JPS62207161A - Structure of iron core for dc slot-less core motor - Google Patents

Structure of iron core for dc slot-less core motor

Info

Publication number
JPS62207161A
JPS62207161A JP4912186A JP4912186A JPS62207161A JP S62207161 A JPS62207161 A JP S62207161A JP 4912186 A JP4912186 A JP 4912186A JP 4912186 A JP4912186 A JP 4912186A JP S62207161 A JPS62207161 A JP S62207161A
Authority
JP
Japan
Prior art keywords
core
iron
iron core
silicon
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4912186A
Other languages
Japanese (ja)
Inventor
Masanori Yuasa
湯浅 正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP4912186A priority Critical patent/JPS62207161A/en
Publication of JPS62207161A publication Critical patent/JPS62207161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Dc Machiner (AREA)

Abstract

PURPOSE:To improve iron loss and saturation magnetic flux density, and to reduce cost by using a sintering material consisting of a silicon steel at a specified ratio as a core material and forming cores divided in the radial direction and the thrust direction by the material. CONSTITUTION:A core 1 is divided into two in the radial direction, and constituted by fixing split pieces 2, 3 by adhesives. A sintering material composed of 3-10wt% silicon steel (an Fe-Si alloy) is employed as a core material. Silicon is weight distribution of 7wt% is added to iron such as pure iron powder in a shape such as the substance of ferrosilicon or silicon powder, and raw material powder to which a substance such as 1wt% zinc stearate is added and mixed is used as a molding assist.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は高トルクの直流スロットレスコアモータ(以下
フラットモータという)の鉄心の構造に関するもので、
自動車用の各種機能装置の駆動用モータとして広く利用
されるものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to the structure of an iron core of a high-torque DC slotless core motor (hereinafter referred to as a flat motor).
It is widely used as a drive motor for various functional devices for automobiles.

(従来の技術) 本発明に係る従来技術としては特開昭59−70174
号[電機子コイル群が重畳しない重畳型のブラシレスモ
ーフJの公報に開示された技術がある。
(Prior art) As a prior art related to the present invention, Japanese Patent Application Laid-Open No. 59-70174
There is a technique disclosed in the publication of Brushless Morph J, a superimposed type in which armature coil groups do not overlap.

このものは鉄心の表面に巻線を施こして上下より2極対
の磁極により磁束が発生する構造で、鉄心は磁束を通す
ヨークで、これが回転成いは磁極が回転することにより
モータとして作動するものである。
This device has a structure in which a winding is applied to the surface of the iron core, and magnetic flux is generated by two pairs of magnetic poles from above and below.The iron core is a yoke that passes the magnetic flux, and when this rotates or the magnetic poles rotate, it operates as a motor. It is something to do.

(発明が解決しようとする問題点) 前記モータの磁極は通常2P(P=1〜N)の極対(N
−3)を有するために鉄心或いは磁極が1回転すること
により2P周期の交番磁束が鉄心の上下より作用するが
、 (11モータの回転数がR(r、p、m、)ならば鉄心
にはr=2PR/60 (H2)の交番磁束が加わるた
めに過電流による熱損失が発生するという間層点があり
、 (2)鉄心は磁束を通すヨークであるために飽和磁束密
度(Bs)が高ければ鉄心の薄型化、更にはモータの薄
型化となる。
(Problems to be Solved by the Invention) The magnetic poles of the motor are usually 2P (P=1 to N) pole pairs (N
-3), when the iron core or magnetic pole rotates once, an alternating magnetic flux with a 2P period acts on the iron core from above and below. There is an interlayer point where heat loss due to overcurrent occurs due to the addition of alternating magnetic flux of r=2PR/60 (H2). (2) Since the iron core is a yoke that passes magnetic flux, the saturation magnetic flux density (Bs) The higher the value, the thinner the iron core and even the thinner the motor.

鉄心としての必要特性としては前記(1)より鉄損が小
さいこと、(2)よりBsが高いことが必要となり既存
材料では鉄損の小さな材料は抵抗率ρの高い材料であり
、この様な材料はBsが小さく必然的に鉄心の厚さは大
となり、またBsの高い材料はその抵抗率ρは小さく過
電流に伴う熱損失が大きくなリモータの効率は著しく低
下するという問題点がある。
The required characteristics for an iron core are a small iron loss from (1) above, and a high Bs from (2). Among existing materials, materials with small iron loss are materials with high resistivity ρ, and such The material has a small Bs, which inevitably results in a thick core, and a material with a high Bs has a small resistivity ρ, which causes a large heat loss due to overcurrent, resulting in a significant decrease in the efficiency of the remoter.

