JPS62206390A - Guided missile - Google Patents

Guided missile

Info

Publication number
JPS62206390A
JPS62206390A JP4766386A JP4766386A JPS62206390A JP S62206390 A JPS62206390 A JP S62206390A JP 4766386 A JP4766386 A JP 4766386A JP 4766386 A JP4766386 A JP 4766386A JP S62206390 A JPS62206390 A JP S62206390A
Authority
JP
Japan
Prior art keywords
wing
stabilizing
steering
deployable
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4766386A
Other languages
Japanese (ja)
Inventor
竹之内 泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4766386A priority Critical patent/JPS62206390A/en
Publication of JPS62206390A publication Critical patent/JPS62206390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は2機体の前半部所定位置に安定翼を。[Detailed description of the invention] [Industrial application field] This invention has stabilizing wings at predetermined positions on the front half of two aircraft.

また後半部所定位置に操舵翼を有する飛翔体の運動性能
及び空力性能の改良に関するものである。
The present invention also relates to improvements in the maneuverability and aerodynamic performance of a flying object having a steering blade at a predetermined position in the rear half.

〔従来の技術〕[Conventional technology]

一般に飛翔体は運動性能と空力安定性能を有するために
、その前半部の所定位置に安定翼を、また後半部の所定
位置に操舵翼を有している。そして前記の操舵翼を飛翔
体用内に内蔵した操舵装置によって操舵することにより
運動性能を、また前記安定翼によって空力的に安定した
飛行性能を得ている。
In general, a flying object has a stabilizing wing at a predetermined position in the front half and a steering wing at a predetermined position in the rear half in order to have maneuverability and aerodynamic stability. Motion performance is achieved by steering the steering blades using a steering device built into the flying object, and aerodynamically stable flight performance is achieved by the stabilizing blades.

従来の飛翔体の一例を第8図に示す。第8図において(
1)は誘導飛翔体の機体、(2)は操舵翼、(3)は安
定翼、(4)はアンテナ、(5)はアンテナ駆動機構。
An example of a conventional flying object is shown in FIG. In Figure 8 (
1) is the body of the guided flying vehicle, (2) is the steering wing, (3) is the stabilizing wing, (4) is the antenna, and (5) is the antenna drive mechanism.

(6)は目標、■は誘導飛翔体の飛翔速度ベクトル。(6) is the target, and ■ is the flight velocity vector of the guided flying object.

Lは飛翔方向に対して直角な力で、以下揚力と記述する
。θは基準軸で通常地面と誘導飛翔体の機軸とのなす角
度で、以下姿勢角と記述する。αは飛翔方向と誘導飛翔
体の機軸とのなす角度で以下迎え角と記述する。σはア
ンテナ(4)とアンテナ駆動機構(5)から成る追尾装
置からみた目標(6)の方向と誘導飛翔体の機軸とのな
す角度で以下首振り角と記述する。誘導飛翔体の目標(
6)の動きに追従して運動飛行するためには、飛翔方向
を変えるための揚力りが必要であるが、揚力りに空気力
を用いるのが最も一般的な方法である。すなわち、操舵
! (21を動かして、操舵IJE (2)に働く揚力
を利用して機体+11の姿勢を変え、迎え角αを生じさ
せて2機体(1)及び安定翼(3)に揚力を発生させて
飛翔方向を変える。このような誘導飛翔体にとって高い
運動性能と空力安定性能を得るためには翼面積を大きく
すればよいが、航空機に搭載したり、又はランチャ−に
収納するためには、翼巾が制限を受け。
L is a force perpendicular to the direction of flight, hereinafter referred to as lift force. θ is the reference axis, which is usually the angle between the ground and the axis of the guided flying object, and is hereinafter referred to as attitude angle. α is the angle between the flight direction and the axis of the guided flying object, and is hereinafter described as the angle of attack. σ is the angle formed between the direction of the target (6) seen from the tracking device consisting of the antenna (4) and the antenna drive mechanism (5) and the axis of the guided flying object, and is hereinafter described as the oscillation angle. Guided projectile target (
In order to follow the movement in 6) and fly, a lift force is required to change the direction of flight, and the most common method is to use aerodynamic force for lift force. Namely, steering! (By moving 21, the attitude of the aircraft +11 is changed using the lift force acting on the steering IJE (2), creating an angle of attack α, generating lift on the 2 aircraft (1) and the stabilizing wing (3), and flying. In order to obtain high maneuverability and aerodynamic stability for such guided flying objects, it is sufficient to increase the wing area, but in order to be mounted on an aircraft or stored in a launcher, the wing width must be increased. is subject to restrictions.

