JPS62207953A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPS62207953A
JPS62207953A JP5039886A JP5039886A JPS62207953A JP S62207953 A JPS62207953 A JP S62207953A JP 5039886 A JP5039886 A JP 5039886A JP 5039886 A JP5039886 A JP 5039886A JP S62207953 A JPS62207953 A JP S62207953A
Authority
JP
Japan
Prior art keywords
probe
case
block
vibrator
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5039886A
Other languages
Japanese (ja)
Other versions
JPH0657211B2 (en
Inventor
Toshiro Kondo
敏郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP5039886A priority Critical patent/JPH0657211B2/en
Publication of JPS62207953A publication Critical patent/JPS62207953A/en
Publication of JPH0657211B2 publication Critical patent/JPH0657211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a reflection by an interface to the body surface of a body to be inspected of an ultrasonic wave radiated from a vibrator, by forming an ultrasonic transmission part which contacts the body to be inspected, by the copolymer resin of a polyamide block and a polyether ester block. CONSTITUTION:A sound absorbing material 2 to which a vibrator 3 consisting of a piezoelectric material such as PZT, etc., is provided in a case 8, and constituted so as to execute an oscillating motion by using a point '0' as a fulcrum in the figure. The rotary motion of a motor 5 fixed to a base 6 is converted by a motion converting mechanism 7, and the sound absorbing material 2, that is, the vibrator 3 is brought to the oscillating motion. The case 8 consists of the lower side case part 8a and the upper side case part 8b, and an ultrasonic transmission part which contacts the body surface of a body to be inspected of the lower side case part 8a is formed by the copolymer resin of the polyamide block and the polyether block. As for the copolymer resin of the polyamide block and the polyether block, both the acoustic impedance and the sound velocity are values being near those of the body surface of the human body, respectively, therefore, there is scarcely the possibility that the performance is deteriorated due to the increase in the thickness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は被検体の体表と接触する超音波透過部分を改良
した超音波断層装置用探触子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a probe for an ultrasonic tomography apparatus that has an improved ultrasonic transmitting portion that contacts the body surface of a subject.

〔従来の技術〕[Conventional technology]

従来のこの種の探触子、仁こではセクタ機械走査形の超
音波断層装置用探触子を第2図に示す。
FIG. 2 shows a conventional probe of this type, a sector mechanical scanning probe for an ultrasonic tomography apparatus.

この第2図において、1は例えばエポキシ樹脂等からな
るケース、2はPZT等の圧電材からなる振動子3を貼
着した吸音材で、前記ケース1内に設けられ、図中0点
を支点として首搗運動するようになされている。この運
動は、超音波の伝達媒体である油(図示せず)を充填し
たケース1の図中下部側ケース部1aに隣接する上部側
ケース部lb内に設けられた電動機(図示せず)の運動
を吸音材2に適宜伝達することにより実現している。
In FIG. 2, 1 is a case made of, for example, epoxy resin, and 2 is a sound absorbing material to which a vibrator 3 made of piezoelectric material such as PZT is attached. It is designed to be used as a neck movement. This movement is caused by an electric motor (not shown) installed in the upper case part 1b adjacent to the lower case part 1a of the case 1 filled with oil (not shown), which is an ultrasonic transmission medium. This is achieved by appropriately transmitting the motion to the sound absorbing material 2.