鉄心の材料として純鉄、ケイ素鋼(3%Si)。Pure iron and silicon steel (3% Si) are used as core materials.

Fe−Ni合金パーマロイ、Mn−Znnフシイ(・が
あり、これらについての鉄損、Bs、 コストについて
の比較を第1表に示す。
There are Fe-Ni alloy Permalloy and Mn-Znn Fushii (.), and a comparison of iron loss, Bs, and cost for these is shown in Table 1.

第  1  表 第1表よりいずれも上記材料をモータの鉄心として使用
した場合は評価としてはあまり良くないものである。
Table 1 From Table 1, all of the above materials are not very good in terms of evaluation when used as the iron core of a motor.

本発明は上記鉄損、BS、 コスト等において良好なフ
ラットモータの鉄心の構造を提供することを技術的課題
とするものである。
The technical object of the present invention is to provide an iron core structure for a flat motor that is favorable in terms of the above-mentioned iron loss, BS, cost, etc.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 前記技術的課題を解決するために講じた技術的手段は次
のようである。すなわち薄型高トルクの目的で磁極の間
に鉄心を挟み込んだ形状のフラットモータにおいて、鉄
心材料として3〜10wL%のケイ素glib(Fe−
Si合金)よりなる焼結材料にて円板を形成し、前記円
板は回転軸に対してラジアル方向及びスラスト方向に分
割された鉄心を使用した構造のフラットモータである。
(Means for solving the problems) The technical means taken to solve the above technical problems are as follows. In other words, in a flat motor with an iron core sandwiched between magnetic poles for the purpose of thinness and high torque, 3 to 10 wL% silicon glib (Fe-
The flat motor has a structure in which a disk is formed from a sintered material made of Si alloy), and the disk uses an iron core divided in the radial direction and the thrust direction with respect to the rotating shaft.

(作用) 上記技術的手段は次のように作用する。すなわち、 <1)  純鉄にケイ素を添加した場合の鉄損低域につ
いて、鉄損(W)と周波数(82)との関係を第1図に
示す。第1図においてAはSi含有量が0%、Bは1w
t%、Cは3wt%、Dは4wt%、Eは7wt%、F
は19wt%で、ケイ素の添加が増加すると抵抗率ρが
高くなり、鉄mが45.8(W)のものがEのグラフに
示す(7wt%Si)ものにおいては6.1(W)まで
低減するものである。(Bm=1.5 (T)。
(Operation) The above technical means operates as follows. That is, <1) Regarding the low range of iron loss when silicon is added to pure iron, the relationship between iron loss (W) and frequency (82) is shown in FIG. In Figure 1, A has a Si content of 0% and B has a Si content of 1w.
t%, C is 3wt%, D is 4wt%, E is 7wt%, F
is 19 wt%, and as the addition of silicon increases, the resistivity ρ increases, and the resistivity ρ increases from 45.8 (W) to 6.1 (W) for the (7 wt% Si) shown in the graph of E. It is intended to reduce (Bm=1.5 (T).

f=100Hz) (2)  ケイ素が添加されることにより保磁力Hcと
透磁率μmが改善されるもので、ケイ素添加量と磁気特
性との関係について第2図に示す。第2図より7wt%
Siにおいて透磁率が上昇し、保磁力が小さくなればヒ
ステリシス損が大巾に低減されるものである。(Bm=
1.5 (T) DC) (3)  シリコンを7%含有した鉄心を分割、積層し
た場合の鉄損と周波数との関係を第3図に示す。
f=100Hz) (2) Coercive force Hc and magnetic permeability μm are improved by adding silicon, and the relationship between the amount of silicon added and magnetic properties is shown in FIG. From Figure 2, 7wt%
If the magnetic permeability of Si increases and the coercive force decreases, hysteresis loss will be greatly reduced. (Bm=
1.5 (T) DC) (3) Figure 3 shows the relationship between iron loss and frequency when an iron core containing 7% silicon is divided and laminated.

