JPS62206194A - Shield type tunnel excavation method - Google Patents

Shield type tunnel excavation method

Info

Publication number
JPS62206194A
JPS62206194A JP4541086A JP4541086A JPS62206194A JP S62206194 A JPS62206194 A JP S62206194A JP 4541086 A JP4541086 A JP 4541086A JP 4541086 A JP4541086 A JP 4541086A JP S62206194 A JPS62206194 A JP S62206194A
Authority
JP
Japan
Prior art keywords
pressure chamber
foaming agent
mixed fluid
shield type
excavation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4541086A
Other languages
Japanese (ja)
Inventor
津浦 謙一
陽一 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP4541086A priority Critical patent/JPS62206194A/en
Publication of JPS62206194A publication Critical patent/JPS62206194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (技術分野) 本発明は、切羽地盤のロータリーカッタに対する掘削抵
抗を軽減すべくまたはずりに流動性および止水性を付与
すべく、切羽面にまたはシールド本体の隔壁前方の圧力
室内のずりに気泡を付与しつつ掘進するシールド式トン
ネル掘進方法に関する。
Detailed Description of the Invention (Technical Field) The present invention aims to reduce the excavation resistance of the face ground to a rotary cutter or to impart fluidity and watertightness to the shear. This invention relates to a shield type tunnel excavation method that excavates while adding air bubbles to the shear in a pressure chamber.

(従来技術) − 切羽面または圧力室内のすりに気泡を付与しつつ掘進す
るシールド式トンネル掘進方法の1つとして、特公昭5
8−47560号公報に記載されているように、起泡剤
を起泡させることにより得た気泡を切羽面に吹き付け、
圧力室内のすりと該圧力室に供給された気泡とを攪拌す
る掘進方法がある。しかし、この掘進方法は、起泡剤を
予め起泡させるための複雑かつ大聖で高価な起泡装置が
必要である。
(Prior art) - As one of the shield type tunnel excavation methods in which the tunnel is excavated while adding air bubbles to the face surface or the slide in the pressure chamber,
As described in Publication No. 8-47560, air bubbles obtained by foaming a foaming agent are sprayed onto the face surface,
There is an excavation method in which a pickpocket in a pressure chamber and air bubbles supplied to the pressure chamber are agitated. However, this excavation method requires a complicated, costly, and expensive foaming device for foaming the foaming agent in advance.

また、この掘進方法は、礫重量の割合いが大きい地山ま
たは均等係数が小さい地山に適用すると、圧力室内のす
りの空隙率が増大するため、圧力室内の気泡がすりから
分離し易くなり、気泡をずりに維持させることができな
い。
In addition, when this excavation method is applied to a rock with a high gravel weight ratio or a low uniformity coefficient, the porosity of the pickpocket in the pressure chamber increases, making it easier for the air bubbles in the pressure chamber to separate from the pickpocket. , the air bubbles cannot be maintained in shear.

(発明の目的) 本発明は、作業能率が高く、廉価であり、複雑かつ大型
で高価な起泡装置が不要であり、礫重量の割合いが大き
い地山または均等係数が小さい地山てあっても、気泡を
すりに維持させることができる。シールド式トンネル掘
進方法を提供することを目的とする。
(Objective of the invention) The present invention has high work efficiency, is inexpensive, does not require a complicated, large, and expensive foaming device, and is suitable for use in rock formations where the ratio of gravel weight is high or the uniformity coefficient is small. However, the bubbles can be maintained in the pickpocket. The purpose is to provide a shield type tunnel excavation method.

(発明の構成) 本発明のシールド式トンネル掘進方法は、起泡剤と細粒
材と水とを含む混合流体を攪拌して前記起泡剤の一部を
起泡させた後、気泡を含む前記混合流体と圧縮空気とを
隔壁前方の圧力室に供給し、前記圧力室内に配置された
攪拌手段により前記起泡剤を前記圧力室内のすりととも
に攪拌して起泡させ、その後気泡を含むずりを隔壁後方
に排出することを含む。
(Structure of the Invention) The shield type tunnel excavation method of the present invention stirs a mixed fluid containing a foaming agent, fine grain material, and water to foam a part of the foaming agent, and then foams a part of the foaming agent. The mixed fluid and compressed air are supplied to a pressure chamber in front of the partition wall, the foaming agent is stirred and foamed together with the slurry in the pressure chamber by a stirring means disposed in the pressure chamber, and then the foaming agent is foamed with a slurry containing air bubbles. This includes discharging the gas behind the bulkhead.