しかしながらこのような探触子では、振動子3による超
音波の送受波が被検体である生体のそれとは異なる音響
インピーダンスをもつエポキシ樹脂等からなるケース1
を介して行われる(超音波透過部分が生体のそれとは異
なる音響インピーダンスをもつエポキシ樹脂等のケース
1である)ので、前記伝達媒体として音響インピーダン
スが生体に近いものを用いても、ケース1と生体との界
面で超音波の反射が生じ、超音波透過率が低下する。ま
た、前記界面での多重反射が続くと、これが断層像に重
畳して現われ1画質を劣化させる等の問題点があった。
However, in such a probe, the transducer 3 transmits and receives ultrasonic waves using a case 1 made of epoxy resin or the like that has an acoustic impedance different from that of the living body being examined.
(Case 1 is case 1, where the ultrasonic transmission part is made of epoxy resin, etc., which has an acoustic impedance different from that of a living body). Therefore, even if a material whose acoustic impedance is close to that of a living body is used as the transmission medium, Case 1 will not occur. Ultrasonic waves are reflected at the interface with the living body, reducing ultrasound transmittance. Furthermore, if multiple reflections at the interface continue, they will appear superimposed on the tomographic image, causing problems such as deterioration of the image quality.

そこで、第2図に示すように、ケース1の超音波が透過
する部分を薄い塩化ビニール膜4で形成した探触子が考
えられた。これによれば上述探触子の問題点を解消する
ことができるが、前記塩化ビニール膜4は柔軟であるた
め、その生体への接触時に容易に変形してしまう。従っ
て、特に肋骨近傍等のような凹凸部分に探触子を強く当
てて診断する際、探触子先端、すなわち前記塩化ビニー
ル膜4部分が変形し、操作性を悪くするという欠点があ
った 上記の探触子に対し次のごとき改良案も提案されている
(実願昭58−67840)。
Therefore, as shown in FIG. 2, a probe was devised in which the part of the case 1 through which the ultrasonic waves are transmitted is formed of a thin vinyl chloride film 4. According to this, the problems of the above-mentioned probe can be solved, but since the vinyl chloride film 4 is flexible, it easily deforms when it comes into contact with a living body. Therefore, when diagnosing by strongly applying the probe to an uneven area such as the vicinity of the ribs, the tip of the probe, that is, the 4 portion of the vinyl chloride film deforms, resulting in the disadvantage of poor operability. The following improvement plan for the probe has also been proposed (Utility Application No. 58-67840).

以下その改良案について説明する。すなわち、前述した
よう忙、被検体の体表と接触する探触子の超音波透過部
分を形成する部材として被検体である生体の体表の音響
インピーダンスと等しいものを用いると1体表との界面
での超音波の反射が生じることはなく、超音波の伝播損
失や多重エコーによる画質劣化等は生じない。また、生
体の肋骨近傍等のような凹凸部分に強く当てても変形を
生じない程度の厚さや固さが得られる材質を用いれば操
作性を損うことはない。これらの両方の特性を満たす超
音波透過部分の材質として、ポリメチルペンテンが良い
。すなわち、生体、特に人体の体表の音響インピーダン
スは、個人差があるが。
The proposed improvement will be explained below. In other words, as mentioned above, if a material that forms the ultrasonic transmitting part of the probe that comes into contact with the body surface of the subject is a material that has an acoustic impedance equal to that of the body surface of the living body that is the subject, then one Ultrasonic waves are not reflected at the interface, and image quality degradation due to ultrasonic propagation loss and multiple echoes does not occur. Furthermore, if a material is used that has a thickness and hardness that will not cause deformation even if it is strongly applied to uneven parts such as near the ribs of a living body, operability will not be impaired. Polymethylpentene is a good material for the ultrasound transmitting part that satisfies both of these characteristics. That is, the acoustic impedance of the body surface of a living body, especially the human body, varies from person to person.

はぼ1.55〜1.65xlO’kg/rr?hmの範
囲内にあり、  1.62 X 10’kg/−(8)
が代表値とされる 1(日本超音波医学会第32回研究
発表会講演論文集192〜193頁参照)。ポリメチル
ペンテンの音響インピーダンスが上記代表値に近似する
ことを見い出したもので、その特性の一例、ここでは、
三井油化社製MXOO4なるポリメチルペンテ/の特性
を次表に記す。
Habo 1.55-1.65xlO'kg/rr? Within the range of hm, 1.62 x 10'kg/-(8)
The representative value is 1 (see Proceedings of the 32nd Research Conference of the Japanese Society of Ultrasonics in Medicine, pp. 192-193). It was discovered that the acoustic impedance of polymethylpentene is close to the above representative value, and an example of its characteristics is shown below.
The properties of polymethylpente/MXOO4 manufactured by Mitsui Yuka Co., Ltd. are shown in the table below.

