace has a preheating furnace, a direct-fired furnace, and an indirect scorching furnace in this 1+10, and continuously anneales the R steel strip. An intermediate chamber is provided to prevent the movement of internal gas, and an afterburning chamber is provided between the direct-fired furnace and the preheating furnace to completely burn the combustion exhaust gas in the direct-fired furnace and supply it to the preheating furnace. It is.

〔作用〕[Effect]

この発明においては、各炉間に炉内ガスの移動を阻[ト
する中間室を設けたので、炉内ガス圧の変動があっても
炉内ガスが他の炉へ移動することがなくなり、炉内ガス
圧の変動による各炉間の相互千とムが抑制されろ。
In this invention, an intermediate chamber is provided between each furnace to prevent the movement of gas in the furnace, so even if the gas pressure in the furnace fluctuates, the gas in the furnace will not move to other furnaces. Mutual interference between each furnace due to fluctuations in gas pressure within the furnace should be suppressed.

また、この出願の別の発明においては、直火炉と予熱炉
との間に、該直火炉内の燃焼排ガスを完全燃焼させて該
予熱室内に供給するアフターバーニング室を設けたので
、該直火炉内の燃焼排ガスは該アフターバーニング室で
完全燃焼させられろことによってその温度が上昇し、温
度が上昇したこの燃焼排ガスが該予熱室内に供給され、
鋼帯の予熱が促進される。
Further, in another invention of this application, an afterburning chamber is provided between the direct-fired furnace and the preheating furnace, so that the combustion exhaust gas in the direct-fired furnace is completely combusted and supplied into the preheating chamber. The combustion exhaust gas in the combustion chamber is completely combusted in the afterburning chamber, so that its temperature rises, and this combustion exhaust gas with increased temperature is supplied into the preheating chamber,
Preheating of the steel strip is promoted.

〔実施例〕〔Example〕

以下、この発明の一実施例について、第1図を用いて説
明する。入側設備の油分除去装置は省略でき、その他の
冷却設備、過時効炉及び出側設備(よ従来の技術におい
て説明した連続焼鈍炉のものと同じであり、その説明は
省略する。
An embodiment of the present invention will be described below with reference to FIG. The oil removal device of the input side equipment can be omitted, and the other cooling equipment, overaging furnace, and exit side equipment (these are the same as those of the continuous annealing furnace described in the prior art, and their explanation will be omitted.

第1図において、(11)は入側設備に続いて設けられ
jコ予熱炉、(12)はこの予熱炉に続いて設けられた
直火炉、(13)はこの直火炉に続いて設けられた間接
加熱均熱炉、(1月はこの間接加熱均熱炉に続いて設け
られたガスジェット冷却設備であり、このガスジェット
冷却設備(]+4の後には15却設備、過時効炉及び出
側設備がこの順に設けらている。
In Figure 1, (11) is a preheating furnace installed following the entrance equipment, (12) is a direct-fired furnace installed following this preheating furnace, and (13) is a direct-fired furnace installed following this direct-fired furnace. indirect heating soaking furnace, (January is the gas jet cooling equipment installed following this indirect heating soaking furnace, and after this gas jet cooling equipment () + 4 is the 15 cooling equipment, overaging furnace, and The side equipment is installed in this order.

そして、予熱炉(I I)と直火炉(12)との間には
第1の中間室(+5a)が、直火炉(12)の上部折返
部には第2の中間室(15b)が、直火炉(12)と間
接加熱均熱炉(13)との間には第3の中間室(+5c
lが各々設けられている。
A first intermediate chamber (+5a) is located between the preheating furnace (II) and the direct-fired furnace (12), and a second intermediate chamber (15b) is located at the folded upper part of the direct-fired furnace (12). A third intermediate chamber (+5c
l are provided respectively.

