JPS62207395A - Method or imparting metal-to-metal extreme pressure lubrication - Google Patents

Method or imparting metal-to-metal extreme pressure lubrication

Info

Publication number
JPS62207395A
JPS62207395A JP4955486A JP4955486A JPS62207395A JP S62207395 A JPS62207395 A JP S62207395A JP 4955486 A JP4955486 A JP 4955486A JP 4955486 A JP4955486 A JP 4955486A JP S62207395 A JPS62207395 A JP S62207395A
Authority
JP
Japan
Prior art keywords
metals
metal
lubricant
lubricating
tetrafluoroethylene resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4955486A
Other languages
Japanese (ja)
Other versions
JPH0260717B2 (en
Inventor
Akihiko Miyaji
宮地 明彦
Shigeo Hayashi
茂雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIKOU JIYUNKATSUZAI KK
Sumico Lubricant Co Ltd
JDC Corp
Nippon Kokan Koji KK
Original Assignee
SUMIKOU JIYUNKATSUZAI KK
Sumico Lubricant Co Ltd
JDC Corp
Nippon Kokan Koji KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIKOU JIYUNKATSUZAI KK, Sumico Lubricant Co Ltd, JDC Corp, Nippon Kokan Koji KK filed Critical SUMIKOU JIYUNKATSUZAI KK
Priority to JP4955486A priority Critical patent/JPS62207395A/en
Publication of JPS62207395A publication Critical patent/JPS62207395A/en
Publication of JPH0260717B2 publication Critical patent/JPH0260717B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To effectively decrease the sliding friction between metals and to prevent the seizing between the metals for a long period of time, by multicost coating of the surface of contact between metals with particular two kinds of lubricating coatings contg. finely divided tetrafluoroethylene resin. CONSTITUTION:Molybdenum disulfide and (or) graphite are mixed with finely divided tetrafluoroethylene resin to obtain a lubricating coating. The lubricating coating is applied on the surface of a contact between metals. At least one surface of the contact is further multicoated with a lubricating coating obtd. by dispersing a finely divided tetrafluoroethylene resin in a volatile solvent (e.g., methyl ethyl ketone) to form an extreme-pressure lubricating surface between the metals which can withstand leng-term use. This method enables favorable adoption of e.g. the sleeve and wedge in non-blasting rock breaking- crushing works, where the sliding friction between the wedge and sleeve is reduced thereby preventing seizure between the surfaces of the metals, to afford the aimed lubricant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、衝撃荷重等による金属同志の摺動摩擦を極力
低減せしめ金属表面同志の焼付を防止するための金属−
金属間極圧潤滑付与方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a method for reducing the sliding friction between metals due to impact loads as much as possible and preventing seizure between metal surfaces.
This invention relates to a method for providing extreme pressure lubrication between metals.

上記のような方法の利用分野としては、金属間の極圧が
予測されるあらゆる技術分野、例えばスリーブと櫟を使
用する無発破岩盤破砕工法が挙げられるが、この−例と
して一部光に出願した日本国公開特許公報昭59−47
96号に記載の無発破ベンチカット工法(以下B工法と
略称する)による岩盤掘削において、重錘を落下させ楔
に衝撃荷重を加えることによりこの楔とスリーブ間、即
ち金属同志に生じる摺動摩擦を極力低減せしめ、金属表
面同志の焼付を防止することがこれに当たる。
Fields of application of the above method include all technical fields where extreme pressure between metals is expected, such as non-blasting rock crushing methods using sleeves and rods. Japanese Patent Publication No. 59-47
In rock excavation using the non-blasting bench cut method (hereinafter referred to as method B) described in No. 96, by dropping a weight and applying an impact load to the wedge, the sliding friction that occurs between the wedge and the sleeve, that is, between the metal members, is reduced. This means reducing the amount of heat as much as possible and preventing seizures between metal surfaces.