むやみに翼を大きくできない。そのために従来の誘導飛
翔体ではその運動性能と空力安定性能に制限を受けてい
た。
You can't make your wings bigger unnecessarily. For this reason, conventional guided flying vehicles have been limited in their maneuverability and aerodynamic stability.

〔発明が解決しようとしている問題点〕第8図に示した
従来の飛翔体の例において、目標(6)が高速で運動す
る場合、これに追従するためには大きな揚力りが必要で
あるが、そのためには迎え角αを大きくするか、操舵翼
(2)及び安定翼(3)を大きくする方法がある。しか
し迎え角αを大きくしていくと、揚力りは増加してい(
が、これには限界があり、この限界を越えると、それ以
上に揚力は増加せず1.逆に減少してしまう。また迎え
角aを大きくし過ぎると首振り角σが大きくなり、アン
テナ駆動機構(5)の首振り角の限界を越えてしまい、
目標(6)を見失ってしまう恐れがある。
[Problem to be solved by the invention] In the example of the conventional flying object shown in Fig. 8, when the target (6) moves at high speed, a large lift force is required to follow it. For this purpose, there is a method of increasing the angle of attack α or increasing the size of the steering blade (2) and the stabilizing blade (3). However, as the angle of attack α increases, the lift force increases (
However, there is a limit to this, and once this limit is exceeded, the lift force will not increase any further and 1. On the contrary, it will decrease. Furthermore, if the angle of attack a is made too large, the swing angle σ will become large, exceeding the swing angle limit of the antenna drive mechanism (5).
There is a risk of losing sight of goal (6).

一方操舵翼(2)及び安定翼(3)を大きくし過ぎると
On the other hand, if the steering blade (2) and stabilizing blade (3) are made too large.

ランチャ−2航空機等への搭載が困難となり、また取扱
いも難しくなる。特に航空機搭載用の誘導飛翔体では、
操舵翼(2)、安定翼(3)が大きいと、空気抵抗が大
きくなって、携行飛行時に母機である航空機の負担が大
きくなり、その飛行性能が低下するという欠点があった
。以上より従来の誘導飛翔体の運動性能、空力安定性能
は翼面積から制限を受けていた。この発明はかかる問題
点を解決するためになされたもので、ランチャ−2航空
機等への搭載時は、従来の操舵翼、安定翼にそれぞれ操
舵展開翼、安定展開翼を収納し2機体をコンパクトなま
ま保ち2発射後、油圧シリンダとコイルバネからなるロ
ック装置の動作時間として設定した所定の遅れ時間後に
、つまり前記両展開翼が母機又はランチャ−に機械的に
干渉しない距離に到達してから、I¥if記展開翼を展
開させ、従来の誘導飛翔体に比べてより大きな翼面積を
得て、大きな揚力、高い運動性能、安定性能を得ること
を目的とするものである。
Launcher 2 It becomes difficult to mount it on an aircraft, etc., and it also becomes difficult to handle it. Especially for guided flying vehicles mounted on aircraft.
If the steering wing (2) and the stabilizing wing (3) are large, air resistance increases, which increases the burden on the mother aircraft during carry-over flight, resulting in a reduction in flight performance. As described above, the motion performance and aerodynamic stability performance of conventional guided flying vehicles are limited by the wing area. This invention was made to solve this problem, and when installed on a Launcher 2 aircraft, etc., the conventional steering wing and stabilizing wing accommodate the steering deployable wing and stabilizing deployable wing, respectively, making the two aircraft compact. After the second launch, after a predetermined delay time set as the operating time of the locking device consisting of a hydraulic cylinder and a coil spring, that is, after the two deployable wings reach a distance where they do not mechanically interfere with the mother aircraft or the launcher, The objective is to deploy the deployable wings to obtain a larger wing area than conventional guided flying vehicles, and to obtain large lift, high motion performance, and stability performance.