Jは分割なし、Kは2分割、Lは4分割を行ったものの
グラフであり、鉄心を分割、積層した場合の鉄損は第1
図に示す純焼結体で45.8(W)のものが第3図のし
に示す7wt%Siでは0.6(W)と98%程度の低
減となる。(Bm=1.5 (T)、F=100Hz)
(4)  鉄心に焼結材料を使用することにより焼結に
て形状の成形が容易で2次加工の必要がない。
J is a graph of no division, K is a graph of 2 divisions, and L is a graph of 4 divisions.The iron loss when the core is divided and laminated is 1st.
The pure sintered body shown in the figure has a weight of 45.8 (W), but the 7wt% Si shown at the bottom of the figure is 0.6 (W), a reduction of about 98%. (Bm=1.5 (T), F=100Hz)
(4) By using a sintered material for the iron core, it is easy to form the shape by sintering, and there is no need for secondary processing.

(実施例) 以下実施例について説明する。(Example) Examples will be described below.

第4図において、1は2と3に示すようにラジアル方向
に2分割された鉄心で、分割片2及び3が接着剤にて密
着したものであり、第5図の円板(鉄心)4は4分割さ
れたものを1体化したものであり、上部外側リング5.
上部内側リング6゜下部外側リング7及び下部内側リン
グ8に示すように回転軸10対してラジアル方向及びス
ラスト方向に分割されたものが1体化されたものである
In Fig. 4, 1 is an iron core divided into two parts in the radial direction as shown in 2 and 3, and the divided pieces 2 and 3 are stuck together with adhesive, and the disc (iron core) 4 in Fig. The upper outer ring 5. is made by integrating four parts.
The upper inner ring 6, the lower outer ring 7, and the lower inner ring 8 are divided in the radial direction and the thrust direction with respect to the rotating shaft 10, and are integrated into one body.

前記鉄心はFe−3L合金の焼結体よりなるもので、純
鉄粉(#200アンダー、アトマイブ粉)に重量配分で
7wt%のケイ素をフェロシリコン或いはケイ素粉末の
形で添加し、更に成形助剤としてステリアリン酸亜鉛を
1wt%添加混合し原料粉末とした。
The iron core is made of a sintered body of Fe-3L alloy, and 7wt% of silicon is added to pure iron powder (#200 under, atomized powder) in the form of ferrosilicon or silicon powder, and a forming aid is added. 1 wt % of zinc stearate was added as an agent and mixed to prepare a raw material powder.

この粉末を7 T ON / cnlで圧縮成形後、真
空又は還元性雰囲気の下で600℃で0.5時間助剤を
発散させ、更に1200°Cで2時間焼結を行い7wt
%、5i−Fe合金の鉄心を製作した。
After compression molding this powder at 7 T ON/cnl, the auxiliary agent was released at 600°C for 0.5 hours in a vacuum or reducing atmosphere, and then sintered at 1200°C for 2 hours to obtain a 7wt.
%, an iron core of 5i-Fe alloy was manufactured.

この鉄心の直流磁気特性を第2図に示す。Gは磁束密度
と3i量、Hは最大透磁率と5i(ffillは保磁力
とSilとの関係を示すグラフで、G7゜H7+  1
7はいずれも7%Siの状態を示すものである。   
・ この場合保磁力Heは純鉄の27(石e)に対して、■
7に示すように0.68にe)に、透磁率μmはHグラ
フに示すように3680=H7=8330に向上するも
のであり、従ってヒステリシス損失は純鉄に比較して約
76%低減する効果がある。
Figure 2 shows the DC magnetic characteristics of this core. G is the magnetic flux density and 3i quantity, H is the maximum magnetic permeability and 5i (ffill is a graph showing the relationship between coercive force and Sil, G7°H7+ 1
7 indicates a state of 7% Si.
・ In this case, the coercive force He is 27 (stone e) of pure iron,
As shown in Figure 7, the magnetic permeability μm increases to 0.68 (e) to 3680 = H7 = 8330 as shown in the H graph, and therefore the hysteresis loss is reduced by approximately 76% compared to pure iron. effective.

第6図に示すように7%5t−Fe合金の鉄心4を磁極
9a、9b内に配置し、鉄心4と磁極9とのギャップを
lla、llbとすればギャップ磁束密度が2500G
 (厚み方向の最大磁束密度は15000G)となる様
に交番周波数を変えて鉄損値を測定しその結果を第1図
に示す。
As shown in Fig. 6, if the iron core 4 of 7% 5t-Fe alloy is placed inside the magnetic poles 9a and 9b, and the gap between the iron core 4 and the magnetic pole 9 is lla and llb, the gap magnetic flux density is 2500G.
(The maximum magnetic flux density in the thickness direction is 15,000 G).The core loss value was measured by changing the alternating frequency, and the results are shown in FIG.