第1表 密度(g /cII)             0.
834音速(m/flee)            
2004音響インピーダ7ス(kg/1tfl)  =
1.67xlO’融点(tlll’)        
  235〜240熱変形源度(c)        
   85−曲げ強度(kg/crA )      
   250この第1表から分かるように、ポリメチル
ペンテンは抑圧や熱により容易に変形しない性質をも有
し、また、耐薬品性があシ、耐電圧が高いという性質も
有するもので、被検体の体表と接触する探触子の超音波
透過部分を形成する部材として有用である。しかし第1
表から明らかなようにポリメチルペンテンの音速は、 
2004m/set+で生体のそれに比べ非常に大きい
。そのため第2図に示しだ探触子のケース1を均一な厚
さKしても、その形状として曲率半径の小さい球殻状の
ものを用いるとレンズ作用が生ずる。特に曲率半径を小
さくした小形の探触子の場合、ケースの中心部を通過す
る場合と周辺部を通過する場合と集束点が異なるため分
解能が低下すると云う不都合が生ずる。
First table density (g/cII) 0.
834 speed of sound (m/flee)
2004 acoustic impedance 7s (kg/1tfl) =
1.67xlO' melting point (tllll')
235-240 thermal deformation degree (c)
85-Bending strength (kg/crA)
250 As can be seen from Table 1, polymethylpentene has the property of not being easily deformed by compression or heat, and also has good chemical resistance and high withstand voltage. It is useful as a member that forms the ultrasonic transmission part of the probe that comes into contact with the body surface of the human body. But the first
As is clear from the table, the sound speed of polymethylpentene is
2004m/set+, which is much larger than that of a living body. Therefore, even if the case 1 of the probe shown in FIG. 2 has a uniform thickness K, a lens effect will occur if a spherical shell shape with a small radius of curvature is used. In particular, in the case of a small probe with a small radius of curvature, the convergence point is different when passing through the center of the case and when passing through the periphery, resulting in a disadvantage that the resolution is reduced.

このように生体と音響インピーダンスに近似しても音速
が生体のそれと大きく異なると超音波の集束作用に悪影
響を与える。このよう忙ポリメチルペンテンを用いた探
触子による断層装置では画質を低下させることになると
云う欠点がある。
In this way, even if the acoustic impedance is approximated to that of a living body, if the sound speed is significantly different from that of a living body, it will adversely affect the focusing effect of ultrasound. A tomographic apparatus using a probe using such polymethylpentene has the disadvantage that image quality is degraded.

上記の原因を明らかにするためヘッドケースの材質の音
速による影響について検討する。
In order to clarify the above cause, we will examine the influence of the sound velocity on the material of the head case.

第4図に探触子のヘッドケースのレンズ効果を示す。こ
こで次のようなことを仮定した。
Figure 4 shows the lens effect of the head case of the probe. Here, we assumed the following.

O超音波を幾何光学的に考え、干渉や回折を無視する。Consider ultrasonic waves in terms of geometric optics and ignore interference and diffraction.

O振動子は平面とするが、集束の性質は失わない。Although the O oscillator is made flat, the focusing property is not lost.

0 ヘッドケースは完全な球殻である。0 The head case is a complete spherical shell.

振動子半径:r 振動子の焦点距離:f。Oscillator radius: r Focal length of the vibrator: f.