〔問題点を解決するための手段〕[Means for solving problems]

この発明による誘導飛翔体は翼面積を増加させるための
展開操舵翼、展開安定翼とこれらの展開翼を展開させる
エネルギとして、捩りトルクを蓄えておくうず巻ばねと
、この捩りトルクを展開翼に伝える伝達機構と、展開翼
を収納しておき2発射後所定の遅れ時間後に展開翼を展
開させるための展開翼ロック装置とを設けたものである
The guided flying object according to the present invention has a deployable steering wing for increasing the wing area, a deployable stabilizing wing, a spiral spring that stores torsional torque as energy for deploying these deployable wings, and a spiral spring that stores this torsional torque to the deployable wing. It is provided with a transmission mechanism for transmitting the information, and a deployable wing locking device for storing the deployable wing and deploying the deployable wing after a predetermined delay time after the second firing.

〔作 用〕[For production]

この発明においては、ランチャ−又は航空機から発射後
、ワイヤがロック装置から引き抜かれ。
In this invention, the wire is withdrawn from the locking device after firing from the launcher or aircraft.

ロック装置が解除されて、ロック装置にて設定された所
定の遅れ時間後に、うず巻ばねに蓄えられていtコ展開
エネルギによって展開翼が展開する。
After the locking device is released and a predetermined delay time set by the locking device has elapsed, the deployable wings are deployed by the deployment energy stored in the spiral spring.

〔実施例〕〔Example〕

第1図、第2図はこの発明による誘導飛翔体の一実施例
の全体構成図である。
FIGS. 1 and 2 are overall configuration diagrams of an embodiment of a guided flying object according to the present invention.

第1図は発射前の誘導飛翔体を示すもので2機体(1)
に内蔵された図示していない操舵装置と、操舵装置によ
り操舵される操舵N(2)と1機体(1)に固定された
安定翼(3)を設け、操舵翼(2)に展開操舵翼(7)
が、安定* (3)に展開安定翼(8)が容質に設けら
れたロック装置(9)によって収納されている状態であ
る。(10)はロック解除用のワイヤである。
Figure 1 shows two guided flying vehicles before launch (1)
A steering device (not shown) built into the aircraft, a steering N (2) that is steered by the steering device, and a stabilizing wing (3) fixed to one fuselage (1) are provided, and the steering wing (2) is equipped with a deployable steering wing. (7)
However, in the stable* (3) state, the deployed stabilizing wing (8) is stored by a locking device (9) provided in the space. (10) is a wire for unlocking.

第2図は発射後の誘導飛翔体を示すもので2発射時にワ
イヤQO)がロック装置(9)から引き抜かれ。
Figure 2 shows the guided flying object after launch, and the wire QO) is pulled out from the locking device (9) at the second launch.

ロック解除されて2M開開館舵翼7)と展開安定翼(8
)とが展開され、翼面積が増大している。
Unlocked 2M opening rudder blade 7) and deployment stabilizing blade (8)
) has been expanded, increasing the wing area.

第3図は第1図のA−A断面図であり1機体(11と操
舵翼(2)、ロック装置(9)及びワイヤOIから構成
されている。
FIG. 3 is a sectional view taken along the line A-A in FIG. 1, and is composed of one fuselage (11, a steering wing (2), a locking device (9), and a wire OI).