ケイ素添加に伴う抵抗率の向上から7%Si含有の鉄心
の鉄損は純鉄の約1/10であるが要求鉄損値としては
更に小さくする必要があり、このためにこの鉄心を第5
図に示すように分割を行うことにより鉄損はさらに低減
され交番周波数100Hzにおいて0.6Wとなった。
The iron loss of a core containing 7% Si is approximately 1/10 that of pure iron due to the improvement in resistivity associated with the addition of silicon, but the required iron loss value needs to be further reduced.
By performing the division as shown in the figure, the iron loss was further reduced to 0.6 W at an alternating frequency of 100 Hz.

これを第3図のしグラフに示す。This is shown in the box graph of FIG.

また分割方法としては該鉄心の磁束の流れが第7図に示
すようにスラスト方向(厚み方向)とラジアル方向(径
方向)の両方向分割が有効である。
Furthermore, as a dividing method, it is effective to divide the magnetic flux flow in the core in both the thrust direction (thickness direction) and the radial direction (radial direction), as shown in FIG.

またこの鉄損値を他のSt%の材料で実現させると、3
%Siでは16分割、5%では8分割となり、Si量の
増加に伴い同じ鉄m値を得る分割数は少なくなる。
Also, if this iron loss value is achieved with other St% materials, 3
%Si results in 16 divisions, 5% results in 8 divisions, and as the amount of Si increases, the number of divisions to obtain the same iron m value decreases.

第8図は前記4分割した鉄心に巻線を行ったもので、第
9図はその配線図である。20は鉄心に巻いた銅線であ
り、21及び22はN−3の磁石を示し、23はコンミ
ュテーターで24はブラシを示す。巻束数は円周に12
等分にされており、それぞれコンミュテーターを通じて
接続されており、フラットモータで高トルクを得るため
にはこの様に鉄心の上・下のコイルを有効にトルクに継
げるトロイダル巻が適しており、更に磁石とのギャップ
も小さくなることができる。
FIG. 8 shows the iron core divided into four parts wound with wires, and FIG. 9 is a wiring diagram thereof. 20 is a copper wire wound around an iron core, 21 and 22 are N-3 magnets, 23 is a commutator, and 24 is a brush. The number of turns is 12 around the circumference.
It is divided into equal parts and connected through a commutator, and in order to obtain high torque with a flat motor, toroidal winding is suitable because it can effectively connect the coils above and below the iron core to torque. Furthermore, the gap with the magnet can also be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明は次の特有の効果を有する。すなわち、従来材料
を使用し要求特性を満すためには第3図に示す様にケイ
素鋼板(3%Si)を分割積層することによっても達成
されるが、この場合の抵抗率ρは45(μΩ・am)程
度であり、鉄損の低減には分割数を多くすることが必要
で、鉄心の成形加工に際してコストアップになるが、本
発明はケイ素を更に多く添加することにより抵抗率を高
めると共にその磁気特性を向上させ、より少ない分割数
で要求特性を満足でき、従って該モータの鉄心は焼結化
による効果と共に組付成形時における工数低減から大幅
なコスト低減ができるものである。
The present invention has the following unique effects. In other words, in order to satisfy the required characteristics using conventional materials, it can also be achieved by separately laminating silicon steel plates (3% Si) as shown in Figure 3, but in this case the resistivity ρ is 45 ( μΩ・am), and it is necessary to increase the number of divisions in order to reduce iron loss, which increases the cost when forming the core.However, the present invention increases the resistivity by adding more silicon. At the same time, the magnetic properties are improved, and the required properties can be satisfied with a smaller number of divisions.Therefore, the iron core of the motor can be sintered, and the cost can be significantly reduced due to the reduction in man-hours during assembly and molding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はケイ素の添加量による鉄損と周波数の関係グラ
フであり、第2図はケイ素添加量と磁束密度、透磁率、
保磁力との関係グラフであり、第3図は鉄心を分割数し
た場合の鉄mと周波数の関係グラフであり、第4図は鉄
心の2分割の説明図で、(イ)は各平板の断面図であり
、(ロ)は平面図であり、第5図は4分割の断面図であ
り、第6図は鉄心を回転軸に固定し磁極内へ装着した断
面図であり、第7図は鉄心を流れる磁力線の説明図で、
(イ)はタテ方向の流れの説明図であり、(ロ)は横方
向の流れの説明図であり、(ハ)は鉄心を斜視方向より
みた磁力線の流れの説明図であり、第8図は本実施の鉄
心に巻線を行った斜視図であり、第9図は巻線の展開図
である。 1.4・・・鉄心
Figure 1 is a graph showing the relationship between iron loss and frequency depending on the amount of silicon added, and Figure 2 shows the relationship between the amount of silicon added and magnetic flux density, magnetic permeability,
It is a graph of the relationship with coercive force. Figure 3 is a graph of the relationship between iron m and frequency when the core is divided into two. Figure 4 is an explanatory diagram of the division of the core into two. FIG. 5 is a cross-sectional view divided into four parts, FIG. 6 is a cross-sectional view of the iron core fixed to the rotating shaft and installed inside the magnetic pole, and FIG. 7 is a cross-sectional view. is an explanatory diagram of magnetic field lines flowing through the iron core,
(A) is an explanatory diagram of the flow in the vertical direction, (B) is an explanatory diagram of the flow in the horizontal direction, and (C) is an explanatory diagram of the flow of magnetic lines of force as seen from the perspective direction of the iron core. 9 is a perspective view of the iron core of this embodiment with wires wound thereon, and FIG. 9 is a developed view of the windings. 1.4... Iron core