(作用効果) 本発明の掘進方法は、起泡剤の一部を起泡させて圧力室
に供給するため、圧力室内の起泡剤とずりとを短時間攪
拌するだけで、すりに流動性および止水性を付与するの
に充分な値に前記起泡剤を起泡させることができる。従
って本発明によれば、作業能率が高く、廉価になる。
(Effects) The excavation method of the present invention foams a part of the foaming agent and supplies it to the pressure chamber, so that by simply stirring the foaming agent and the shear in the pressure chamber for a short time, the foaming agent can be fluidized. And the foaming agent can be foamed to a sufficient value to impart water-stopping properties. Therefore, according to the present invention, the work efficiency is high and the cost is low.

また本発明の掘進方法は、起泡剤の一部を起泡させれば
よいため、混合流体を攪拌することにより起泡剤の一部
を起泡させることができる。このため、本発明によれば
、複雑かつ大型で、高価な起泡装置を必要としない。
Moreover, in the excavation method of the present invention, since it is only necessary to foam a part of the foaming agent, a part of the foaming agent can be foamed by stirring the mixed fluid. Therefore, according to the present invention, there is no need for a complicated, large, and expensive foaming device.

さらに本発明の掘進方法は、混合流体が細粒材を含むた
め、圧力室内のずりの空隙率が前記細粒材および気泡に
より減少される。このため、本発明によれば、礫重最の
割合いが大きい地山または均等係数が小さい地山であっ
ても、気泡がすりから分離せず、気泡をすりに維持させ
ることができ、礫重量の割合いが小さい地山または均等
係数が大きい地山であれば、気泡がすりからより分離せ
ず、気泡をすりにより確実に維持させることができる。
Further, in the excavation method of the present invention, since the mixed fluid contains fine grain material, the porosity of the shear in the pressure chamber is reduced by the fine grain material and air bubbles. Therefore, according to the present invention, even if the rock has a large percentage of gravel weight or a rock with a small uniformity coefficient, the air bubbles will not separate from the pickpocket, and the bubbles can be maintained in the pickpocket. If the rock has a small weight ratio or a large uniformity coefficient, the air bubbles will be less likely to separate from the pickpocket, and the bubbles can be reliably maintained by the pickpocket.

さらにまた、細粒材を起泡剤、水および気泡とともに圧
力室に供給するため、細粒材用の特殊な供給装置を用い
る必要がない。
Furthermore, since the fine-grained material is fed into the pressure chamber together with the foaming agent, water and air bubbles, there is no need to use a special feeding device for the fine-grained material.

(実施例) 以下、図面に示す本発明の実施例について説明する。(Example) Embodiments of the present invention shown in the drawings will be described below.

第1図に示すいわゆる土庄バランス型シールド式トンネ
ル掘進機lOは、筒状のシールド本体12と、該シール
ド本体12内に設けられた隔壁14と、該隔壁14の前
方の圧力室16に配置されたカッタヘッド18と、該カ
ッタヘッドを回転させるモータのような回転機構20と
、掘進機lO全全体前進させる複数の推進ジヤツキ22
とを含む、推進ジヤツキ22は、シールド本体12の後
方のトンネル内周面に組み立てられたセグメント24を
反力体とする0回転機構20は、図示されていないが支
持手段によりシールド本体12に支承されている。
The so-called Tonosho balanced shield type tunneling machine IO shown in FIG. a cutter head 18, a rotation mechanism 20 such as a motor that rotates the cutter head, and a plurality of propulsion jacks 22 that move the entire excavator lO forward.
The propulsion jack 22 includes a zero rotation mechanism 20 whose reaction force is a segment 24 assembled on the inner peripheral surface of the tunnel at the rear of the shield body 12, and a zero rotation mechanism 20 that is supported on the shield body 12 by a support means (not shown). has been done.

