JPS6220651B2 - - Google Patents

Info

Publication number
JPS6220651B2
JPS6220651B2 JP13097874A JP13097874A JPS6220651B2 JP S6220651 B2 JPS6220651 B2 JP S6220651B2 JP 13097874 A JP13097874 A JP 13097874A JP 13097874 A JP13097874 A JP 13097874A JP S6220651 B2 JPS6220651 B2 JP S6220651B2
Authority
JP
Japan
Prior art keywords
lamp
gas
exhaust
exhaust pipes
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13097874A
Other languages
Japanese (ja)
Other versions
JPS5157974A (en
Inventor
Hiromitsu Matsuno
Takayuki Hayakawa
Mikya Yamane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13097874A priority Critical patent/JPS5157974A/en
Publication of JPS5157974A publication Critical patent/JPS5157974A/en
Publication of JPS6220651B2 publication Critical patent/JPS6220651B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

【発明の詳細な説明】 本発明は、けい光ランプ、低圧ナトリウムラン
プなどの酸化物被覆電極を有する低圧放電ランプ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing low-pressure discharge lamps having oxide-coated electrodes, such as fluorescent lamps and low-pressure sodium lamps.

従来の低圧放電ランプの製造方法は以下のとう
りであつた。すなわち、管壁を加熱しながら、放
電ランプの一端に設けられた排気管を通してラン
プ内の空気、水蒸気などを真空排気する。ランプ
内が充分よい真空になつた時点で、ランプの両端
に設けられた一対の電極を通電加熱して電極上の
アルカリ土類金属の複合炭酸塩を加熱分解し、酸
化物被覆電極をつくる。そして、さらに、複合炭
酸塩の分解によつて発生した炭酸ガスなどの不純
ガスを充分排気したのちに、水銀、希ガスなどの
イオン化媒体を封入する。一般に低圧放電ランプ
の排気管の直径はたかだか4mm程度であるため、
このような細い排気管を通してランプ内を良い真
空にするためには長時間が必要である。したがつ
て、上記のような従来の低圧放電ランプ製造方法
においては、ランプの製作に長時間を要し、ラン
プの価格が高くなるという欠点があつた。そこで
ランプの両端に排気管を設け、両側から排気する
方法が考えられた。しかし、単純に両側から排気
するだけでは、排気時間はたかだか半分にしか短
縮できないことは自明である。また、上記の従来
の低圧放電ランプ製造方法において、ランプ内の
真空度を犠牲にしてランプの製造時間を短縮する
と、ランプの寿命が短かくなる、管端黒化が著し
くなる、放電不安定になるなど低圧放電ランプの
特性が悪くなつた。
The conventional method for manufacturing a low pressure discharge lamp was as follows. That is, while heating the tube wall, air, water vapor, etc. inside the lamp are evacuated through an exhaust pipe provided at one end of the discharge lamp. When the interior of the lamp reaches a sufficiently high vacuum, a pair of electrodes provided at both ends of the lamp are heated with electricity to thermally decompose the alkaline earth metal composite carbonate on the electrodes, creating an oxide-coated electrode. Further, after impurity gas such as carbon dioxide gas generated by the decomposition of the composite carbonate is sufficiently exhausted, an ionizing medium such as mercury or a rare gas is sealed. Generally, the diameter of the exhaust pipe of a low-pressure discharge lamp is about 4 mm at most.
It takes a long time to create a good vacuum inside the lamp through such a narrow exhaust pipe. Therefore, the conventional method of manufacturing a low-pressure discharge lamp as described above has the disadvantage that it takes a long time to manufacture the lamp, and the price of the lamp increases. Therefore, a method was devised to install exhaust pipes at both ends of the lamp and exhaust the air from both sides. However, it is obvious that simply exhausting from both sides can only reduce the exhaust time by half at most. In addition, in the conventional low-pressure discharge lamp manufacturing method described above, if the lamp manufacturing time is shortened at the expense of the degree of vacuum inside the lamp, the lamp life will be shortened, tube edge blackening will become significant, and discharge will become unstable. The characteristics of the low-pressure discharge lamp deteriorated.

したがつて、本発明の目的は、従来の方法によ
つて製造した低圧放電ランプの性能と同等以上の
性能を有する低圧放電ランプを、短時間に製造す
る方法を提供することである。
Therefore, an object of the present invention is to provide a method for manufacturing a low-pressure discharge lamp in a short time, which has performance equivalent to or better than that of low-pressure discharge lamps manufactured by conventional methods.