ヘッドケースの曲率半径:R1(内面)、R2(外面)
振動子−ヘッドケース間距離:d 探触子−ヘッドケース(内面)間の音速二〇1ヘッドケ
ース中の音速:C2 探触子外部の音速二03 ヘッドケースが存在しない場合、Aから出発した波は直
進してGに達する。同様に振動子上の任意の点から出発
した波も直進してGに達する。ヘッドケースが存在する
場合、Aから出発した波はヘッドケース内面Bに達し%
Sne I Iの法則に従って屈折し、ヘッドケース外
面Cに達する。その後渡は再び屈折し、Dに達する。振
動子上の任意の点から出発した波も同様にして2回屈折
して外部へ出ていくが、焦点距離は一致せず、ヘッドケ
ースは収差のあるレンズとして作用している。
Head case radius of curvature: R1 (inner surface), R2 (outer surface)
Distance between transducer and head case: d Speed of sound between probe and head case (inner surface) 201 Speed of sound inside the head case: C2 Speed of sound outside the probe 203 If there is no head case, starting from A The wave travels straight and reaches G. Similarly, a wave starting from any point on the vibrator travels straight and reaches G. If a head case exists, the wave starting from A will reach the inner surface of the head case B.%
It is refracted according to the Sne II law and reaches the outer surface C of the head case. After that, the crossing bends again and reaches D. A wave starting from an arbitrary point on the vibrator is similarly refracted twice and exits to the outside, but the focal lengths do not match, and the head case acts as a lens with aberration.

第4図のΔA’BPとΔF’BOにおいて几(sinθ
1 +Rr CQSθ1tanψ= r ’   ・−
・(1)ここに r’1=OGtanψ=(f、−d+Rt)tan9’
  −(2)tanψ=□             
  ・・・(3)f。
In ΔA'BP and ΔF'BO in Fig. 4, 几(sinθ
1 +Rr CQSθ1tanψ= r' ・-
・(1) Here r'1=OGtanψ=(f, -d+Rt)tan9'
−(2) tanψ=□
...(3) f.

である。It is.

式(3)よりsinθ!を求める。From equation (3), sinθ! seek.

ヘッドケース内面への入射角θIlは次式より与えられ
る。
The angle of incidence θIl on the inner surface of the head case is given by the following equation.

θ、1=θ1+ψ            ・・・(5
)Snellの法則より次の関係式が成立する。
θ, 1=θ1+ψ...(5
) According to Snell's law, the following relational expression holds true.

・・・θ・・=尼土sinθ・・ (内面)    ・
・・(6)ΔBCOに正弦定理を適用すると、次式が成
立する。
... θ... = Nido sin θ... (inner) ・
...(6) When the law of sine is applied to ΔBCO, the following equation holds true.

よって ここで θヨθ1−/BOC=θI十θ+2−〇、2  ・・・
(9)φ目θ、3−θ             ・・
・(10)とする。また1点Cから中心軸OGに垂直に
下した点をHとすると CH=R2sinθ            −(11
)したがって、焦点距離fは次式で与えられる。
Therefore, here θyo θ1-/BOC=θI+θ+2-〇, 2...
(9) φth θ, 3-θ ・・
・Set as (10). Also, if H is a point perpendicular to the central axis OG from point C, then CH=R2sinθ−(11
) Therefore, the focal length f is given by the following equation.

f =HD+(OH(Rr  d ) )H =−+Rr2CO3θ+d−R11 tanφ 第5図に上記の解析法により振動子より出た超音波の経
路を示す音線を求めた一例を示す。ここでヘッドケース
はポリメチルペンテンを想定しその音速を2000m/
(8)とした。ヘッドケース中での音速が生体のそれと
同じなら振動子からの音線は同じ一点に達すべきものが
1図に示したように経路によって異なる点に到達し収差
が生じている。
f=HD+(OH(Rrd))H=-+Rr2CO3θ+d-R11 tanφ FIG. 5 shows an example of the sound rays indicating the path of the ultrasonic waves emitted from the vibrator using the above analysis method. Here, the head case is assumed to be made of polymethylpentene, and the sound speed is 2000 m/
(8). If the speed of sound in the head case is the same as that in a living body, the sound rays from the vibrator should reach the same point, but as shown in Figure 1, they reach different points depending on the path, resulting in aberrations.