カッタヘッド18は、隔壁14にシールド本体12の軸
線の回りに回転可能に支承された回転軸26の先端部に
固定的に設けられている。カッタヘッド18は、回転機
構20により該回転機構20の出力軸に設けられた歯車
28と、該歯車28と噛合し、回転軸26の先端部に固
定的に設けられた歯車30と1回転軸26とを経て回転
駆動される。、カッタヘッド18の隔壁14の側には、
圧力室16に受は入れたすりをカッタヘッド18の回転
にともなって攪拌する複数の攪拌羽根32が固定的に設
けられている。なお、攪拌羽根32による攪拌効果を高
めるためるべく隔壁14の圧力室16の側に複数の固定
翼34を攪拌羽根32と干渉しない位置に設けてもよい
The cutter head 18 is fixedly provided at the tip of a rotating shaft 26 that is rotatably supported by the partition wall 14 around the axis of the shield body 12. The cutter head 18 meshes with a gear 28 provided on the output shaft of the rotation mechanism 20 by the rotation mechanism 20, and engages with the gear 28, and engages with a gear 30 fixedly provided on the tip of the rotation shaft 26. It is rotationally driven via 26. , on the partition wall 14 side of the cutter head 18,
A plurality of stirring blades 32 are fixedly provided to stir the pickpockets placed in the pressure chamber 16 as the cutter head 18 rotates. In order to enhance the stirring effect of the stirring blades 32, a plurality of fixed blades 34 may be provided on the pressure chamber 16 side of the partition wall 14 at a position where they do not interfere with the stirring blades 32.

カッタヘッド18には、また、後述する混合流体を切羽
面に向けて噴出すべく前記切羽面に向けて開口する液体
供給路36が形成されている。該液体供給路36は、回
転軸26に形成された供給路38およびバイブ40を経
てポンプ42に連通されている。
The cutter head 18 is also formed with a liquid supply path 36 that opens toward the face surface to eject a mixed fluid, which will be described later, toward the face surface. The liquid supply path 36 is communicated with a pump 42 via a supply path 38 formed in the rotating shaft 26 and a vibrator 40 .

掘進機10の後方たとえば地上には、第2図に示すよう
に、切羽地盤のロータリーカッタに対する掘削抵抗を軽
減し、すりに流動性と止水性を付与する添加剤の供給装
置44が設置されている。
Behind the excavator 10, for example on the ground, as shown in FIG. 2, there is installed an additive supply device 44 that reduces the excavation resistance of the face ground against the rotary cutter and imparts fluidity and water-stopping properties to the pickpocket. There is.

添加剤は、図示の例では起泡剤と、圧力室内のすりの空
隙率を減少させる細粒材と、起泡剤により生起された気
泡の消滅を防止する気泡強化剤として作用する増粘剤と
、清水との混合流体である。
In the illustrated example, the additives include a foaming agent, a fine granule material that reduces the porosity of the pickpocket in the pressure chamber, and a thickener that acts as a foam strengthening agent to prevent the disappearance of the foam created by the foaming agent. It is a mixed fluid of water and fresh water.

起泡剤は起泡剤タンク46から計量器48およびホッパ
50を経てミキサ52に所定量供給され、細粒材は細粒
材タンク54から計量器56およびホッパ50を経てミ
キサ52に所定量供給され、増粘剤は増粘剤タンク58
から計量器60およびホッパ50を経てミキサ52に所
定量供給される。また、清水は、バイブロ2から水量計
64およびホッパ50を経てミキサ52に所定量供給さ
れる。
A predetermined amount of the foaming agent is supplied from the foaming agent tank 46 to the mixer 52 via the scale 48 and the hopper 50, and a predetermined amount of the fine granule material is supplied from the fine granule material tank 54 to the mixer 52 via the scale 56 and the hopper 50. The thickener is stored in the thickener tank 58.
From there, a predetermined amount is supplied to the mixer 52 via a measuring device 60 and a hopper 50. Further, a predetermined amount of fresh water is supplied from the vibro 2 to the mixer 52 via the water meter 64 and the hopper 50.

ミキサ52に供給された混合流体はミキサ52において
攪拌混合され、これにより起泡剤の一部が起泡される。
The mixed fluid supplied to the mixer 52 is agitated and mixed in the mixer 52, whereby a portion of the foaming agent is foamed.