第2図に中間室(15a) 、 (15b) 、 (1
5c)の構造を詳細に説明ずろ。図において、(+5)
tよ中間室、(1G)はこの中間室内で鋼帯(7)を支
持するロール、(17)は鋼帯(7)を介し、小隙間を
空けて対向するシール板、(18)は鋼帯(7)を挾ん
で対向するシールロール、(19)はff44’i (
71を介して対向するラビ゛J7ス・シールであり、シ
ール板(17)、シールロール(18)及びラビリンス
・シール(19)はロール(16)から遠ざかる方向に
この順で設けられている。シールロール(18)のロー
ルギャップは数順程度まで近づけることが可能てある。
Figure 2 shows intermediate chambers (15a), (15b), (1
Please explain the structure of 5c) in detail. In the figure, (+5)
t, an intermediate chamber, (1G) a roll that supports the steel strip (7) in this intermediate chamber, (17) a seal plate facing the steel strip (7) with a small gap, and (18) a steel The seal rolls (19) facing each other with the band (7) in between are ff44'i (
A seal plate (17), a seal roll (18), and a labyrinth seal (19) are provided in this order in the direction away from the roll (16). It is possible to make the roll gap of the seal roll (18) as close as possible.

シールロール(18)は内部水冷でも、水冷なしでも良
い。水冷を行わない場合は耐熱鋼又はセラミック製のも
のを使用する。ラビリンス・シール(19]ばシールロ
ール(is)を炉内の高l昌部からの熱放射から保ス■
ずろためのものであり、耐火物製のものを使用する。シ
ール板(17)は最終的なシールとして用いろものであ
り、必ずしも必須ではない。但し、シールロール(18
)直置に設けるので、鋼帯(7)に相当近づけろことが
でき、従ってシール効果は大きい。シール板(17)と
ラビリンス・シール(19)との間の距離は50〜10
0 mm程度とする。これらのシールにおいては、まず
、ラビリンス°シール(191で粗くシールされ、シー
ルロール(18)で一応のシールがされ、シール板(1
7)で更にシールされることになる。
The seal roll (18) may be internally water-cooled or may not be water-cooled. If water cooling is not used, use one made of heat-resistant steel or ceramic. The labyrinth seal (19) protects the seal roll (is) from heat radiation from the high part in the furnace.
It is for sliding doors, and is made of refractory material. The seal plate (17) is used as a final seal and is not necessarily essential. However, seal roll (18
) Since it is installed directly, it can be placed quite close to the steel strip (7), and therefore the sealing effect is great. The distance between the seal plate (17) and the labyrinth seal (19) is 50-10
It should be approximately 0 mm. In these seals, first, the labyrinth seal (191) roughly seals, the seal roll (18) provides a temporary seal, and the seal plate (191) seals the rough seal.
7) will be further sealed.

第1図において、予熱炉(1])と直火炉(12)との
間の第1の中間室(15a)の温度(よそれほど高くな
く、高くとも300′cQπ後であり、ロール保A(【
等の対策は特に不要である。第1の中間室(15a)の
雰囲気は還元性ガス(lI2十N2)であっても、また
燃焼排ガスであっても差しつかえない。しか+7.4炉
を独立方陣させろ為には十分なシールが必要である。
In FIG. 1, the temperature of the first intermediate chamber (15a) between the preheating furnace (1]) and the direct-fired furnace (12) is not very high, at most 300'cQπ, and the roll maintenance A ( [
No particular measures are required. The atmosphere in the first intermediate chamber (15a) may be a reducing gas (lI20N2) or a combustion exhaust gas. However, sufficient sealing is required to make the +7.4 furnaces form independent squares.

第1図の例では、直火炉(I2)として2パスのものを
示しており、この各パス間にも中間室(15blを設け
ている。この第2の中間室(+5b)と、第3の中間室
(15c)ては、ロール保謁上、題元雰囲気(112十
N2)とするのが好ましく、特に、第3の中間室(15
c)は均熱炉(13)への直火炉燃焼排ガスの侵入を防
雨するために還元雰囲気でなければならない。
In the example in Fig. 1, a two-pass direct-fired furnace (I2) is shown, and an intermediate chamber (15bl) is provided between each pass.This second intermediate chamber (+5b) and the third For roll security reasons, it is preferable that the middle room (15c) has a title atmosphere (1120N2), especially for the third middle room (15c).
c) must be a reducing atmosphere to prevent the direct-fired furnace combustion exhaust gas from entering the soaking furnace (13).