Claims (1)

【特許請求の範囲】[Claims] 直流スロットレスコアモータの磁極間に鉄心を挟み込ん
だ回転ロータにおいて、鉄心材料として3〜10wt%
の鉄−ケイ素合金よりなる焼結材にて円板を形成し、該
円板はモータ回転軸に対してラジアル方向及びスラスト
方向に分割された、直流スロットレスコアモータの鉄心
の構造。
In the rotating rotor with the iron core sandwiched between the magnetic poles of the DC slotless core motor, 3 to 10 wt% as the iron core material.
An iron core structure for a DC slotless core motor, in which a disk is formed from a sintered material made of an iron-silicon alloy, and the disk is divided into radial and thrust directions with respect to the motor rotation axis.
JP4912186A 1986-03-06 1986-03-06 Structure of iron core for dc slot-less core motor Pending JPS62207161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4912186A JPS62207161A (en) 1986-03-06 1986-03-06 Structure of iron core for dc slot-less core motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4912186A JPS62207161A (en) 1986-03-06 1986-03-06 Structure of iron core for dc slot-less core motor

Publications (1)

Publication Number Publication Date
JPS62207161A true JPS62207161A (en) 1987-09-11

Family

ID=12822231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4912186A Pending JPS62207161A (en) 1986-03-06 1986-03-06 Structure of iron core for dc slot-less core motor

Country Status (1)

Country Link
JP (1) JPS62207161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197243A (en) * 1989-01-24 1990-08-03 Sailor Pen Co Ltd:The Small-sized generator
JPH033646A (en) * 1989-05-30 1991-01-09 Sankyo Seiki Mfg Co Ltd Motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197243A (en) * 1989-01-24 1990-08-03 Sailor Pen Co Ltd:The Small-sized generator
JPH033646A (en) * 1989-05-30 1991-01-09 Sankyo Seiki Mfg Co Ltd Motor

Similar Documents

Publication Publication Date Title
US4255684A (en) Laminated motor stator structure with molded composite pole pieces
US6242840B1 (en) Electrical machine including toothless flux collector made from ferromagnetic wire
US6765319B1 (en) Plastic molded magnet for a rotor
EP0180330A1 (en) Armature annular core
WO2020137549A1 (en) Core, stator, and rotating electric machine
US7443071B2 (en) Motor stator
JPS58218860A (en) Permanent magnet type direct current machine
Ning et al. Review on applications of low loss amorphous metals in motors
JPH08256441A (en) Permanent magnet rotor
JPS6227619B2 (en)
JPH0583887A (en) Electric machine
JP2010183692A (en) Magnet for motor, rotor for ipm motor, and ipm motor
JP2005110372A (en) Axial gap motor
JPS62207161A (en) Structure of iron core for dc slot-less core motor
JP2000184628A (en) Stator for motor
JP2000295804A (en) Rare earth sintered magnet and permanent magnet type synchronous motor
JP2001339880A (en) Motor stator
JPS6233828B2 (en)
JP2006238612A (en) Split stator of motor and its manufacturing process
JPS61150628A (en) Ring core for rotary electric machine
JP2020036444A (en) motor
JPS62144557A (en) Rotor core for stepping motor
JPH08103059A (en) Permanent magnet starter device
JP2643410B2 (en) permanent magnet
JPH0477541B2 (en)