上記の目的を達成するために、本発明では、両
端に一対の酸化物被覆電極と一対の排気管を有す
る低圧放電ランプの製造方法において、前記一対
の排気管の両方からランプ内の空気などの不純ガ
スを真空排気する第1の工程と、前記一対の排気
管のうちの一方から希ガスを注入しながら他方の
排気管から真空排気を行なう第2の行程と前記第
2の工程によつて注入された希ガスを両端の排気
管から真空排気する第3の工程とを交互に行なつ
てランプ内の不純ガスを除去する工程とを具備
し、かつ電極上のアルカリ土類金属の複合炭酸塩
の加熱分野の開始を前記第1の工程中に行なうよ
うにしたことを特徴としている。すなわち、本発
明者等は、両端に一対の排気管のある低圧放電ラ
ンプを使用して、ランプ内の不純ガスを短時間で
除去する方法の実験的検討を行なつた。その結
果、ひとつの排気管を通して真空排気を行ないな
がら他端の排気管から希ガスを注入すると、ラン
プ内の不純ガスは希ガスに押しだされてしまうた
め、両側の排気管から単純に排気を行なうよりも
はるかに短時間で不純ガスを除去できることがわ
かつた。
In order to achieve the above object, the present invention provides a method for manufacturing a low-pressure discharge lamp having a pair of oxide-coated electrodes at both ends and a pair of exhaust pipes, in which air within the lamp is discharged from both of the pair of exhaust pipes. A first step of evacuating impure gas, a second step of injecting rare gas from one of the pair of exhaust pipes and evacuating from the other exhaust pipe, and the second step. a third step of evacuating the injected rare gas from the exhaust pipes at both ends; and a step of removing impurity gas within the lamp by alternately performing the step of evacuating the injected rare gas from the exhaust pipes at both ends; It is characterized in that the heating field of the salt is started during the first step. That is, the present inventors conducted an experimental study on a method of removing impure gas within the lamp in a short time using a low-pressure discharge lamp having a pair of exhaust pipes at both ends. As a result, if you perform vacuum evacuation through one exhaust pipe and inject rare gas from the other end, the impurity gas in the lamp will be pushed out by the rare gas, so simply exhaust from the exhaust pipes on both sides. It was found that the impurity gas could be removed in a much shorter time than using conventional methods.

本発明者等は、上記の真空排気方法についてさ
らに詳細な検討を行なつたところ、希ガスは直径
4mm程度の排気管から注入されるため、注入口の
近傍では希ガスの流速がかなり大きく、ランプの
希ガス注入側の管端部によどみができ、したがつ
て不純ガスが若干残ることがわかつた。そこで、
ひとつの排気管から希ガスを注入しながら他の排
気管から真空排気を行なう工程と、前記の工程の
後に両端の排気管から希ガスを排気する工程とを
くりかえし行なつたところ、ランプ内の不純ガス
をさらに短時間で除去できることがわかつた。
The inventors conducted a more detailed study on the above evacuation method and found that since the rare gas is injected through an exhaust pipe with a diameter of about 4 mm, the flow velocity of the rare gas is quite high near the injection port. It was found that stagnation occurred at the end of the tube on the rare gas injection side of the lamp, resulting in some impure gas remaining. Therefore,
When we repeated the process of injecting rare gas from one exhaust pipe while evacuating from the other exhaust pipe, and after the above process, exhausting the rare gas from the exhaust pipes at both ends, the inside of the lamp It was found that impure gas could be removed in a shorter time.