直火炉(12)と予熱炉(11)との間には、直火炉(
12)内の燃焼排ガスを完全燃焼させて予熱炉(11)
内に供給するアフターバーニング室(2o)が設けられ
ている。直火炉(12)の出口の排ガス;帛度は、80
0〜1200℃で、未燃分の自発火温度以上にあり、ア
フターバーニング室(20)において空気を供給するだ
けで容易に未熱分を燃焼させることができろ。アフター
バーニング室(20)によって、排ガス中の未燃・分を
大気放散させることなく、排ガス温度が高められ、鋼板
の予熱が促進される。アフターバーニング室(20)出
側には、予熱炉(11)へ行く側と、排出側へ行く側の
2系統が設けられ、弁(21) 、 (22)の調節に
より、適量の排ガスが予熱室(1])へ導かれる。
Between the direct-fired furnace (12) and the preheating furnace (11), there is a direct-fired furnace (
12) Complete combustion of the combustion exhaust gas in the preheating furnace (11)
An afterburning chamber (2o) is provided which supplies the inside of the tank. Exhaust gas at the outlet of the direct-fired furnace (12);
The temperature is 0 to 1200° C., which is above the spontaneous ignition temperature of the unburned material, and the unheated material can be easily combusted by simply supplying air in the afterburning chamber (20). The afterburning chamber (20) increases the temperature of the exhaust gas and promotes preheating of the steel plate without dissipating unburned portions of the exhaust gas into the atmosphere. On the exit side of the afterburning chamber (20), there are two systems, one going to the preheating furnace (11) and the other going to the discharge side, and by adjusting the valves (21) and (22), an appropriate amount of exhaust gas is preheated. You will be led to room (1]).

直火炉(12)においては、均熱炉(]3)の側に、直
火炉(12)の有効炉長の1710以上の長さに相当す
る長さの領域に還元加熱可能な還元加熱用バーナが取付
けられている。本考案の還元加熱バーナの好ましい実施
例は、加熱炉でも高温焼!11!(850℃以上)を行
なうことが可能なことである。この加熱炉て加熱温度を
高めることが可能なのは、予混合バーナを用いているた
めである。というのも、無酸化でnIJ帯を加熱するた
めに1よ、空気比1,0以下の高温の燃焼火炎を銅帯に
衝突させる必要がある。無酸化で加熱しうろ限界温度は
火炎温度に依存し、火炎温度が高いほど無酸化で加熱し
うる限界温度が高くなる。予混合バーナでは空気と燃焼
とをあらかじめ混合しているために、混合されている空
気と燃料とを予熱することはできず、従って、火炎ン昌
度は燃料種によって一義的に定まってしまう。0□を富
化して火炎温度を高めることば可能だが、予混合気の爆
発の可能性が高くなり、実用的ではない。
In the direct-fired furnace (12), a reductive heating burner capable of reductive heating is provided on the side of the soaking furnace (]3), which is capable of reductive heating in an area with a length corresponding to 1710 or more of the effective furnace length of the direct-fired furnace (12). is installed. A preferred embodiment of the reduction heating burner of the present invention can be fired at high temperatures even in a heating furnace! 11! (850°C or higher). The reason why it is possible to increase the heating temperature in this heating furnace is because a premix burner is used. This is because, in order to heat the nIJ band without oxidation, it is necessary to collide a high-temperature combustion flame with an air ratio of 1.0 or less against the copper band. The limit temperature that can be heated without oxidation depends on the flame temperature, and the higher the flame temperature, the higher the limit temperature that can be heated without oxidation. In a premix burner, since air and combustion are mixed in advance, the mixed air and fuel cannot be preheated, and therefore, the flame strength is uniquely determined by the fuel type. It is possible to increase the flame temperature by enriching 0□, but this increases the possibility of explosion of the premixture, making it impractical.