このようにポリメチルペンテンを用いて曲率が12.5
R,と小さく、厚さが1.5flで外面が14凡の球殻
状のへラドケースを用いた探触子では、上記のごとき欠
点が生ずることが理解できる。
In this way, using polymethylpentene, the curvature is 12.5.
It can be seen that the above-mentioned drawbacks occur in a probe using a spherical helad case with a small R, a thickness of 1.5 fl, and an outer surface of about 14 mm.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例について説明するが、図示例に基づく説
明に先だって本発明が達成されるに至ったまでについて
述べる。すなわち、前述したように、被検体の体表と接
触する探触子の超音波透過部分を形成する部材として被
検体である生体の体表の音響インピーダンスと等しいも
のを用いると、体表との界面での超音波の反射が生じる
ことはなく、超音波の伝播損失や多重エコーによる画質
劣化等は生じない。また、生体の肋骨近傍等のような凹
凸部分に強く当てても変形を生じ力い程度の厚さや固さ
が得られる材質を用いれば操作性を損うことはない。ま
た音速が生体のそれに近いと探触子における超音波ビー
ムの集束に収差も生じない。
Embodiments of the present invention will be described, but prior to the explanation based on the illustrated examples, a description will be given of how the present invention was achieved. In other words, as mentioned above, if a material that is equal to the acoustic impedance of the body surface of the living body is used as the member forming the ultrasonic transmitting part of the probe that comes into contact with the body surface of the subject, the impedance between the body surface and the body surface will be Ultrasonic waves are not reflected at the interface, and image quality degradation due to ultrasonic propagation loss and multiple echoes does not occur. Furthermore, if a material is used that can be sufficiently thick and hard enough to deform even if it is strongly applied to an uneven part such as near the ribs of a living body, operability will not be impaired. Furthermore, if the sound speed is close to that of a living body, no aberration will occur in the focusing of the ultrasound beam on the probe.

本発明者は、上記の要件を満たす超音波透過部分の材質
につき鋭意研究の結果、ポリアミドブロックとポリエー
テルエステルブロックの共重合樹脂が適することを見い
出すに至った。
As a result of extensive research into the material of the ultrasonic transmitting portion that satisfies the above requirements, the present inventors have found that a copolymer resin of polyamide block and polyether ester block is suitable.

本発明者は、上記の共重合樹脂の音響インピーダンスが
すでに述べたように人体の体表の音響インピーダンスの
代表値に近似し、また音速も生体に近似することを見い
出したもので、その特性例として、東し株式会社で製造
したペバックス(登録商標)の特性を第2表に示す。こ
こでペパツクスノ試料番号63338NO0,5533
8NO0。
The present inventors have discovered that the acoustic impedance of the above-mentioned copolymer resin approximates the typical value of the acoustic impedance of the surface of the human body, as described above, and that the sound velocity also approximates that of a living body. Table 2 shows the characteristics of Pebax (registered trademark) manufactured by Toshi Co., Ltd. Here Pepatsukuno sample number 63338NO0,5533
8NO0.

40338NO0,3533SNOOの順にm / n
がよシ小でくなっている。
m/n in order of 40338NO0, 3533SNOO
It's getting bigger and smaller.