第4図は第1図、第2図の実施例に使用される操舵翼(
2)と安定翼(3)に内蔵された展開機構を示すもので
、その例として安定翼(3)の内部を示したものである
。第4図において安定翼(3)の内部に収納された展開
安定! (81と、展開量安定翼(8)を展開させる捩
りトルクエネルギを蓄えておくうず巻ばね(11)を設
け、また一方、うず巻ばね(11)の展開力を伝えるた
めに、うず巻ばね(11)の巻軸(12)と展σσ安定
H(8)のH開中心軸(13)との間に一対の歯車(1
4)、 (15)を設け、ロック装置(9)によって収
納状態を保つように構成されている。
Figure 4 shows the steering blade (
2) and the deployment mechanism built into the stabilizing wing (3), and the inside of the stabilizing wing (3) is shown as an example. In Figure 4, the deployment stabilizer is housed inside the stabilizer wing (3)! (81 and a spiral spring (11) for storing the torsional torque energy for deploying the deployment amount stabilizing wing (8), A pair of gears (1
4) and (15), and is configured to maintain the stored state by a locking device (9).

第5図は第4図の実施例に使用される安定* (3)の
B−B断面図である。うず巻ばね(11)は一端が安定
翼(3)に、他端が巻軸(12)に固定されている。
FIG. 5 is a sectional view taken along line BB of the stable* (3) used in the embodiment of FIG. The spiral spring (11) has one end fixed to the stabilizing blade (3) and the other end fixed to the winding shaft (12).

この巻軸(12)は軸受(16)により安定翼(3)に
回転自由に支持されている。また展開i[(8)のm開
中心軸(]3)も軸受(]7ンによって安定翼(3)に
回転自由に支持されている。
This winding shaft (12) is rotatably supported by the stabilizing blade (3) by a bearing (16). Further, the m-open center shaft (3) of the expanded i[(8) is also rotatably supported by the stabilizing blade (3) by a bearing (7).

第6図、第7図は第4図のC−C断面図であり。6 and 7 are sectional views taken along the line CC in FIG. 4.

ロック装置(8)の断面を示したものである。第6図は
発射前の状態を示すもので、展開安定!1(7)と歯車
(Is)、軸(13)を介して安定翼(3)に支持され
ている。油圧シリンダ(18)はガイド(19)を介し
て安定翼(3)に固定されている。油圧シリンダ(18
)のピストンロッド(20)に設けられた穴(21)と
ガイド(19)に設けられた穴(22)にワイヤa〔が
貫通している。
It shows a cross section of the locking device (8). Figure 6 shows the state before launch, and the deployment is stable! 1 (7), a gear (Is), and a shaft (13), which are supported by the stabilizing blade (3). The hydraulic cylinder (18) is fixed to the stabilizing wing (3) via a guide (19). Hydraulic cylinder (18
) The wire a passes through a hole (21) provided in the piston rod (20) and a hole (22) provided in the guide (19).

またピストンロッド(20)は展開翼安定(7)に設け
られた穴(23)に挿入され、第5図のうず巻ばね(1
1)に蓄えられた捩りトルクにより展開しようとしてい
る展開安定翼(8)を収納状態に保っている。(24)
はピストン、 (25)はピストン駆動用のバネである
Also, the piston rod (20) is inserted into the hole (23) provided in the deployable wing stabilizer (7), and the spiral spring (1) shown in FIG.
The torsional torque stored in 1) keeps the deployment stabilizing wing (8) that is about to deploy in the retracted state. (24)
is a piston, and (25) is a spring for driving the piston.

(26)は油圧シリンダ(18)内の油、 (27)は
油(26)のシール用のOリングである。
(26) is the oil in the hydraulic cylinder (18), and (27) is an O-ring for sealing the oil (26).

第7図は母機から発射後、所定の遅れ時間が経過した後
の図で1図示しないワイヤがガイド(19)とビトスト
ンロッド(20)から引き抜かれた後、コイルバネ(2
5)に蓄えられていたエネルギにより。
Figure 7 is a diagram after a predetermined delay time has elapsed after launch from the mother machine. 1. After the wire (not shown) has been pulled out from the guide (19) and Vitostone rod (20), the coil spring (2
5) due to the energy stored in.

ピストン(24)及びピストンロッド(20)が上昇し
The piston (24) and piston rod (20) rise.

展開N(7)に設けられた穴(22)から引き抜かれる
と。
When it is pulled out from the hole (22) provided in the deployment N (7).