(従来の技術) 近年岩盤掘削工事が益々増大して来たが、一方では環境
保全の点からこの掘削工事に伴う振動、騒音等の制約が
厳しくなり、市街地、民家密集地等における危険物の使
用、即ち発破のだめの火薬類の使用な困難になった。こ
う云った事情から無発破による岩盤掘削工法が求められ
、その一つとして上記公報に開示されている無発破ベン
チカット工法が発明された。しかし、この工法にあって
一つの難点は、使用する喫とスリーブとが大きな打撃力
を受け、同時にそれらの間に極端に大きいな衝撃的な摩
擦力が生じ、これらが過大に摩耗をこをむシ、シいては
両者の接触面に衝撃的な摩擦により焼付現象が起こり、
これらを時期尚早に交換しなければならないと云う欠点
が生じることである。
(Prior art) Rock excavation work has been increasing more and more in recent years, but on the other hand, restrictions on vibration, noise, etc. associated with this excavation work have become stricter from the perspective of environmental conservation, and hazardous materials are being removed in urban areas, areas with large numbers of private houses, etc. It became difficult to use explosives for blasting. Under these circumstances, a rock excavation method without blasting was required, and the non-blasting bench cutting method disclosed in the above-mentioned publication was invented as one of these methods. However, one difficulty with this method is that the shaft and sleeve used are subjected to a large impact force, and at the same time an extremely large impact frictional force is generated between them, which causes excessive wear. Otherwise, a seizure phenomenon will occur due to the impactful friction on the contact surfaces between the two.
The disadvantage is that they have to be replaced prematurely.

しかし、上記のことは一例であって、このような現象は
、互いに接触し合う金属が過大な荷重を受け、極圧が生
じるような金属面において普通一般に見られることであ
る。
However, the above is just an example, and such a phenomenon is commonly observed in metal surfaces where metals in contact with each other are subjected to excessive loads and extreme pressures are generated.

こう云ったことから、この欠点を解決するため色々な技
術が知られている。最も簡単な方法としては両者の面間
に潤滑剤を塗布することであり、一般には高沸点、高粘
性の石油系の潤滑剤が使用されている。この潤滑剤は実
用的には殆と問題がないが、この潤滑剤は高い圧力下に
ある摺動する金属間に使用した場合消耗が激しく、潤滑
の用をなさなくなシ短期間に新しい潤滑剤を補充しなけ
ればならないと云う欠点があり、またこのような潤滑剤
を例えば上記の公報に開示されているような工法に適用
した場合、−回の岩盤割裂毎に塗布しなければならず、
この潤滑剤が高粘性油状物である場合汚れ易く取扱上難
点があり、特に砕岩を水面埋立用に投棄する場合油分が
浮遊し水質汚濁を発生させる可能性があると云う欠点を
有している。
For this reason, various techniques are known to solve this drawback. The simplest method is to apply a lubricant between the two surfaces, and a petroleum-based lubricant with a high boiling point and high viscosity is generally used. This lubricant has almost no problems in practical use, but when used between sliding metals under high pressure, it wears out rapidly and the lubricant is no longer useful, and new lubrication occurs within a short period of time. There is a disadvantage that the lubricant must be replenished, and when such a lubricant is applied to the construction method disclosed in the above-mentioned publication, for example, it must be applied every - times when the rock is cracked. ,
If this lubricant is a highly viscous oil, it is easily soiled and is difficult to handle.In particular, when crushed rock is dumped for landfill, oil may float and cause water pollution. .

こう云ったことから、極端に強い圧力を受ける複数の金
属面で長期の使用に耐えるような極圧潤滑面の形成が求
められて来た。
For this reason, there has been a need to create extreme pressure lubricated surfaces that can withstand long-term use on multiple metal surfaces that are subjected to extremely strong pressures.