本発明者等は、けい光ランプとアルゴンガスを
使用して上記の真空排気方法についてさらに詳細
に検討を行なつた。その結果、不純ガスの除去効
果は、排気工程の全時間が一定ならば、アルゴン
ガスの注入と両側からの排気のくりかえし数によ
つてはあまりかわらないが、アルゴンの注入流量
によつて変化した。第1図の特性曲線1に、注入
回数1回あたりのアルゴンの流量と放電開始電圧
の関係を示す。注入回数1回あたりのアルゴンの
流量が2Torr/sよりも少なくなると、アルゴ
ンガスによる不純ガスの押しだしおよび希釈の効
果が小さくなり、残存する不純ガスの量が増加
し、放電開始電圧は高くなる。また、アルゴンの
流量が30Torr/sを越えると、第1図の特性
曲線2で示したように、高速のアルゴン気流によ
つて管壁に塗布されたけい光体がはく離する、い
わゆるけい光体膜はげ現象が発生する。
The present inventors conducted a more detailed study on the above evacuation method using a fluorescent lamp and argon gas. As a result, the impurity gas removal effect did not change much depending on the number of repetitions of argon gas injection and evacuation from both sides if the total time of the evacuation process was constant, but it did change depending on the argon injection flow rate. . Characteristic curve 1 in FIG. 1 shows the relationship between the argon flow rate per injection and the discharge starting voltage. When the flow rate of argon per injection number becomes less than 2 Torr/s, the effect of pushing out and diluting impurity gas by argon gas becomes smaller, the amount of remaining impurity gas increases, and the firing voltage becomes higher. Furthermore, when the flow rate of argon exceeds 30 Torr/s, the phosphor coated on the tube wall is peeled off by the high-speed argon flow, as shown by characteristic curve 2 in Figure 1. A peeling phenomenon occurs.

以上のように、注入回数1回あたりのアルゴン
の流量が2Torr/sから30Torr/sの範囲に
おいてのみ、けい光体膜はげ現象をおこすことな
くかつ不純ガスを効率よく除去することができ
る。
As described above, only when the flow rate of argon per injection is in the range of 2 Torr/s to 30 Torr/s, impurity gas can be efficiently removed without causing the phosphor film flaking phenomenon.

また、アルゴン以外の希ガスを使用した場合に
も、上記のような最適なガス流量範囲が存在する
ことは、容易に推測できる。
Furthermore, it can be easily inferred that even when a rare gas other than argon is used, an optimum gas flow rate range as described above exists.

そこで、上記の真空排気方法をけい光ランプに
適用し、しかも一端からアルゴンガスを注入しな
がら他端から真空排気を行なつている状態で複合
炭酸塩の加熱分解を行なう方法を試みたところ、
従来のランプ製造方法による製造時間の1/3以下
の時間で、従来の製造方法で製造したランプと同
等の初期特性を有しているけい光ランプを作るこ
とができた。しかし、これらのけい光ランプの寿
命試験を行なつたところ、管端の黒化性能は、従
来の製造方法で製造したけい光ランプの性能より
もかなり劣つていることがわかつた。これは、炭
酸塩を加熱分解するための加熱電流を変化させて
も、あまり改善できなかつた。
Therefore, we applied the vacuum evacuation method described above to a fluorescent lamp, and tried a method of thermally decomposing the composite carbonate while injecting argon gas from one end and evacuation from the other end.
It was possible to produce a fluorescent lamp with initial characteristics equivalent to those of lamps produced using conventional methods, in less than one-third of the time required for production using conventional lamp production methods. However, when life tests were conducted on these fluorescent lamps, it was found that the tube end blackening performance was considerably inferior to that of fluorescent lamps manufactured using conventional manufacturing methods. This problem could not be improved much even by changing the heating current for thermally decomposing the carbonate.

本発明者等の実験によれば、タングステンとア
ルカリ土類金属の酸化物との化合物、いわゆる中
間層化合物の量がある適当な範囲にあるときにの
み、寿命および黒化性能ともに最良になることが
わかつている。そこで、前記の真空排気方法で製
作したけい光ランプの電極の中間層化合物の量を
しらべたところ、従来の製造方法によるランプに
比較しかなり少なく、かつ加熱電流をかえてもほ
とんど変化していないことがわかつた。これは、
従来は真空中で炭酸塩の加熱分解を行なつている
のに対し、本発明では上述したようにアルゴンガ
ス流中で複合炭酸塩の加熱分解を行なつているこ
とに起因しているものと思われる。
According to experiments conducted by the present inventors, both the life and blackening performance are best achieved only when the amount of the so-called intermediate layer compound, which is a compound of tungsten and an alkaline earth metal oxide, is within a certain appropriate range. I understand. Therefore, when we investigated the amount of interlayer compounds in the electrodes of fluorescent lamps manufactured using the vacuum evacuation method described above, we found that they were considerably smaller than those in lamps manufactured using conventional manufacturing methods, and that there was almost no change even when the heating current was changed. I found out. this is,
This is due to the fact that carbonates are conventionally thermally decomposed in a vacuum, whereas in the present invention, composite carbonates are thermally decomposed in an argon gas flow as described above. Seem.