展開安定翼(8)は歯車(15)を介した第5図のうず
巻ばね(11)に蓄えられた捩りトルクの力によって展
開する。
The deployment stabilizing wing (8) is deployed by the force of the torsional torque stored in the spiral spring (11) in FIG. 5 via the gear (15).

次に上記実施例の動作を第1図から第7図までを参照し
ながら説明する。第1図は展開操舵翼(7)と展開安定
!31 (81が操舵翼(2)と安定翼(3)−に収納
されている状態を示す説明図、第2図はこれらがH問さ
れている状態を示す説明図、第3図は展開安定翼(8)
が収納されている状態の安定翼(3)を前方から見た図
、第4図、第5図は展開安定H(8)が収納されている
状態の安定翼(3)内部の説明図、第6図は発射前の展
開安定翼(8)がピストンロッド(20)にてロック収
給されている状態を示す説明図、第7図は発射後ピスト
ンロッド(20)が所定の遅れ時間を費して上昇し、展
開安定翼(8)のロックがはずれた直後を示す説明図で
ある。
Next, the operation of the above embodiment will be explained with reference to FIGS. 1 to 7. Figure 1 shows the deployable steering wing (7) and stable deployment! 31 (An explanatory diagram showing the state in which 81 is stored in the steering blade (2) and the stabilizing vane (3). Figure 2 is an explanatory diagram showing the state in which these are in the H position. Figure 3 is an explanatory diagram showing the state in which they are deployed and stabilized. Wings (8)
Figures 4 and 5 are explanatory diagrams of the interior of the stabilizing wing (3) with the deployed stabilizer H (8) stored, as seen from the front. FIG. 6 is an explanatory diagram showing the state in which the deployed stabilizing wings (8) are locked and retracted by the piston rod (20) before launch, and FIG. FIG. 3 is an explanatory diagram showing the state immediately after the deployment stabilizing wing (8) is unlocked after the robot has risen.

まず第4図において、うず巻ばね叫に蓄えられた捩りト
ルクエネルギは、(!i車(141,(Is)を介して
展開翼安定(7)を展開させようと働くが、ロック装置
(9) (ζよって展Unが妨げられ、第1図に示され
た収納状態となっている。この時ワイヤQOIは各展U
n翼のロック装置(9)を第6図に示したように貫通し
、コイルバネ(25)によって上昇しようとするピスト
ンロッド(20)をロックしている。一方ピストンロッ
ド(20)の他端は展開翼(8)に設けられた穴(23
)に挿入され、展開安定翼(8)の展開動作を妨げてい
る。次に機体(1)が肱空機やランチャ−から発射され
ると、ワイヤαωがロック装置(9)から引き抜かれ第
6図に示しtこコイルバネ(25)の力によって。
First, in FIG. 4, the torsional torque energy stored in the spiral spring actuates to deploy the deployable wing stabilizer (7) via the (!i vehicle (141, (Is)), but the locking device (9 ) (ζ Therefore, the expansion Un is prevented and the wire is in the storage state shown in Figure 1. At this time, the wire QOI is
The n-wing locking device (9) is penetrated as shown in FIG. 6, and the piston rod (20) attempting to rise is locked by the coil spring (25). On the other hand, the other end of the piston rod (20) is connected to a hole (23) provided in the deployable wing (8).
), which prevents the deployment stabilizing wing (8) from deploying. Next, when the aircraft body (1) is launched from an aircraft or a launcher, the wire αω is pulled out from the locking device (9) by the force of the coil spring (25) as shown in FIG.

ピストンロッド(20)は上昇運動に入り、展開安定H
(8)に設けられた穴(23)より引き抜かれる。そし
て引き抜き完了を示す第7図の状態になる。この引き抜
き開始から引き抜き完了までの時間は、油(26)の粘
度と、ピストン(24)とシリンダ(18)との間のス
キマの大きさで決定される。この時間が前述の所定の遅
れ時間となるよう使用する油(26)の粘度と、シリン
ダ(18)とピストン(24)間のスキマの大きさを選
択決定することにより、母機から発射後、所定の遅れ時
間後に展開翼が展開することになる。
The piston rod (20) enters the upward movement and the deployment is stabilized H.
It is pulled out through the hole (23) provided in (8). Then, the state shown in FIG. 7 is reached, which indicates the completion of extraction. The time from the start of the withdrawal to the completion of the withdrawal is determined by the viscosity of the oil (26) and the size of the gap between the piston (24) and the cylinder (18). By selecting and determining the viscosity of the oil (26) used and the size of the gap between the cylinder (18) and the piston (24) so that this time becomes the predetermined delay time described above, the The deployable wings will be deployed after a delay time of .