(発明が解決しようとする問題点) 本発明は上記の欠点を有さない、長期の使用に耐え得る
ような潤滑面を形成するための方法を得ること、即ち衝
撃荷重等による金属同志の摺動摩擦を極力低減せしめ金
属表面同志の焼付を防止するための金属−金属間極圧潤
滑付与方法を得ることである。
(Problems to be Solved by the Invention) The present invention provides a method for forming a lubricated surface that does not have the above-mentioned drawbacks and can withstand long-term use. The object of the present invention is to provide a method for providing extreme pressure lubrication between metals to reduce dynamic friction as much as possible and prevent seizure of metal surfaces.

(問題を解決するための手段) 上記の課題は本発明によシ、両接触面に二硫化モリブデ
ン、グラファイトのうちの少なくとも一つ或いはこれら
の混合物と四弗化エチレン樹脂微粉末とを混合した潤滑
塗剤を塗布し、かつ前記接触面の少なくとも一方に四弗
化エチレン樹脂微粉末を揮発性溶剤に分散させた潤滑塗
剤を塗り重ねることによって解決される。
(Means for Solving the Problem) The above problem is solved by the present invention, in which at least one of molybdenum disulfide, graphite, or a mixture thereof and fine powder of ethylene tetrafluoride resin are mixed on both contact surfaces. This problem can be solved by applying a lubricating paint, and then overcoating at least one of the contact surfaces with a lubricating paint in which fine powder of tetrafluoroethylene resin is dispersed in a volatile solvent.

(実施例) 以下に添付図面に図示した実施例につき本発明の詳細な
説明する。この実施例にあっては、上記日本国公開特許
公報昭59−4796号に記載の無発破ペンチカット工
法を例にとって説明するが、本発明はこの実施例に限ら
ない。
(Embodiments) The present invention will be described in detail below with reference to embodiments illustrated in the accompanying drawings. This embodiment will be explained by taking as an example the non-blasting pincer cut construction method described in Japanese Patent Publication No. 59-4796, but the present invention is not limited to this embodiment.

この公報に記載のB工法において使用される楔2および
スリーブ1の互に接触する面に本発明により潤滑塗布膜
4.5を形成した。この際使用される潤滑剤は以下のよ
うにして製造した。
A lubricating coating film 4.5 was formed according to the present invention on the mutually contacting surfaces of the wedge 2 and the sleeve 1 used in Method B described in this publication. The lubricant used in this case was manufactured as follows.

4層を形成する潤滑剤は二硫化モリブデン(以下にMo
S2と略称する)とグラファイトのいずれか一つ或いは
これらの混合物と四弗化エチレン(以下にPTFEと略
称する)とを混合し、第一の潤滑剤混合物(以下にpy
と略称する)を造った。この混合物の量割合は、種々の
実験の結果、MoS2とグラファイトのいずれか一つ或
いはこれらの混合物100重量部(以下に単に部と略称
する)に対してPTFEの混合量が1〜1゜部が適当で
あることが判った。
The lubricant forming the four layers is molybdenum disulfide (hereinafter referred to as Mo
A first lubricant mixture (hereinafter referred to as PTFE) is mixed with either one of graphite or a mixture thereof and tetrafluoroethylene (hereinafter referred to as PTFE).
) was created. As a result of various experiments, the ratio of the amount of this mixture was determined to be 1 to 1 part by weight of PTFE per 100 parts by weight (hereinafter simply referred to as part) of either MoS2 or graphite or a mixture thereof. was found to be appropriate.

次いで上記の混合物を揮発性溶剤内に均一に分散せしめ
た。この揮発性溶剤は、特に限定されないが、有利には
常温で蒸散し易い有機溶剤、例、tばメチルエチルケト
/、トルエン、塩素系溶剤等の単独又はこれらの混合物
が適している。
The above mixture was then uniformly dispersed in a volatile solvent. The volatile solvent is not particularly limited, but organic solvents that easily evaporate at room temperature, such as methyl ethyl keto/toluene, chlorinated solvents, etc. alone or in mixtures thereof are suitable.