ここに示したポリアミドブロックとポリエーテルエステ
ルブロックの共重合樹脂ハ ポリアミドブロツク   ポリエーテルエステルブロッ
クなる分子式で表わされるもので第1表よシボリアミド
ブロックがポリエーテルエステルブロックより比率が大
きくなると、即ちm / nが大きくなると硬度が増し
、逆Km/nが小さくなると柔軟性が増加する特性があ
る。m / nの比率を変えることにより広い領域にわ
たり柔軟性を調整できる特性を持っている。またm /
 nの比率により音速も変化させることができ、生体の
音速に近づけうろことが確認できた。一方、m/nの大
きさによシ密度は生体のそれに近い1.01でほとんど
変らない。このことは適切なm/nの値のベバックスを
用いると音速と音響インピーダンスの両方を生体のそれ
に近似できることになる。発明者は、このことを見出し
探触子において生体に接する音響透明窓に用いることを
考案した。
The copolymer resin hapolyamide block of polyamide block and polyether ester block shown here is expressed by the molecular formula of polyether ester block. As n increases, hardness increases, and as inverse Km/n decreases, flexibility increases. It has the property that flexibility can be adjusted over a wide range by changing the m/n ratio. Also m/
The speed of sound could be changed by changing the ratio of n, and it was confirmed that the sound speed approached the speed of sound in a living body. On the other hand, the density is 1.01, which is close to that of a living body, and hardly changes depending on the size of m/n. This means that by using Bebax with an appropriate m/n value, both the speed of sound and the acoustic impedance can be approximated to that of a living body. The inventor took advantage of this and devised the idea of using it in an acoustically transparent window in contact with a living body in a probe.

この第2表から分かるように、ポリアミドブロックとポ
リエーテルブロックの共重合樹脂は耐熱性があり、ある
程度の力では変形しない性質をも有する。また、耐薬品
性があり、耐電圧が高いという性質も有するので、被検
体の体表と接触する探触子の超音波透過部分を形成する
部材として有用である。
As can be seen from Table 2, the copolymer resin of polyamide block and polyether block has heat resistance and also has the property of not being deformed by a certain amount of force. Furthermore, since it has properties of chemical resistance and high voltage resistance, it is useful as a member that forms the ultrasound transmitting portion of the probe that comes into contact with the body surface of the subject.

以下第1図を参照して本発明の詳細な説明する。第1図
は本発明による超音波断層装置用探触子、ここでは毛ク
タ機械走査形の超音波断層装置用探触子の一例を示す断
面図で1図中2および3は第2図および第3図と同様に
吸音材および振動子を指す。5は台6に固定された電動
機で、その回転運動は台6に取付けられた運動変換機構
7により変換され、吸音材2、換言すれば振動子3を図
中0点を支点として首振運動させる。
The present invention will be described in detail below with reference to FIG. FIG. 1 is a sectional view showing an example of a probe for an ultrasonic tomography device according to the present invention, in which a mechanical scanning type probe for an ultrasonic tomography device according to the present invention is shown. Similar to FIG. 3, this refers to the sound absorbing material and the vibrator. Reference numeral 5 denotes an electric motor fixed to a table 6, and its rotational motion is converted by a motion conversion mechanism 7 attached to the table 6, causing the sound absorbing material 2, in other words, the vibrator 3, to oscillate around the zero point in the figure as a fulcrum. let

8は以上の各部材を収納するケースで、下部側ケース部
8aと上部側ケース部8bとからなシ、下部側ケース部
8aの少なくとも被検体の体表、(図示せず)と接触す
る超音波透過部分8cは上述ポリアミドブロックとポリ
エーテルブロックの共重合樹脂で形成されている。上述
したようにポリアミドブロックとポリエーテルブロック
の共重合樹脂は、音響インピーダンスおよび音速共に人
体の体表のそれにそれぞれ近い値であるため厚さを厚く
することによる性能劣化の恐れが少ない。
Reference numeral 8 denotes a case that houses each of the above-mentioned members, and includes a lower case part 8a and an upper case part 8b, and a superstructure that contacts at least the body surface of the subject (not shown) in the lower case part 8a. The sound wave transmitting portion 8c is made of a copolymer resin of the above-mentioned polyamide block and polyether block. As described above, the copolymer resin of polyamide blocks and polyether blocks has acoustic impedance and sound velocity close to those of the surface of the human body, so there is little risk of performance deterioration due to increased thickness.