そこで、本発明者等はアルゴンガス中で加熱分
解を行なつているときの電極の様子を詳細に観察
したところ、第2図のような現象がおこつている
ことがわかつた。第2図は、アルゴン中における
加熱分解時の電極の様子を示す図で、3,4はタ
ングステンの二重コイルフイラメント5を支持す
るためのニツケル線、6はアルカリ土類金属の複
合炭酸塩である。ニツケル線3,4を通して流す
炭酸塩加熱分解用の電流を増加させてゆくと、フ
イラメントコイル5の両端間の電圧差は増加して
ゆく。そして、この電圧差がある値以上になると
コイル近傍のアルゴンガスの電離がおこり、コイ
ル5の両端を電極輝点としたアーク放電7が発生
する。このようなアーク放電においては、放電電
流を増加させても放電電圧はほとんど変化しな
い。したがつて、上記のようなアーク放電が発生
した状態で、ニツケル線3,4を通じて流す加熱
電流を増加させても増加分の電流のほとんどすべ
てはアークを通して流れ、炭酸塩6が塗布してあ
るコイルの部分を流れないため、炭酸塩の温度は
上昇しない。したがつて、中間層化合物の量を増
加させることができず、管端黒化性能が悪くな
る。
Therefore, the present inventors closely observed the state of the electrode during thermal decomposition in argon gas, and found that the phenomenon shown in FIG. 2 occurred. Figure 2 shows the state of the electrodes during thermal decomposition in argon, where 3 and 4 are nickel wires for supporting the tungsten double coil filament 5, and 6 is an alkaline earth metal composite carbonate. be. As the carbonate thermal decomposition current flowing through the nickel wires 3 and 4 is increased, the voltage difference between both ends of the filament coil 5 increases. When this voltage difference exceeds a certain value, ionization of argon gas near the coil occurs, and an arc discharge 7 occurs with both ends of the coil 5 as electrode bright spots. In such arc discharge, the discharge voltage hardly changes even if the discharge current is increased. Therefore, even if the heating current flowing through the nickel wires 3 and 4 is increased in the state where the above-mentioned arc discharge has occurred, almost all of the increased current flows through the arc and the carbonate 6 is coated. Since there is no flow through the coil, the temperature of the carbonate does not increase. Therefore, the amount of the intermediate layer compound cannot be increased, and the tube end blackening performance deteriorates.

上記のような現象は、アルゴン以外の希ガスを
使用した場合にも発生するであろうことは、容易
に推測できる。
It can be easily inferred that the above phenomenon will also occur when rare gases other than argon are used.

本発明者等は、いろいろな実験をくりかえした
結果、以下の方法を使用することによつて放電開
始電圧、黒化性能のすぐれたランプを製造できる
ことがわかつた。すなわち、一対の排気管を通し
てランプ内の空気などの不純ガスを排気する最初
の工程中に炭酸塩の加熱分解を開始する。窒素ガ
ス、空気中などにおいては前記のようなアーク放
電は非常に発生しにくいから、通電電流を変化さ
せることによつて炭酸塩の加熱温度を充分に高く
することができ、必要十分な量の中間層化合物を
生成することができる。もちろん、この工程中に
炭酸塩の分解を完了する必要はなく、次の希ガス
の注入と両側の排気管からの真空排気とをくりか
えす工程中に炭酸塩を完全に加熱分解する。
As a result of repeated various experiments, the inventors of the present invention found that a lamp with excellent discharge starting voltage and blackening performance can be manufactured by using the following method. That is, thermal decomposition of carbonates is initiated during the first step of exhausting impure gases such as air within the lamp through a pair of exhaust pipes. Since the above-mentioned arc discharge is extremely difficult to occur in nitrogen gas, air, etc., the heating temperature of carbonate can be made sufficiently high by changing the applied current, and the necessary and sufficient amount of carbonate can be heated. Interlayer compounds can be produced. Of course, it is not necessary to complete the decomposition of the carbonate during this step, and the carbonate is completely thermally decomposed during the next step of repeating the injection of rare gas and evacuation from the exhaust pipes on both sides.