上記の量割合に関連して、PTFEの混合量が1以下で
は、B工法のような極端に高い打撃力にさらされる金属
間への適用の際は、瞬間的な衝撃力に耐えられず、また
10部以上では金属表面への塗剤の接着が充分に得れず
、剥離し易くなり、複数回の岩盤割裂に不適当であるこ
とが確認された。
In relation to the above ratio, if the mixing amount of PTFE is less than 1, it will not be able to withstand the instantaneous impact force when applied to metals that are exposed to extremely high impact forces, such as method B. Moreover, it was confirmed that if the amount is 10 parts or more, sufficient adhesion of the paint to the metal surface cannot be obtained, and the paint peels off easily, making it unsuitable for multiple rock splittings.

5層を形成する潤滑剤はPTFE微粉末をpyと同様の
揮発性溶剤内に均一に分散しせしめて造った。
The lubricant forming the five layers was made by uniformly dispersing PTFE fine powder in a volatile solvent similar to Py.

形成されるpy層4とPTFE層5の厚みは特に限定す
る必要はないが、経済上からは固形分塗布量として10
g/m〜50g/mが好適である。
The thickness of the py layer 4 and PTFE layer 5 to be formed does not need to be particularly limited, but from an economical point of view, the solid content coating amount is 10
g/m to 50 g/m is suitable.

4と5の塗布層の形成手段としては公知の手段で差支え
なく、例えば刷毛塗りでもスプレーによる塗布でもよい
The means for forming the coating layers 4 and 5 may be any known means, such as brush coating or spray coating.

実際に本発明の方法を行った際上記のB工法にあっては
PTFEの平均粒径が0.1〜3μmの範囲が好適であ
ることが判った。この範囲は経済的にも有利でありかつ
又溶剤に対する分散性も良好である。PTFEの粒子が
3μm以上である場合、模およびスリーブ間の微妙な間
隙へのこのPTFEの粒子の導入は旨くいかない。
When the method of the present invention was actually carried out, it was found that the average particle diameter of PTFE was preferably in the range of 0.1 to 3 μm in the method B described above. This range is economically advantageous and also provides good dispersibility in solvents. If the PTFE particles are larger than 3 μm, the introduction of the PTFE particles into the delicate gap between the pattern and the sleeve will not work.

(発明の効果) 本発明者等は、上記したように一般公知の潤滑剤の単独
使用が、例えばB工法のような極端に強力なかつ瞬間的
な衝撃力によって焼付き現象を起しゃすい僕およびスリ
ーブの潤滑には適しておらず、かつ満足のゆく効果が得
られないことを認知し、多年の研究の結果滑り性の非常
に良い、耐熱性も極めて優れているPTFE微粉末の混
合ならびに併用が摩擦係数の低減に優れた相乗効果を発
揮することを見出した。更にまたMo S 2とグラフ
ァイトのいずれか一つ或いはこれらの混合物とPTFE
の混合物pyのみでは落錘衝撃の摩擦に対しては減摩効
果はあるが、第4図に図示したように静的摩擦に対して
は不十分であ邊、PV層4の上に更にPTFE微粉末層
5を塗り重ねることにより、瞬間的な衝撃摩擦および静
的な摩擦に対して著しい減摩効果を発揮することを見出
した。この効果は、スリーブ、撲に塗布されたPTFE
微粉末が重錘打撃の際発生する高温・高荷重で溶融し、
MoS2およびグラファイトのいずれか一方又はその混
合物を含む複合樹脂膜が形成され、スムースな潤滑性を
付与していることによるものである。このような組合わ
せ効果は驚くべきものであり、当業界の専門的知識から
の予測から大きくかけ離れた発見と云うべきものである
(Effects of the Invention) As mentioned above, the present inventors have discovered that the use of a generally known lubricant alone can easily cause a seizing phenomenon due to an extremely strong and instantaneous impact force as in Method B, for example. Recognizing that it is not suitable for sleeve lubrication and does not provide a satisfactory effect, as a result of many years of research, we have mixed and used PTFE fine powder, which has very good slipperiness and extremely high heat resistance. It has been found that these have an excellent synergistic effect in reducing the coefficient of friction. Furthermore, any one of MoS2 and graphite or a mixture thereof and PTFE
Although the mixture py alone has a friction-reducing effect on friction caused by falling weight impact, it is insufficient for static friction as shown in Fig. 4, so PTFE is added on top of the PV layer 4. It has been found that by overcoating the fine powder layer 5, a significant friction reduction effect is exhibited against instantaneous impact friction and static friction. This effect is due to the fact that the PTFE applied to the sleeve,
Fine powder melts due to the high temperature and high load that occurs when struck by a weight,
This is because a composite resin film containing one or a mixture of MoS2 and graphite is formed, providing smooth lubricity. Such a combinatorial effect is surprising, and it should be said that it is a discovery that is far removed from predictions based on expert knowledge in the art.