従って、押圧により容易に変形することのない構造にす
ることができる。ここではケース8全体のうち、超音波
透過部分8Cが適宜厚さのベバックスで形成されている
Therefore, it is possible to create a structure that does not easily deform under pressure. Here, of the entire case 8, an ultrasonic transmitting portion 8C is formed of Bebax with an appropriate thickness.

9は下部側ケース部8aに充填された超音波の伝達媒体
(図示せず)の上部側ケース部8bおよびケース8外方
への漏洩を防止するO IJングで、シリコンゴム等か
らなる。10は振動子3および電動機5へのケーブルで
ある。
Reference numeral 9 denotes an O-IJ ring made of silicone rubber or the like, which prevents the ultrasonic transmission medium (not shown) filled in the lower case part 8a from leaking to the upper case part 8b and the outside of the case 8. 10 is a cable to the vibrator 3 and the electric motor 5.

〔発明の効果〕〔Effect of the invention〕

上述本発明探触子の超音波の送受波動作は第2図および
第3図に示す従来探触子と特に変わるところはない。
The ultrasonic wave transmission and reception operations of the probe of the present invention described above are not particularly different from those of the conventional probe shown in FIGS. 2 and 3.

本発明による探触子は被検体の代表と接触する超音波透
過部分をポリアミドブロックとポリエーテルエステルブ
ロックの共重合樹脂で形成したことを特徴とするもので
、これによれば、振動子から放射された超音波の被検体
の体表との界面での反射が防止でき、超音波の伝播損失
や多重エコーによる画質劣化等は生じない。また音速が
生体だ近いため、ケースの形状により音線が屈折する作
用が発生しないため超音波ビームパターンが変化して探
触子の特性が劣化することもない。同時に、生体の肋骨
近傍等のような凹凸部分に強く当てても多少の柔軟性を
もつので触感がよく、また変形が少ない。たとえ多少変
化しても音速が生体と同じであると超音波ビーム形状が
変化がほとんど起らないため探触子の特性が劣化しない
。そして、その他のケース部分を硬質の合成樹脂1例え
ば塩化ビニールやポリカーボネイト等で形成すれば操作
性にも優れるという効果がある。その他、ポリアミドブ
ロックとポリエーテルエステルブロックの共重合樹脂は
耐薬品性、耐久性があり、耐電圧が高く、また加工性に
優れる等の効果もある。
The probe according to the present invention is characterized in that the ultrasonic transmitting part that comes into contact with the representative of the object to be examined is formed of a copolymer resin of polyamide blocks and polyether ester blocks. Reflection of the transmitted ultrasound waves at the interface with the body surface of the subject can be prevented, and image quality deterioration due to ultrasound propagation loss and multiple echoes will not occur. Furthermore, since the speed of sound is similar to that of a living body, the shape of the case does not cause the sound rays to be refracted, so the ultrasonic beam pattern does not change and the characteristics of the probe do not deteriorate. At the same time, it has some flexibility even when strongly applied to uneven areas such as near the ribs of a living body, so it feels good to the touch and is less likely to deform. Even if there is some change, if the sound speed is the same as that of a living body, the ultrasonic beam shape will hardly change, so the characteristics of the probe will not deteriorate. If the other case parts are made of a hard synthetic resin such as vinyl chloride or polycarbonate, the operability will be improved. In addition, the copolymer resin of polyamide block and polyether ester block has chemical resistance, durability, high withstand voltage, and excellent processability.