ミキサ52により攪拌混合された、気泡を含む混合流体
は、タンク66に供給され、さらに圧送ポンプ68によ
りパイプ70を′経て掘進機lO内に設けられた構内タ
ンク72に供給される。ミキサ52による起泡剤の起泡
量は、掘削する土質により異なるが、気泡を含む混合流
体の体積が1.5〜2.0倍、気泡を含む混合流体の比
重が0.7〜0.8程度である。前記比重が0.7より
小さいと、気泡がタンク66または坑内タンク72にお
いて液体から分離するので好ましくない。
The mixed fluid containing air bubbles stirred and mixed by the mixer 52 is supplied to a tank 66, and further supplied by a pressure pump 68 via a pipe 70' to an in-house tank 72 provided in the excavator IO. The amount of foaming of the foaming agent by the mixer 52 varies depending on the soil type to be excavated, but the volume of the mixed fluid containing bubbles is 1.5 to 2.0 times, and the specific gravity of the mixed fluid containing bubbles is 0.7 to 0. It is about 8. If the specific gravity is less than 0.7, air bubbles will separate from the liquid in the tank 66 or the underground tank 72, which is undesirable.

地上には、また第2図に示すように、コンプレッサ74
が設置されている。コンプレッサ74からの圧縮空気は
、空気パイプ76.78および流量調整弁80を経て圧
力室16に供給される。
Also on the ground, as shown in Figure 2, is a compressor 74.
is installed. Compressed air from compressor 74 is supplied to pressure chamber 16 via air pipes 76, 78 and flow regulating valve 80.

掘進機10は、また、圧力室16内のずりを圧力室16
から隔壁14の後方へ排出するためのすり排出装置82
を含む、該排出装置82は、圧力室16から隔壁後方へ
伸びるパイプ内にスクリューコンベアを配置した既知の
ものである。
The excavator 10 also removes the shear in the pressure chamber 16 from the pressure chamber 16.
A pickpocket discharge device 82 for discharging from the rear of the partition wall 14
The evacuation device 82 is a known one in which a screw conveyor is disposed within a pipe extending from the pressure chamber 16 to the rear of the partition wall.

前記起泡剤としては、たとえばポゾリス物産株式会社か
らホゾリス#505の商品名で販売されている界面活性
剤、蛋白質を加水分解した起泡剤を用いることができる
As the foaming agent, for example, a surfactant sold under the trade name Hozolith #505 by Pozolith Bussan Co., Ltd. or a foaming agent obtained by hydrolyzing protein can be used.

前記細粒材はすりの空隙率を減少させるものであればよ
く、このような細粒材としてはたとえば細砂、シルト、
粘土5石炭灰を用いることができる。
The fine grain material may be any material that reduces the porosity of the pickpocket, and examples of such fine grain materials include fine sand, silt,
Clay 5 coal ash can be used.

前記増粘剤は、水溶性であることが好ましい、このよう
な増粘剤としては、アラビアゴム、トガントゴム、アル
ギン酸塩コンスターチ等の植物性に属する天然の増粘剤
、ゼラチン、カゼイン等の動物性に属する天然の増粘剤
、可溶性デンプン。
The thickener is preferably water-soluble. Examples of such thickeners include natural thickeners belonging to vegetable sources such as gum arabic, gum togand, and cornstarch alginate, and animal-based thickeners such as gelatin and casein. A natural thickener belonging to the soluble starch.

カチオンデンプン等の加工および変性デンプン系の増粘
剤、カルボキシセルローズ(CMC)、  ヒドロキシ
エチルセルローズ(HEC)等の半天熱の増粘剤、ポリ
ビニルアルコール(pvc)、ポリビニルヒドリン(P
VP)等のビニル系に属する増粘剤、ポリエチレノキサ
イド(PES)、ボ1111ン#II市笛の増粘剤を使
用することができる。
Processed and modified starch thickeners such as cationic starch, semi-natural thickeners such as carboxycellulose (CMC) and hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVC), polyvinylhydrin (P
Thickeners belonging to the vinyl family such as VP), polyethylene oxide (PES), and thickeners such as Boron #II Ichibue can be used.