以下に本発明による方法により一例として上記B工法に
よる喫およびスリーブの表面に適用した際に形成される
潤滑剤塗膜の性能評価に関して一連の試験を行ったので
その詳しいデータを記載する。
Below, a series of tests were conducted to evaluate the performance of a lubricant coating formed when the method according to the present invention was applied to the surface of a sleeve and a sleeve according to Method B, and detailed data thereof will be described.

以下の試験で適用した試験方法は、図面に図示した楔2
とスリーブ1に形成された潤滑剤塗布膜に関して以下に
定義する落錘衝撃試験と繰返し落錘衝撃試験および摺動
摩擦試験とによる。
The test method applied in the following tests was the wedge 2 shown in the drawing.
The lubricant coating film formed on the sleeve 1 was subjected to a falling weight impact test, a repeated falling weight impact test, and a sliding friction test defined below.

試験方法 B工法の模擬試験法として第3図、第4図に示すような
潤滑剤の性能評価を実施した。以下その方法について述
べる。
Test Method B Performance evaluation of the lubricant as shown in FIGS. 3 and 4 was carried out as a mock test method for the construction method. The method will be described below.

B工法における落錘衝撃による喫の貫入状況の評価方法
として図3に示すように潤滑剤を塗布した特殊鋼製金属
片1′(4・へ×4・・ズiQcm)  及び2’ (
4cm X 4cm X 30cm)  を設置し、油
圧ジヤツキにより側圧P1 (500kg/cm2)を
作用せしめ乍ら40kgの重錘3′を2.5m  の高
さから3回落下させ金属片2′の摺動長さ及び両金属片
の接触面の状態観察により潤滑性能を比較評価する。こ
れを落錘衝撃試験と呼称する。
As shown in Fig. 3, as a method for evaluating the penetration state of cracks due to falling weight impact in method B, special steel metal pieces 1' (4 x 4... x iQ cm) and 2' (
4cm Comparatively evaluate the lubrication performance by observing the length and the condition of the contact surface of both metal pieces. This is called a falling weight impact test.

上記の試験後、特殊鋼金属片1′及び2′の関係位置の
みを復元し、再度3回重錘3′を上記の高さより落下さ
せ上記試験と全く同様に摺動距離を求め金属表面の状態
変化を観察゛する。これは潤滑剤の繰返し性能を見るだ
めの試験であり、繰返し落錘衝撃試験と呼称する。
After the above test, only the relative positions of the special steel metal pieces 1' and 2' are restored, and the weight 3' is dropped from the above height three times again, and the sliding distance is determined in exactly the same manner as in the above test. Observe state changes. This is a test to check the repeatability of the lubricant, and is called a repeated falling weight impact test.