以上機械走査形超音波探触子を例にとり説明したが、本
発明は、電子走査形超音波探触子にも適用できることは
勿論であり、この場合にも上述実施例と同様の効果を奏
する。
Although the above description has been made using a mechanical scanning type ultrasound probe as an example, it goes without saying that the present invention can also be applied to an electronic scanning type ultrasound probe, and the same effects as in the above-mentioned embodiments can be achieved in this case as well. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による超音波断層装置用探触子の一実施
例を示す断面図である。第2図および第3図は各々従来
探触子の要部断面図を示す。第4図はへラドケースのレ
ンズ効果の説明図、第5図はヘッドケースがTPXの場
合の音線を示して収束状態の劣化を説明した図である。 3・・・振動子、8・・・ケース、8a・・・ポリアミ
ドブロックとポリエーテルエステルブロック共重合樹脂
第2図 第3図 z5図
FIG. 1 is a sectional view showing an embodiment of a probe for an ultrasonic tomography apparatus according to the present invention. FIGS. 2 and 3 each show a sectional view of a main part of a conventional probe. FIG. 4 is an explanatory diagram of the lens effect of the Herad case, and FIG. 5 is a diagram illustrating the deterioration of the convergence state by showing sound rays when the head case is TPX. 3... Vibrator, 8... Case, 8a... Polyamide block and polyether ester block copolymer resin Figure 2 Figure 3 Figure z5

Claims (1)

【特許請求の範囲】[Claims] 1、被検体と接触する超音波透過部分をポリアミドブロ
ックとポリエーテルエステルブロックとポリエーテルエ
ステルブロックの共重合樹脂で形成したことを特徴とす
る超音波診断装置用探触子。
1. A probe for an ultrasonic diagnostic device, characterized in that the ultrasonic transmitting portion that contacts the subject is formed of a copolymer resin of a polyamide block, a polyether ester block, and a polyether ester block.
JP5039886A 1986-03-10 1986-03-10 Ultrasonic probe Expired - Lifetime JPH0657211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5039886A JPH0657211B2 (en) 1986-03-10 1986-03-10 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5039886A JPH0657211B2 (en) 1986-03-10 1986-03-10 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS62207953A true JPS62207953A (en) 1987-09-12
JPH0657211B2 JPH0657211B2 (en) 1994-08-03

Family

ID=12857768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5039886A Expired - Lifetime JPH0657211B2 (en) 1986-03-10 1986-03-10 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH0657211B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3021458U (en) * 1995-08-07 1996-02-20 木口 謙 Key hook to attach without using thread

Also Published As

Publication number Publication date
JPH0657211B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
US7081093B2 (en) Array transducer for 3D tilting probes
CA1085040A (en) Ultrasonic transducer system and method
EP0130709B1 (en) Ultrasonic transducers for medical diagnostic examinations
Havlice et al. Medical ultrasonic imaging: An overview of principles and instrumentation
US5400788A (en) Apparatus that generates acoustic signals at discrete multiple frequencies and that couples acoustic signals into a cladded-core acoustic waveguide
US7588540B2 (en) Ultrasonic probe for scanning a volume
US4651850A (en) Acoustic lens
EP0489222A2 (en) Ultrasound probe and lens assembly for use therein
GB1490412A (en) Ultrasonic probe
JPS62207953A (en) Ultrasonic probe
JPH0140488Y2 (en)
Rubin et al. Phase cancellation: a cause of acoustical shadowing at the edges of curved surfaces in B-mode ultrasound images
JP3447148B2 (en) Ultrasound scanner
JPS63234951A (en) Ultrasonic probe
JP2720732B2 (en) Mechanical scanning ultrasonic probe
JPS5830657A (en) Ultrasonic probe
JP4662521B2 (en) Acoustic lens, ultrasonic probe and ultrasonic diagnostic apparatus
JPH0557853B2 (en)
JPH0142689B2 (en)
JPH0155411B2 (en)
JPH0332652A (en) Ultrasonic probe
JPH02297347A (en) Ultrasonic wave contactor
JPS63229033A (en) Ultrasonic probe
JPH0140487Y2 (en)
JPH06277219A (en) Medical ultrasonic converter assembly

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term