掘進時、トンネル掘進機lOは、混合流体をミキサ50
により攪拌混合して起泡剤の一部を起泡させ、気泡を含
むタンク66内の混合流体をポンプ70により坑内タン
ク72に供給する。このため、複雑かつ大型で、高価な
起泡装置を必要としない。
During excavation, the tunnel boring machine IO mixes the mixed fluid with the mixer 50.
A part of the foaming agent is foamed by stirring and mixing, and the mixed fluid in the tank 66 containing air bubbles is supplied to the underground tank 72 by the pump 70. Therefore, there is no need for a complicated, large, and expensive foaming device.

次いで、トンネル掘進機10は、坑内タンク72内の気
泡を含む混合流体をポンプ42により液体供給路36か
ら切羽面に吹き付けるとともに、コンプレッサ74によ
り圧縮空気を圧力室16へ供給しつつ、カッタヘッド1
8を回転機構16により回転させて掘進し、掘削したす
りを排出装置82により圧力室16から隔914の後方
へ排出する。
Next, the tunnel excavating machine 10 blows the mixed fluid containing air bubbles in the underground tank 72 onto the face surface from the liquid supply path 36 using the pump 42, and supplies compressed air to the pressure chamber 16 using the compressor 74.
8 is rotated by the rotating mechanism 16 to dig, and the excavated pickpockets are discharged from the pressure chamber 16 to the rear of the partition 914 by the discharge device 82.

これにより、気泡を含む混合流体が切羽面に吹き付けら
れるため、切羽面のカッタヘッド18に対する掘削抵抗
が軽減される。また、混合流体がカッタヘッド18の回
転にともなって攪拌羽根32により圧力室16内のすり
とともに攪拌されて気泡を生起するため、圧力室内のす
りに流動性および止水性が付与される。さらに、混合流
体が細粒材を含むため、圧力室16内のすりの空隙率が
細粒材により減少され、従って気泡が前記ずりに確実に
維持される。
As a result, the mixed fluid containing air bubbles is sprayed onto the face, so that the excavation resistance of the face against the cutter head 18 is reduced. Further, as the cutter head 18 rotates, the mixed fluid is stirred by the stirring blade 32 together with the pickpocket in the pressure chamber 16 to generate bubbles, so that fluidity and water-stopping properties are imparted to the pickpocket in the pressure chamber. Furthermore, since the mixed fluid contains fine-grained material, the porosity of the shear within the pressure chamber 16 is reduced by the fine-grained material, thus ensuring that air bubbles are maintained in said shear.

トンネル掘進機10による上記の掘進方法によれば、起
泡剤の一部を起泡させて気泡とともに圧力室に供給する
ため、圧力室内の起泡剤とすりとを短時間攪拌するだけ
で、切羽地盤のロータリーカッタに対する掘削抵抗を軽
減するのに充分な値にまたばずりに流動性および止水性
を付与するのに充分な値に起泡剤を起泡させることがで
き、従って作業能率が高く、廉価になる。また、混合流
体をミキサ66により攪拌することにより起泡剤の一部
を起泡させるため、複雑かつ大型で、高価な起泡装置を
必要としない、さらに、礫重量の割合いが大きい地山ま
たは均等係数が小さい地山であっても、気泡がずりから
分離せず、気泡をずりに維持させることができ、礫重量
の割合いが小さい地山または均等係数が大きい地山であ
れば、気泡がすりからより分離せず、気泡をずりにより
確実に維持させることができ、また細粒材用の特殊な供
給装置を用いる必要がない。さらに、添加剤の供給装置
44およびコンプレッサ74を地上に設置するため、小
口径のシールド式トンネル掘進機にも適用することがで
きる。
According to the above-described tunneling method using the tunnel excavator 10, in order to foam a part of the foaming agent and supply it to the pressure chamber together with air bubbles, the foaming agent and the pickpocket in the pressure chamber are simply stirred for a short time. The foaming agent can be foamed to a value sufficient to reduce the excavation resistance of the face ground against the rotary cutter, and to a value sufficient to provide fluidity and water-stopping properties to the cut, thus increasing work efficiency. It becomes expensive and cheap. In addition, since a part of the foaming agent is foamed by stirring the mixed fluid with the mixer 66, there is no need for a complicated, large, and expensive foaming device. Or, even if the rock has a small uniformity coefficient, if the air bubbles do not separate from the shear and can be maintained in the shear, and if the rock has a small gravel weight ratio or a rock that has a large uniformity coefficient, The bubbles are less likely to separate from the shear, the bubbles can be maintained reliably by the shear, and there is no need to use a special feeding device for fine granule material. Furthermore, since the additive supply device 44 and the compressor 74 are installed on the ground, the present invention can also be applied to small-diameter shield type tunnel boring machines.