第3の方法は楔2の引抜き抵抗評価の方法であるが、第
4図に示すように潤滑剤を塗布した特殊鋼金属片1′及
び2′に側圧P1 (280kg/cm2)を作用せし
めながら油圧ジヤツキにて金属片2′に押圧P。をかけ
金属片2′を摺動させるに必要な押圧Po を測定し、
Po=2μP1から摩擦係数μを求める。これを摺動摩
擦試験と呼称する。
The third method is to evaluate the pull-out resistance of the wedge 2, as shown in Fig. 4, while applying a lateral pressure P1 (280 kg/cm2) to special steel metal pieces 1' and 2' coated with lubricant. Press P on the metal piece 2' with a hydraulic jack. Measure the pressure Po necessary to slide the metal piece 2',
Find the friction coefficient μ from Po=2μP1. This is called a sliding friction test.

試験A 前記の模擬試験法を用いて従来から使用されている油性
潤滑剤(出光興産製ダフニーマスタード0−CD−10
)を基準として次の非油性潤滑剤の性能を評価した。
Test A A conventionally used oil-based lubricant (Daphne Mustard 0-CD-10 manufactured by Idemitsu Kosan) was used using the above-mentioned mock test method.
), the performance of the following non-oil-based lubricants was evaluated.

潤滑剤A−a・・・Mo 3230部をメチルエチルケ
トン50部及びトルエン20部の混合 溶媒に均一分散せしめたもの、 ttA−1)・・・潤滑剤A−8100部に対し平均粒
径0、4 pmのPTFE微粉末0.5部を添加混合せ
しめたもの、 ttA−C・・・潤滑剤A−aloo部に対し平均粒径
0.4μmのPTFE微粉末3部を添加混合せしめたも
の、 ttA−dam・潤滑剤A−aloO部に対し平均粒径
0.4μmのPTFE微粉末8部を添加混合せしめたも
の、 ttA−e・・・潤滑剤A−aloO部に対し平均粒径
0、4 pmのPTFE微粉末12部を添加混合せしめ
たもの、 //  A−f *mm平均粒径0.4 pmのPTF
E微粉末30部をメチルエチルケトン50部及 びトルエン20部の混合溶媒に均 一分散せしめたもの、 上記潤滑剤を金属片1′及び2′の刷毛車りにより塗布
量が固形分として50g/m2になるよう塗布した。
Lubricant A-a...3230 parts of Mo uniformly dispersed in a mixed solvent of 50 parts of methyl ethyl ketone and 20 parts of toluene, ttA-1)...Lubricant A-8100 parts with an average particle size of 0.4 0.5 parts of PTFE fine powder of pm is added and mixed, ttA-C...3 parts of PTFE fine powder with an average particle size of 0.4 μm is added and mixed to lubricant A-aloo part, ttA -dam・8 parts of PTFE fine powder with an average particle size of 0.4 μm is added and mixed to the lubricant A-aloO part, ttA-e...The average particle size is 0, 4 to the lubricant A-aloO part Addition and mixing of 12 parts of PTFE fine powder of pm, // A-f *mm PTF with average particle size of 0.4 pm
30 parts of E fine powder is uniformly dispersed in a mixed solvent of 50 parts of methyl ethyl ketone and 20 parts of toluene, and the above lubricant is applied with a brush wheel on metal pieces 1' and 2' so that the amount of solid content is 50 g/m2. It was coated like this.

落錘衝撃試験結果、繰返し落錘衝撃試験結果及び摺動摩
擦試験結果をそれぞれ表A−I 、 A−II及びA−
mに示す。
The falling weight impact test results, repeated falling weight impact test results, and sliding friction test results are shown in Tables A-I, A-II, and A-, respectively.
Shown in m.

表A−II繰返し落錘衝撃試験結果 表A−III摺動摩擦試験結果 表A−I 、 A−I[、A−IIIの結果から本発明
の実施は明らかに従来システムよシ良好な結果が出てい
る。特に繰返し効果が明確なことは今日的要請に適応し
ているといえる。
Table A-II Repeated falling weight impact test results Table A-III Sliding friction test results From the results of Tables A-I, A-I[, and A-III, the implementation of the present invention clearly produced better results than the conventional system. ing. In particular, the fact that the repetition effect is clear makes it suitable for today's demands.