第3図と第4図はこの還元加熱用バーナの還元加熱特性
を示す。第3図は、鋼材を還元状態で加熱しうる還元加
熱限界温度と空気比との関係を示す。予熱空気〆晶度4
00℃、燃料と(7てCガスを使用して、約950℃ま
で加熱できろ。第4図+、1、あらかじめ400〜45
0Aの酸化膜のついた鋼板を20〜30A程度まで還元
するのに要する還元時間を測定したものであり、鋼板温
度600℃で約1.5秒、700℃で0.8秒、750
℃で0.5秒程度である。
3 and 4 show the reductive heating characteristics of this reductive heating burner. FIG. 3 shows the relationship between the reduction heating limit temperature at which the steel material can be heated in a reduced state and the air ratio. Preheated air crystallinity 4
00℃, using fuel and (7) C gas, it can be heated to about 950℃.
The reduction time required to reduce a steel plate with an oxide film of 0A to about 20 to 30A is measured, and the reduction time is approximately 1.5 seconds at a steel plate temperature of 600℃, 0.8 seconds at 700℃, and 750℃.
It takes about 0.5 seconds at ℃.

直火炉(12)で鋼帯を250℃から700℃まで約1
5秒で加熱する場合、第5図に示すように650℃から
700℃までに約1.5秒かかる。このとき、250℃
から650℃までを一般的な通常バーナを用いて空気比
1.0以下で燃焼して鋼帯を加熱した際には、この程度
の加熱速度であれば、生成する酸化膜は200〜400
八 程度である。
Heat the steel strip in a direct-fired furnace (12) from 250℃ to 700℃ for about 1 hour.
When heating for 5 seconds, it takes about 1.5 seconds to heat from 650°C to 700°C, as shown in FIG. At this time, 250℃
When a steel strip is heated from 650℃ to 650℃ using a general burner at an air ratio of 1.0 or less, at this heating rate, the oxide film formed is 200 to 400℃.
It is about 8.

従って、上記650℃から700℃までの加熱に還元加
熱用バーナを用いれば、十分還元できることがわかる。
Therefore, it can be seen that sufficient reduction can be achieved by using a reduction heating burner for heating from 650°C to 700°C.

この区間を炉長に換算すると、炉長の約1710である
。従って、均熱炉(13)の側の領域に炉長の約I/1
0の長さで還元加熱用バーナを設け、他は一般的な拡散
バーナを設ければ良い。
When this section is converted into a furnace length, it is approximately 1710 of the furnace length. Therefore, approximately I/1 of the furnace length is placed in the area on the side of the soaking furnace (13).
A reduction heating burner may be provided for the length of 0, and a general diffusion burner may be provided for the other portions.

第3の中間室(15c)の雰囲気ガスと、均熱炉(13
)の雰囲気ガスが直火炉(12)の還元加熱領域に流れ
込むと、その還元能力が低下することになる。すなわち
、これらの雰囲気ガスの温度ばm帯の灼熱温度(700
〜900℃)に近く、還元加熱領域の燃焼ガス)温度(
1400〜1600℃)よりも低く、仮に、雰囲気ガス
が侵入すると、還元加熱領域のガス温度が低下して、還
元能力を著しく低下させてしまう。このため、第2のア
フターバーニング室(19)を設け、第3の中間室(1
5c)と、均熱F(13)の雰囲気ガスを第2のアフタ
ーバーニング室(23)へ導くようにすれば、かかる問
題は解決される。
The atmospheric gas in the third intermediate chamber (15c) and the soaking furnace (13
) flows into the reduction heating region of the direct-fired furnace (12), its reduction ability will be reduced. That is, the temperature of these atmospheric gases is the scorching temperature in the Bm band (700
~900℃), and the combustion gas temperature in the reductive heating region (
1,400 to 1,600° C.), and if atmospheric gas were to enter, the gas temperature in the reduction heating region would drop, significantly reducing the reduction ability. For this purpose, a second afterburning chamber (19) is provided, and a third intermediate chamber (19) is provided.
5c) and the atmospheric gas of soaking F (13) is guided to the second afterburning chamber (23), this problem can be solved.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおりに構成したので、炉内ガ
ス圧の変動があっても炉内ガスが他の炉へ移動すること
がなくなり、炉内ガス圧の変動による各炉間の相互干渉
が抑制され、各戸の操炉性が向上するという効果がある
。また、反転ロールは中間室で囲まねているので、各戸
の高熱から保;i【されろという効果がある。
Since this invention is configured as explained above, even if the gas pressure in the furnace fluctuates, the gas in the furnace will not move to other furnaces, and mutual interference between the furnaces due to fluctuations in the gas pressure in the furnace will not occur. This has the effect of improving the operability of each unit. In addition, since the reversing roll is surrounded by an intermediate chamber, it has the effect of being protected from the high heat of each house.