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、誘導飛翔体の従来の安
定翼に展開翼を内蔵させ、操舵翼、安定翼の翼面積を従
来の翼面積に比べて大巾に増大させ2発射後、コイルバ
ネと油圧シリンダからなるロック装置にてあらかじめ設
定された所定の遅れ時間後に、うず巻ばねに蓄えた捩り
トルクにて展開させることにより、母機又はランチャ−
との機械的干渉を防ぎながらも、安全に連動性能、空力
安定性能を向上させることができるという効果がある。
As explained above, this invention incorporates a deployable wing into the conventional stabilizing wing of a guided flying vehicle, greatly increases the wing area of the steering wing and stabilizing wing compared to the conventional wing area, and after two launches, the coil spring After a preset delay time with a locking device consisting of a hydraulic cylinder, the mother machine or launcher is deployed by the torsional torque stored in the spiral spring.
This has the effect of safely improving interlocking performance and aerodynamic stability while preventing mechanical interference with the vehicle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、この発明による誘導飛翔体の一実
施例の全体構成図、第3図は第1図のA−A断面図、第
4図、第5図は安定翼内部構成図、第6図、第7図はロ
ック装置の断面図、第8図は従来の誘導飛翔体の一例を
示す図である。図において、(7)は展開操舵翼、(8
)は展開安定翼、(9)はロック装置、叫はワイヤ、 
(11)はうず巻ばね。 (12)は巻軸、 (13)は展開中心軸、 (14)
と(15)は歯車、(1B)と(17)は軸受、 (1
8)はシリンダ、 (19)はガイド、 (20)はピ
ストンロッド、 (21)と(22)と(23)は穴、
  (24)はピストン、 (25)はコイルバネ、 
(26)は油、 (27)は0リングである。 なお2図中同一符号は、同−又は相当部分を示す。
1 and 2 are overall configuration diagrams of an embodiment of a guided flying object according to the present invention, FIG. 3 is a sectional view taken along line A-A in FIG. 1, and FIGS. 4 and 5 are internal configurations of stabilizing wings. 6 and 7 are cross-sectional views of the locking device, and FIG. 8 is a diagram showing an example of a conventional guided flying object. In the figure, (7) is a deployed steering wing, (8
) is the deployable stabilizing wing, (9) is the locking device, and the shout is the wire.
(11) is a spiral spring. (12) is the winding axis, (13) is the development center axis, (14)
and (15) are gears, (1B) and (17) are bearings, (1
8) is the cylinder, (19) is the guide, (20) is the piston rod, (21), (22) and (23) are the holes,
(24) is a piston, (25) is a coil spring,
(26) is oil and (27) is an O-ring. Note that the same reference numerals in the two figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 飛翔体の機体と、この機体の前半部所定位置に機体の周
方向に等間隔に取付けられた4枚の安定翼と、機体の後
半部所定位置に機体の周方向に等間隔に取りつけられた
4枚の操舵翼と、前記安定翼内に収納された展開安定翼
と、前記操舵翼内に収納された展開操舵翼と、前記二種
の展開翼をそれぞれ安定翼と操舵翼とに収納しておくた
めに前記安定翼、操舵翼にそれぞれ設けられ、かつコイ
ルバネと油圧シリンダによって構成したロック装置と、
前記安定翼及び操舵翼に装着され、かつ前記展開翼を展
開するための捩りトルクエネルギを蓄えるためのうず巻
ばねと、このうず巻ばねの捩りトルクを前記展開翼に伝
える展開機構とから成り、飛翔体の発射前は前記二種の
展開翼を安定翼と操舵翼に収納しておき、発射後、前記
油圧シリンダを前記コイルバネの力で作動させ、所定の
遅れ時間後に前記二種の展開翼をうず巻ばねに蓄えられ
た捩りトルクにて展開させるように構成したことを特徴
とする誘導飛翔体。
A flying object has a fuselage, four stabilizing wings attached to the front half of the fuselage at regular intervals in the circumferential direction of the fuselage, and four stabilizing wings attached to the rear half of the fuselage at equal intervals in the circumferential direction of the fuselage. four steering blades, a deployable stabilizing vane housed in the stabilizing vane, a deployable steering vane housed in the steering vane, and the two types of deployable vanes housed in the stabilizing vane and the steering vane, respectively. a locking device provided on each of the stabilizing blade and the steering blade and configured with a coil spring and a hydraulic cylinder;
comprising a spiral spring attached to the stabilizing wing and the steering wing and storing torsional torque energy for deploying the deployable wing; and a deployment mechanism that transmits the torsional torque of the spiral spring to the deployable wing; Before launching the flying object, the two types of deployable wings are stored in the stabilizing wing and the steering wing, and after the launch, the hydraulic cylinder is operated by the force of the coil spring, and after a predetermined delay time, the two types of deployable wings are stored. A guided flying object characterized in that it is configured to be deployed by torsional torque stored in a spiral spring.
JP4766386A 1986-03-05 1986-03-05 Guided missile Pending JPS62206390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4766386A JPS62206390A (en) 1986-03-05 1986-03-05 Guided missile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4766386A JPS62206390A (en) 1986-03-05 1986-03-05 Guided missile