以上説明したように、アルカリ土類金属の複合
炭酸塩の加熱分解の開始を一対の排気管から空気
などの不純ガスを排気する最初の工程中に行な
い、かつ前記排気管のひとつから希ガスを注入し
ながら他の排気管から真空排気を行なう工程と前
記工程によつて注入された希ガスを両端の排気管
から真空排気する工程とを交互に行なつてランプ
内の不純ガスを除去すれば、従来の製造方法によ
るランプの性能と同等の性能を有する低圧放電ラ
ンプを短時間で製造することができる。
As explained above, the thermal decomposition of the alkaline earth metal composite carbonate is started during the first step of exhausting impurity gas such as air from a pair of exhaust pipes, and the rare gas is discharged from one of the exhaust pipes. If the impurity gas inside the lamp is removed by alternately performing the step of evacuating from another exhaust pipe while injecting the rare gas and the step of evacuating the noble gas injected in the above step from the exhaust pipes at both ends. , a low-pressure discharge lamp having performance equivalent to that of a lamp produced by a conventional manufacturing method can be manufactured in a short time.

前記の製造方法において、炭酸塩の分解の後半
の工程と排気管のひとつから希ガスを注入しなが
ら他の排気管から真空排気を行なう行程とが重な
ることがある。この場合、希ガス注入側の電極の
温度が低下し中間層化合物の量に不一致ができ、
ランプの管端黒化、寿命がやや悪化する可能性が
ある。この場合、さらに、希ガス注入側の電極の
加熱電流を他端の電極の加熱電流よりも大きくし
てやれば、ランプの性能はいつそう改良される。
In the above manufacturing method, the latter half of the carbonate decomposition process may overlap with the process of injecting a rare gas from one of the exhaust pipes and evacuation from the other exhaust pipe. In this case, the temperature of the electrode on the side where the rare gas is injected decreases, causing a mismatch in the amount of the intermediate layer compound.
The end of the lamp tube may turn black, and its life may be slightly shortened. In this case, if the heating current of the electrode on the side where the rare gas is injected is made larger than the heating current of the electrode on the other end, the performance of the lamp can be greatly improved.

以下本発明を実施例によつて詳しく説明する。
試料低圧放電ランプとしては、通常の40ワツトけ
い光ランプを使用した。すなわち、内面にけい光
体が塗布されている管径33mm長さ1180mmのガラス
管の両端に、タングステンの二重コイルにバリウ
ム、ストロンチウム、カルシウムの三元炭酸塩が
塗布されている電極と排気管がそれぞれ設けられ
ている。このような試料けい光ランプを真空排気
装置にとりつけ、最初は両方の排気管から真空排
気を行なつた。そして排気開始後8秒後に一方の
排気を停止し、一方からアルゴンガスを注入しな
がら他方から真空排気を行なつた。
The present invention will be explained in detail below with reference to Examples.
A normal 40 Watt fluorescent lamp was used as the sample low pressure discharge lamp. That is, a glass tube with a diameter of 33 mm and a length of 1180 mm is coated with a phosphor on the inner surface, and an electrode and an exhaust pipe are coated with a ternary carbonate of barium, strontium, and calcium on a double coil of tungsten at both ends. are provided for each. This sample fluorescent lamp was attached to a vacuum evacuation device, and the vacuum was first evacuated from both exhaust pipes. Eight seconds after the start of evacuation, evacuation of one side was stopped, and while argon gas was injected from one side, vacuum evacuation was performed from the other side.

アルゴンの注入流量は10Torr/s、注入の
時間は3秒間であつた。アルゴンガスの注入を停
止すると同時に両側の排気管から7秒間の真空排
気を行なつた。上記の工程を3回くりかえした。
炭酸塩の加熱分解は次の二種類の方法で行なつ
た。第1の方法は本発明によるもので、第1回の
アルゴン注入の3秒前に炭酸塩の加熱分解を開始
した。加熱時間は15秒であつた。本発明と比較す
るために行つた第2の方法は、第1回のアルゴン
注入が完了すると同時に炭酸塩の加熱分解を開始
した。加熱時間は15秒であつた。上記の真空排気
工程を完了したのち、2.6Torrのアルゴンガスと
水銀を封入し、シールオフした。排気開始してか
らシールオフが完了するまでの時間は38秒であつ
た。従来の方法では最小限120秒は必要であつ
た。
The argon injection flow rate was 10 Torr/s, and the injection time was 3 seconds. At the same time as the injection of argon gas was stopped, vacuum evacuation was performed for 7 seconds from the exhaust pipes on both sides. The above process was repeated three times.
Thermal decomposition of carbonates was carried out using the following two methods. The first method is according to the invention, in which carbonate thermal decomposition was started 3 seconds before the first argon injection. The heating time was 15 seconds. A second method performed for comparison with the present invention started thermal decomposition of carbonate at the same time as the first argon injection was completed. The heating time was 15 seconds. After completing the above evacuation process, 2.6 Torr of argon gas and mercury were filled in and sealed off. The time from the start of exhaust to the completion of seal-off was 38 seconds. Conventional methods require a minimum of 120 seconds.