(施工例) シールド本体の外径= 2680mm 掘削距離in当りの掘削土量=5.64m3土 買=砂
質土(均等係数=5〜8゜ 10%粒径=0.3mm) 混合流体の配合割合い(lバッチ当り)細粒材(ローカ
ルタレイ)=80Kg 水  = 50文 増粘剤(CMCTE−V15溶液)=5又起泡剤(ホゾ
リス#505)=0.3見−次起泡 発泡倍率=約1.7 1バッチ当り0.15mm3 一次起泡させた混合流体を掘削土量1m3当り0.2m
2の割合いで圧力室に注入した。また。
(Example of construction) External diameter of shield body = 2680 mm Amount of excavated soil per excavation distance in = 5.64 m3 soil Purchase = sandy soil (uniformity coefficient = 5 ~ 8 ° 10% particle size = 0.3 mm) Mixed fluid formulation Proportion (per 1 batch) Fine grain material (local sauce) = 80Kg Water = 50% Thickener (CMCTE-V15 solution) = 5-pronged foaming agent (Hozolith #505) = 0.3cm - Next foaming foaming Magnification = approx. 1.7 0.15 mm3 per batch 0.2 m3 per 1 m3 of excavated soil
was injected into the pressure chamber at a rate of 2:2. Also.

圧縮空気の圧力室への供給量は排出土砂の状況に応じて
流量調整弁80により調整した(注入圧力=圧力室の内
圧子〇 、1Kg/cm2)、この条件で毎分4.0c
m掘進することができた。
The amount of compressed air supplied to the pressure chamber was adjusted by the flow rate adjustment valve 80 according to the condition of the discharged sediment (injection pressure = internal indenter of the pressure chamber, 1Kg/cm2), and under these conditions, the flow rate was 4.0 c/min.
I was able to dig m.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いるトンネル掘進機の一実施
例を示す概略断面図、第2図は地上装置を示す図である
。 12:シールド本体、14:隔壁、 16:圧力室、    18二カフタヘツド、32:攪
拌羽根、   36:液体供給路。 52:ミキサ、    74:コンプレッサ。 代理人 弁理士 松 永 宣 行 第1図
FIG. 1 is a schematic cross-sectional view showing one embodiment of a tunnel boring machine used for implementing the present invention, and FIG. 2 is a diagram showing a ground device. 12: Shield main body, 14: Partition wall, 16: Pressure chamber, 18 Two cuff heads, 32: Stirring blade, 36: Liquid supply path. 52: Mixer, 74: Compressor. Agent Patent Attorney Nobuyuki Matsunaga Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)起泡剤と細粒材と水とを含む混合流体を攪拌して
前記起泡剤の一部を起泡させた後、気泡を含む前記混合
流体と圧縮空気とを隔壁前方の圧力室に供給し、前記圧
力室内に配置された攪拌手段により前記起泡剤を前記圧
力室内のずりとともに攪拌して起泡させ、その後気泡を
含むずりを隔壁後方に排出することを含む、シールド式
トンネル掘進方法。
(1) After stirring a mixed fluid containing a foaming agent, fine grain material, and water to foam a part of the foaming agent, the mixed fluid containing air bubbles and compressed air are pumped to the pressure in front of the partition wall. A shield type method comprising supplying the foaming agent to a chamber, stirring the foaming agent together with shear in the pressure chamber by a stirring means disposed in the pressure chamber to foam, and then discharging the shear containing air bubbles to the rear of the partition wall. Tunnel digging method.
(2)前記混合流体は増粘剤を含む、特許請求の範囲第
(1)項に記載のシールド式トンネル掘進方法。
(2) The shield type tunnel excavation method according to claim (1), wherein the mixed fluid contains a thickener.
(3)前記混合流体と前記圧縮空気とを別個の管路を経
て前記圧力室に供給する、特許請求の範囲第(1)項に
記載のシールド式トンネル掘進方法。
(3) The shield type tunnel excavation method according to claim (1), wherein the mixed fluid and the compressed air are supplied to the pressure chamber through separate pipe lines.
(4)前記混合流体と前記圧縮空気とを前記圧力室の近
傍で合流させて前記圧力室に供給する、特許請求の範囲
第(1)項に記載のシールド式トンネル掘進方法。
(4) The shield type tunnel excavation method according to claim (1), wherein the mixed fluid and the compressed air are combined near the pressure chamber and supplied to the pressure chamber.
JP4541086A 1986-03-04 1986-03-04 Shield type tunnel excavation method Pending JPS62206194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4541086A JPS62206194A (en) 1986-03-04 1986-03-04 Shield type tunnel excavation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4541086A JPS62206194A (en) 1986-03-04 1986-03-04 Shield type tunnel excavation method