Publications (1)

Publication Number Publication Date
JPS62206390A true JPS62206390A (en) 1987-09-10

Family

ID=12781499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4766386A Pending JPS62206390A (en) 1986-03-05 1986-03-05 Guided missile

Country Status (1)

Country Link
JP (1) JPS62206390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109625243A (en) * 2018-12-24 2019-04-16 湖南云箭集团有限公司 A kind of folded surface expansion Aeroassisted driving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109625243A (en) * 2018-12-24 2019-04-16 湖南云箭集团有限公司 A kind of folded surface expansion Aeroassisted driving device
CN109625243B (en) * 2018-12-24 2021-08-17 湖南云箭集团有限公司 Pneumatic auxiliary driving device for unfolding of folding wing surface

Similar Documents

Publication Publication Date Title
US11041702B1 (en) Methods for extended-range, enhanced-precision gun-fired rounds using g-hardened flow control systems
US6923404B1 (en) Apparatus and methods for variable sweep body conformal wing with application to projectiles, missiles, and unmanned air vehicles
US5108051A (en) Deployment mechanism of a projectile fin
US5671899A (en) Airborne vehicle with wing extension and roll control
EP2165152B1 (en) Hybrid spin/fin stabilized projectile
US10377466B2 (en) Foldable wings for an unmanned aerial vehicle
EP2593746B1 (en) Aerodynamic flight termination system and method
US4076187A (en) Attitude-controlling system and a missile equipped with such a system
US6923123B2 (en) Methods and apparatus for increasing aerodynamic performance of projectiles
US5154370A (en) High lift/low drag wing and missile airframe
WO2009103939A2 (en) Control of projectiles or the like
CN109539902B (en) Electric-drive folding wing system with large aspect ratio
US10429159B2 (en) Deployable airfoil airborne body and method of simultaneous translation and rotation to deploy
JPS62206390A (en) Guided missile
US4923142A (en) Gyroscopic stabilizing device for a projectile control instrument
JPS62206400A (en) Guided missile
JPS62206391A (en) Guided missile
JPS62206392A (en) Guided missile
JPS62206396A (en) Guided missile
CN111156865A (en) Coaxial multi-rotor patrol missile
JPS62206397A (en) Guided missile
US12031802B2 (en) Despun wing control system for guided projectile maneuvers
JPS62206393A (en) Guided missile
JPS62206394A (en) Guided missile
JPS6256798A (en) Guided missile