なお、上記製造方法中における洗浄ガスによる
洗浄回数、活性化の時間等は本実施例のものに限
ることなく、本発明の範囲内で色々変形してもよ
い。
Note that the number of times of cleaning with cleaning gas, activation time, etc. in the above manufacturing method are not limited to those of this embodiment, and may be modified in various ways within the scope of the present invention.

上記のけい光ランプの1000時間の点灯寿命試験
を行なつた。その結果、第1の方法で製造したけ
い光ランプのうち、適当な大きさの電流で加熱分
解したランプの放電開始電圧、管端黒化の発生の
割合は、排気時間を従来よりも大幅に短縮できた
のにもかかわらず、従来の製造方法によるものと
同等であつた。一方、本発明と比較するために行
つた第2の方法で製造したランプの場合には、放
電開始電圧は従来のものよりもやや低い傾向にあ
つたが、1000時間点灯後の管端黒化の発生率は約
30%で、従来の0〜3%に比較しかなり悪かつ
た。
A 1000 hour lighting life test was conducted on the above fluorescent lamp. As a result, among the fluorescent lamps manufactured by the first method, the discharge starting voltage and the rate of tube end blackening of the lamps thermally decomposed with an appropriate amount of current were significantly reduced compared to the conventional method. Although the length could be shortened, it was still equivalent to the conventional manufacturing method. On the other hand, in the case of lamps manufactured using the second method for comparison with the present invention, the discharge start voltage tended to be slightly lower than that of conventional lamps, but the tube end blackened after 1000 hours of lighting. The incidence of is approximately
It was 30%, which was considerably worse than the conventional 0-3%.

以上説明したごとく、本発明の低圧放電ランプ
の製造方法によれば、従来の製造方法による低圧
放電ランプの性能と同一の性能を有する低圧放電
ランプを従来の1/3以下の時間で製造することが
可能になり、安価な低圧放電ランプを提供でき
る。
As explained above, according to the method for manufacturing a low-pressure discharge lamp of the present invention, a low-pressure discharge lamp having the same performance as a low-pressure discharge lamp produced by a conventional manufacturing method can be manufactured in less than one third of the time required by the conventional method. This makes it possible to provide an inexpensive low-pressure discharge lamp.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は注入回数1回あたりのアルゴンの流量
による、けい光ランプの放電開始電圧の変化とけ
い光体膜はげ率の変化を示した特性線図で、1は
放電開始電圧、2はけい光体の膜はげ率を示す。
第2図は、アルゴン中における加熱分解時の電極
の状態を示した図で、3,4はフイラメント支持
用のニツケル線、5は二重コイルフイラメント、
6は炭酸塩、7はアーク放電を示す。
Figure 1 is a characteristic diagram showing the changes in the discharge starting voltage of the fluorescent lamp and the change in the peeling rate of the phosphor film depending on the flow rate of argon per number of injections, where 1 is the discharge starting voltage and 2 is the fluorescent light. Indicates the rate of baldness of body membranes.
Figure 2 is a diagram showing the state of the electrodes during thermal decomposition in argon, where 3 and 4 are nickel wires for supporting the filament, 5 is a double coil filament,
6 indicates carbonate and 7 indicates arc discharge.