試験B 試験AのMoS2をグラファイトに置き換えた以外は全
て同じ条件にて評価試験を行ない次の表B−I 、B−
n 、 B−I[[の結果を得た。
Test B An evaluation test was conducted under the same conditions except that MoS2 in Test A was replaced with graphite, and the following Tables B-I and B-
n, B-I [[ results were obtained.

表B−m繰返し落錘衝撃試験結果 表B−III摺動摩擦試験結果 試験C 試験Bと同様に試験AのMoS2をMO82及びグラフ
ァイトの等全混合物に置き換えた潤滑剤組成物とした以
外は全て同じ条件にて評価試験を行ない、以下の結果を
得た。
Table B-m Repeated falling weight impact test results Table B-III Sliding friction test results Test C Same as Test B except that MoS2 in Test A was replaced with an equal mixture of MO82 and graphite, except that the lubricant composition was used. An evaluation test was conducted under the following conditions and the following results were obtained.

表C−■繰返し落錘衝撃試験結果 表c−m摺動摩擦試験結果 以上の各種試験結果より明らかな如く本発明の実施は従
来工法に比べて今日的要請に的確に合致しており岩盤掘
削工事において一つの進歩を示している。
Table C-■ Repeated falling weight impact test results Table c-m Sliding friction test results As is clear from the above various test results, the implementation of the present invention more accurately meets modern requirements than conventional methods, and is more suitable for rock excavation work. This shows some progress in this area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は日本国公開特許公報昭59−4796号に記載
の無発破ベンチカット工法(B工法)の原理を示す図、 第2図は本発明による金属−金属極圧潤滑付与方法を上
記B工法に適用した際に楔とスIJ−ブに形成される潤
滑剤塗膜の構成図、 第3図は落錘衝撃試験と繰返し落錘衝撃試験を上記B工
法に適用し、楔の摺動挙動を推測するための模擬試験装
置を示す図、 第4図は上記B工法における櫟の引抜き抵抗を推測する
ための模擬試験装置の図。 図中符号は 1・・・スリーブ 2・・・喫 4・・・py潤滑剤塗膜 5・・・PTFE潤滑剤塗膜 IC2′・・・特殊鋼金属片 3′・・・重錘 Po・・・押圧力 Pl r P2…側圧力
Figure 1 is a diagram showing the principle of the non-blasting bench cut method (Method B) described in Japanese Patent Publication No. 59-4796, and Figure 2 is a diagram showing the method for providing metal-to-metal extreme pressure lubrication according to the present invention. A diagram of the structure of the lubricant coating formed on the wedge and the IJ-b when the method is applied. A diagram showing a simulation test device for estimating behavior. FIG. 4 is a diagram of a simulation test device for estimating the pull-out resistance of the owl in the method B. The symbols in the figure are 1... Sleeve 2... Sleeve 4... py lubricant coating 5... PTFE lubricant coating IC 2'... Special steel metal piece 3'... Weight Po... ...Pushing force Pl r P2...Side pressure

Claims (1)