また、この出願の別の発明は、燃焼排ガスをアフターバ
ーニング室て完全燃焼させてから予熱室に供給するので
、燃焼排ガスの温度が上界し、鋼帯の予熱が促進されろ
という効果がある。
In addition, another invention of this application has the effect that the combustion exhaust gas is completely combusted in the afterburning chamber and then supplied to the preheating chamber, so that the temperature of the combustion exhaust gas reaches an upper limit and the preheating of the steel strip is promoted. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す説明図、第2図は第
゛1図の要部拡大図、第3図〜第5図は還元加熱用バー
ナの特性を示すグラフ、第6図(よ従来の祁続焼鈍炉の
一例を示す説明図である。 図において、(71j、を鋼帯、(11)は予熱炉、(
12)は直火炉、(I3)は均熱炉、(14)はガスジ
ェット冷却設備、(15)は中間室、(17)はシール
板、(18)はシールロール、(19)はラビリンス・
シール、(20)はアフターバーニング室である。
Fig. 1 is an explanatory diagram showing one embodiment of the present invention, Fig. 2 is an enlarged view of the main part of Fig. 1, Figs. 3 to 5 are graphs showing the characteristics of the reduction heating burner, and Fig. 6 (This is an explanatory diagram showing an example of a conventional Keizoku annealing furnace. In the figure, (71j) is a steel strip, (11) is a preheating furnace, (
12) is a direct-fired furnace, (I3) is a soaking furnace, (14) is a gas jet cooling equipment, (15) is an intermediate chamber, (17) is a seal plate, (18) is a seal roll, and (19) is a labyrinth.
Seal, (20) is the afterburning chamber.

Claims (4)

【特許請求の範囲】[Claims] (1)予熱炉と直火炉と間接加熱炉とをこの順に有し、
薄鋼帯を連続焼純する連続焼鈍炉において、上記各炉間
に炉内ガスの移動を阻止する中間室を設けたことを特徴
とする連続焼鈍炉。
(1) It has a preheating furnace, a direct-fired furnace, and an indirect heating furnace in this order,
A continuous annealing furnace for continuously annealing thin steel strips, characterized in that an intermediate chamber is provided between each of the furnaces to prevent movement of gas within the furnace.
(2)前記直火炉は前記間接加熱炉の側に還元加熱用バ
ーナを有していることを特徴とする特許請求の範囲第1
項に記載の連続焼鈍炉。
(2) Claim 1, wherein the direct-fired furnace has a reduction heating burner on the side of the indirect heating furnace.
Continuous annealing furnace as described in section.
(3)予熱炉と直火炉と間接加熱均熱炉とをこの順に有
し、薄鋼帯を連続焼純する連続焼鈍炉において、上記各
炉間に炉内ガスの移動を阻止する中間室を設け、上記直
火炉と上記予熱炉との間に、上記直火炉内の燃焼排ガス
を完全燃焼させて上記予熱炉内に供給するアフターバー
ニング室を設けたことを特徴とする連続焼鈍炉。
(3) In a continuous annealing furnace that has a preheating furnace, a direct-fired furnace, and an indirect heating soaking furnace in this order and continuously anneales thin steel strips, an intermediate chamber is provided between each of the furnaces to prevent the movement of gas in the furnace. A continuous annealing furnace characterized in that an afterburning chamber is provided between the direct-fired furnace and the preheating furnace to completely combust the combustion exhaust gas in the direct-fired furnace and supply it to the preheating furnace.
(4)前記直火炉は前記間接加熱均熱炉の側に還元加熱
用バーナを有していることを特徴とする特許請求の範囲
第3項に記載の連続焼鈍炉。
(4) The continuous annealing furnace according to claim 3, wherein the direct-fired furnace has a reduction heating burner on the side of the indirect heating soaking furnace.
JP15689885A 1985-07-10 1985-07-18 Continuous annealing furnace Granted JPS6220828A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP15689885A JPS6220828A (en) 1985-07-18 1985-07-18 Continuous annealing furnace
EP86904373A EP0233944B1 (en) 1985-07-18 1986-07-10 Continuous strip steel processing line having direct firing furnace
AT86904373T ATE61416T1 (en) 1985-07-18 1986-07-10 PLANT FOR THE CONTINUOUS TREATMENT OF STRIP WITH A DIRECTLY HEATED FURNACE.
PCT/JP1986/000352 WO1987000555A1 (en) 1985-07-18 1986-07-10 Continuous strip steel processing line having direct firing furnace
CA000513536A CA1255897A (en) 1985-07-10 1986-07-10 Continuously treating line for steel bands having a heating furnace by directly flaming
BR8606772A BR8606772A (en) 1985-07-18 1986-07-10 CONTINUOUS TREATMENT LINE FOR STEEL TAPES WITH A DIRECT FLAME HEATING OVEN
US07/027,224 US4760995A (en) 1985-07-18 1986-07-10 Continuously treating line for steel bands having a heating furnace by directly flaming
CN 86104502 CN1011982B (en) 1985-07-10 1986-07-10 Steel strip continuous treatment production line with open fire furnace
AU61432/86A AU598981B2 (en) 1985-07-18 1986-07-10 Continuous strip steel processing line having direct firing furnace
DE8686904373T DE3677959D1 (en) 1985-07-18 1986-07-10 SYSTEM FOR THE CONTINUOUS TREATMENT OF TAPE STEEL WITH A DIRECTLY HEATED OVEN.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15689885A JPS6220828A (en) 1985-07-18 1985-07-18 Continuous annealing furnace