Claims (1)

【特許請求の範囲】 1 両端に一対の酸化物被覆電極と一対の排気管
を有する低圧放電ランプの製造方法において、前
記一対の排気管の両方からランプ内の空気などの
不純ガスを真空排気するところの排気工程の最初
の工程である第1の工程と、前記一対の排気管の
うちの一方から希ガスを注入しながら他方の排気
管から真空排気を行なう第2の工程と前記第2の
工程によつて注入された希ガスを両端の排気管か
ら真空排気する第3の工程との第2、第3の工程
を交互に行なつてランプ内の不純ガスを除去する
工程とを具備し、かつ電極上のアルカリ土類金属
の複合炭酸塩の加熱分解の開始を前記第1の工程
中に行なうことを特徴とする低圧放電ランプの製
造方法。 2 前記の注入する希ガスがアルゴンであり、そ
の注入流量を2Torr/s〜30Torr/sの範囲
内に設定したことを特徴とする特許請求の範囲第
1項記載の低圧放電ランプの製造方法。
[Claims] 1. A method for manufacturing a low-pressure discharge lamp having a pair of oxide-coated electrodes at both ends and a pair of exhaust pipes, in which impurity gas such as air within the lamp is evacuated from both of the pair of exhaust pipes. However, there is a first step which is the first step of the exhaust step, a second step in which rare gas is injected from one of the pair of exhaust pipes and vacuum exhaust is performed from the other exhaust pipe, and the second step is a third step of evacuating the rare gas injected in the step from the exhaust pipes at both ends; and a step of removing impurity gas within the lamp by alternately performing the second and third steps. and a method for manufacturing a low-pressure discharge lamp, characterized in that thermal decomposition of the alkaline earth metal composite carbonate on the electrode is started during the first step. 2. The method for manufacturing a low-pressure discharge lamp according to claim 1, wherein the rare gas to be injected is argon, and the injection flow rate is set within a range of 2 Torr/s to 30 Torr/s.
JP13097874A 1974-11-15 1974-11-15 Teiatsuhodenranpuno seizohoho Granted JPS5157974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13097874A JPS5157974A (en) 1974-11-15 1974-11-15 Teiatsuhodenranpuno seizohoho

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13097874A JPS5157974A (en) 1974-11-15 1974-11-15 Teiatsuhodenranpuno seizohoho

Publications (2)

Publication Number Publication Date
JPS5157974A JPS5157974A (en) 1976-05-20
JPS6220651B2 true JPS6220651B2 (en) 1987-05-08

Family

ID=15047037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13097874A Granted JPS5157974A (en) 1974-11-15 1974-11-15 Teiatsuhodenranpuno seizohoho

Country Status (1)

Country Link
JP (1) JPS5157974A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2627575B2 (en) * 1990-08-15 1997-07-09 高砂熱学工業株式会社 Method for preventing sea salt particle contamination in clean room for semiconductor manufacturing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172845A (en) * 1982-03-31 1983-10-11 Matsushita Electric Works Ltd Activation process for electrode substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2627575B2 (en) * 1990-08-15 1997-07-09 高砂熱学工業株式会社 Method for preventing sea salt particle contamination in clean room for semiconductor manufacturing

Also Published As

Publication number Publication date
JPS5157974A (en) 1976-05-20

Similar Documents

Publication Publication Date Title
JP3425929B2 (en) High pressure discharge lamp and manufacturing method thereof
JPS6220651B2 (en)
JPS6220652B2 (en)
JPH03238747A (en) Metal vapor discharge lamp and manufacture thereof
JP3219084B2 (en) High pressure discharge lamp and method of manufacturing the same
JPS6050019B2 (en) Manufacturing method of low pressure discharge lamp
JP2003045373A (en) High pressure discharge lamp
US2849637A (en) Electrode for fluorescent lamp
JP3467939B2 (en) Metal vapor discharge lamp
JP2005108564A (en) Discharge lamp
JPS5844648A (en) Manufacturing method of fluorescent lamp
US3160454A (en) Method of manufacture of iodine cycle incandescent lamps
JPS6157649B2 (en)
US1821242A (en) Gaseous conduction apparatus
JP2004103594A (en) High pressure discharge lamp and its manufacturing method
JPH0528969A (en) Rapid start-type fluorescent lamp and its manufacture
JPH05283003A (en) Manufacture of cold cathode discharge lamp
JPS59171447A (en) Electrode for discharge lamp
JPS58157028A (en) Production method of low pressure mercury vapor discharge lamp
US1573593A (en) Electric bulb
JPS6037634A (en) Manufacture of small-sized metal vapor discharge lamp
JPH04274139A (en) Fluorescent lamp gas-discharging method
JP3449102B2 (en) Metal vapor discharge lamp
JPH03257739A (en) Manufacture of gas discharge panel
JPS62226555A (en) Electrode for cold cathode discharge lamp