Publications (1)

Publication Number Publication Date
JPS62206194A true JPS62206194A (en) 1987-09-10

Family

ID=12718484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4541086A Pending JPS62206194A (en) 1986-03-04 1986-03-04 Shield type tunnel excavation method

Country Status (1)

Country Link
JP (1) JPS62206194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202693A (en) * 1992-01-23 1993-08-10 Ohbayashi Corp Mechanical shield excavation method using foaming agent
JPH05311985A (en) * 1992-05-08 1993-11-22 Ohbayashi Corp Earth pressure shield driving method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103129A (en) * 1974-01-23 1975-08-14
JPS56156391A (en) * 1980-05-01 1981-12-03 Kajima Corp Foaming agent addition method and apparatus
JPS60188595A (en) * 1984-03-09 1985-09-26 株式会社熊谷組 Shield type tunnel drilling method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103129A (en) * 1974-01-23 1975-08-14
JPS56156391A (en) * 1980-05-01 1981-12-03 Kajima Corp Foaming agent addition method and apparatus
JPS60188595A (en) * 1984-03-09 1985-09-26 株式会社熊谷組 Shield type tunnel drilling method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202693A (en) * 1992-01-23 1993-08-10 Ohbayashi Corp Mechanical shield excavation method using foaming agent
JPH05311985A (en) * 1992-05-08 1993-11-22 Ohbayashi Corp Earth pressure shield driving method

Similar Documents

Publication Publication Date Title
JPH05202693A (en) Mechanical shield excavation method using foaming agent
US4984933A (en) Grouting method and apparatus
JPS62206194A (en) Shield type tunnel excavation method
JPS6122114B2 (en)
JP2006336270A (en) Tunnel boring method and shield machine
CN112031793A (en) Water-rich sand layer shield tunneling muck improvement construction test method
JPH0885940A (en) Mixing method with stirring
JP4555911B2 (en) Low noise, low vibration sediment pump additive and sediment pump pumping method
JPS6183798A (en) Shield type tunnel drilling method
JPS61137995A (en) Shield type tunnel excavation method
JPS6044423A (en) Transporting method of soil
JP3124368B2 (en) Earth pressure shield excavation method
JPH10511155A (en) Metal surface lubricant and lubrication method for earth pressure tunnel excavator
JPS6157797A (en) Shield type tunnel drilling machine
JPS61137994A (en) Soil pressure shield excavation method
JP2003003791A (en) Shield machine
JPS5939039B2 (en) Shield excavation method and device
JP3150298B2 (en) Tunnel excavation method and shield machine
JPH04343997A (en) Shield excavating method
JPH09203292A (en) Shielding method in soil improvement part
JP2686514B2 (en) Non-excavation propulsion method of sludge injection type
JPH0747088B2 (en) Anti-foaming / de-gelling agent for drilling
JPH07279581A (en) Soil pressure group mud adding type shield execution
JP2022013821A (en) Drilling method
JPH10183602A (en) Air bubble generating method for cement slurry for soil improvement and its equipment