【特許請求の範囲】[Claims] 衝撃荷重等による金属同志の摺動摩擦を低減せしめ金属
表面同志の焼付を防止するための金属−金属間極圧潤滑
付与方法において、両接触面に二硫化モリブデン、グラ
ファイトのうちの少なくとも一つ或いはこれらの混合物
と四弗化エチレン樹脂微粉末とを混合した潤滑塗剤を塗
布し、かつ前記接触面の少なくとも一方に四弗化エチレ
ン樹脂微粉末を揮発性溶剤に分散させた潤滑塗剤を塗り
重ねることを特徴とする、金属−金属間極圧潤滑付与方
法。
In a metal-to-metal extreme pressure lubrication method for reducing sliding friction between metals due to impact loads, etc. and preventing seizure between metal surfaces, at least one of molybdenum disulfide, graphite, or these materials is applied to both contact surfaces. Applying a lubricating paint containing a mixture of the above mixture and fine tetrafluoroethylene resin powder, and overcoating at least one of the contact surfaces with a lubricating paint containing fine tetrafluoroethylene resin powder dispersed in a volatile solvent. A method for providing metal-to-metal extreme pressure lubrication, characterized by:
JP4955486A 1986-03-08 1986-03-08 Method or imparting metal-to-metal extreme pressure lubrication Granted JPS62207395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4955486A JPS62207395A (en) 1986-03-08 1986-03-08 Method or imparting metal-to-metal extreme pressure lubrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4955486A JPS62207395A (en) 1986-03-08 1986-03-08 Method or imparting metal-to-metal extreme pressure lubrication

Publications (2)

Publication Number Publication Date
JPS62207395A true JPS62207395A (en) 1987-09-11
JPH0260717B2 JPH0260717B2 (en) 1990-12-18

Family

ID=12834416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4955486A Granted JPS62207395A (en) 1986-03-08 1986-03-08 Method or imparting metal-to-metal extreme pressure lubrication

Country Status (1)

Country Link
JP (1) JPS62207395A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405322A (en) * 1993-08-12 1995-04-11 Boston Scientific Corporation Method for treating aneurysms with a thermal source

Also Published As

Publication number Publication date
JPH0260717B2 (en) 1990-12-18

Similar Documents

Publication Publication Date Title
Totten Friction, lubrication, and wear technology
Uyyuru et al. Effect of reinforcement volume fraction and size distribution on the tribological behavior of Al-composite/brake pad tribo-couple
Alam et al. Response of Ti–6Al–4V and Ti–24Al–11Nb alloys to dry sliding wear against hardened steel
Costa et al. Effect of debris size on the reciprocating sliding wear of aluminium
Reeves et al. Evaluation of boron nitride particles on the tribological performance of avocado and canola oil for energy conservation and sustainability
Zhang et al. Performance and anti‐wear mechanism of Cu nanoparticles as lubricating oil additives
Wang et al. Evaluation of lubricants without zinc phosphate precoat in multi-stage cold forging
Chen et al. Ultra-mild wear of a hypereutectic Al–18.5 wt.% Si alloy
Wos et al. Effects of surface texturing and kind of lubricant on the coefficient of friction at ambient and elevated temperatures
BRPI0518738A2 (en) segment ring with a coated work surface and coating agent
Denape Third body concept and wear particle behavior in dry friction sliding conditions
Menezes et al. Self-lubricating behavior of graphite-reinforced composites
Liu et al. Wear transitions and mechanisms in lubricated sliding of a molybdenum coating
Lee et al. The shared-load wear model in lubricated sliding: scuffing criteria and wear coefficients
Mushtaq et al. Tribological characterization of Fe-Cu-Sn alloy with graphite as solid lubricant
JPS62207395A (en) Method or imparting metal-to-metal extreme pressure lubrication
Nevosad et al. Tribological interaction of manganese phosphate coatings with grease and solid lubricant particles
Jiang et al. A case study on the wear mechanism and stress evolution of graphite plugged bronze wear plate from the field trial
Mathia Focus on the concept of pressure-velocity-time (pVt) limits for boundary lubricated scuffing
Kozma Investigation into the scuffing load capacity of environmentally‐friendly lubricating oils
Ma et al. A study of dynamically loaded journal bearings lubricated with non-Newtonian couple stress fluids
US3925214A (en) Hot forming lubricant composition, system and method
Pondicherry et al. Applicability of ring‐on‐disc and pin‐on‐plate test methods for Cu–steel and Al–steel systems for large area conformal contacts
Heilmann et al. Running-in processes affecting friction and wear
Roberts Some current trends in tribology in the UK and Europe

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term