Publications (2)

Publication Number Publication Date
JPS6220828A true JPS6220828A (en) 1987-01-29
JPH0121204B2 JPH0121204B2 (en) 1989-04-20

Family

ID=15637803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15689885A Granted JPS6220828A (en) 1985-07-10 1985-07-18 Continuous annealing furnace

Country Status (1)

Country Link
JP (1) JPS6220828A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104673977A (en) * 2015-02-10 2015-06-03 山西太钢不锈钢股份有限公司 Startup warming method of continuous annealing furnace containing non-oxidation section silicon steel

Also Published As

Publication number Publication date
JPH0121204B2 (en) 1989-04-20

Similar Documents

Publication Publication Date Title
US6183246B1 (en) Method of heating a continuously charged furnace particularly for steel-making products, and continuously charged heating furnace
US4760995A (en) Continuously treating line for steel bands having a heating furnace by directly flaming
CN100465302C (en) Three-section type atmosphere controlled heat treatment furnace
JPS6220828A (en) Continuous annealing furnace
CN103025898B (en) Annealing installation with m-shaped strip treatment tunnel
JP3044286B2 (en) Continuous annealing furnace
US3532329A (en) Strip heating apparatus
JP3493299B2 (en) Gas carburizing method and apparatus
US1525725A (en) Furnace construction and operation
JP2759354B2 (en) Bright annealing method and apparatus for stainless steel strip
US1556208A (en) Salt glazing and klin for same
JPH0553848B2 (en)
JPS6017020A (en) Direct firing vertical type continuous annealing furnace
JPS62288126A (en) Glass sheet heating equipment and process
JPH0610059A (en) Combustion control device
JPH02267232A (en) Continuous annealing method
JPH0230720A (en) Method for heating steel sheet
JPH01212722A (en) Method for continuously heating steel strip
JPS6213536A (en) Device for sealing exit of atmospheric furnace
JPS58221223A (en) Heat treatment method
JPH0238533A (en) Method for cooling direct-fired strip heating furnace in shutdown
JPH0693341A (en) Continuous heat treatment method for steel strip
JPH1112658A (en) Method for preheating steel sheet in continuous annealing equipment
JPH0441621A (en) Continuous heat treatment for steel strip
JPS6393829A (en) Method for sealing steel strip inlet and outlet of nonoxidation furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees