JPS62205300A - Production of porous steel - Google Patents

Production of porous steel

Info

Publication number
JPS62205300A
JPS62205300A JP4725486A JP4725486A JPS62205300A JP S62205300 A JPS62205300 A JP S62205300A JP 4725486 A JP4725486 A JP 4725486A JP 4725486 A JP4725486 A JP 4725486A JP S62205300 A JPS62205300 A JP S62205300A
Authority
JP
Japan
Prior art keywords
steel
anode
phase contg
ferrite
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4725486A
Other languages
Japanese (ja)
Inventor
Yoshitaka Iwabuchi
岩渕 義孝
Takashi Hatano
隆司 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP4725486A priority Critical patent/JPS62205300A/en
Publication of JPS62205300A publication Critical patent/JPS62205300A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a porous steel which has ultrafine pores and excels in mechanical properties, etc., by using a steel in which a ferrite phase contg. Cr at a high ratio as an anode and dissolving and annihilating the phase contg. Cr at a low ratio with constant potential in an electrolyte. CONSTITUTION:The iron and steel products having >=2 phases of the structure in which the ferrite phase contg. Cr at a high ratio is crystallized are obtd. by adjusting an austenite forming element and ferrite forming element in a high Cr-Ni steel. The above-mentioned iron and steel products are used as the anode and the phase contg. Cr at a low ratio is dissolved and annihilated with the constant potential in the electrolyte. Hydrochloric acid, sulfuric acid and nitric acid solns. or the soln. mixtures composed thereof are used for the above-mentioned electrolyte. The adequate electrolyzing potential is determined according to the content of Cr. The ferrite phase contg. Cr at a high ratio is thereby made to remain and the high-strength and high-toughness porous steel which has the ultrafine pores sized about several 10mum and excels in the oxidation resistance, heat resistance and electrical and thermal conductiveness is thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐酸性及び強度を有するフェライト系ステンレ
ス鋼の特徴を備え、数10μmnサイズの超微細孔を有
する多孔質鋼の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing porous steel having the characteristics of ferritic stainless steel having acid resistance and strength, and having ultrafine pores of several tens of μm in size.

[従来の技術 問題点] 従来、超微細な多孔質物質は有機化合物または無機化合
物を使用して製造されているため高温て部用することが
困難であったり、また、熱伝導性、電気伝導性が悪く、
このような特長を利用する分野での使用は不可とされて
きた。
[Conventional technology problems] Conventionally, ultrafine porous materials have been manufactured using organic or inorganic compounds, so it has been difficult to use them at high temperatures, and they have poor thermal conductivity and electrical conductivity. bad sex,
It has been considered impossible to use it in fields that utilize such features.

また、金属材料による多孔質物質は発泡金属などのよう
に、気孔サイズが数1にも及ぶものでLP)す、アルミ
ニウム、銅などの低融点金属を主体とするものてあった
In addition, porous materials made of metal materials, such as metal foams, have pore sizes as large as several 1, and are mainly made of low melting point metals such as aluminum and copper.

係る点から、本発明方法の目的は、従来得ることができ
なかった高強度及び高延性をもち且つ耐熱性、電気伝導
性及び熱伝導性に浸れた多孔質鋼の製造方法にある。
From this point of view, the purpose of the method of the present invention is to provide a method for producing porous steel that has high strength and high ductility that could not be obtained conventionally, and is also highly heat resistant, electrically conductive, and thermally conductive.

し問題点を解決するための手段〕 従って、本発明はCr含有量の多いフェライI・(lが
晶出した二相以−Lの組織を有する鉄鋼材F(をアノー
ドレ1.て電解液中でCr含含有−少ない相を定電位溶
解消失させ、Cr含有旦の多いフエラ・イ)〜相を残存
させることを特徴とする多孔質鋼の製造方法を提供する
にある。
[Means for Solving the Problems] Therefore, the present invention provides a method for using a steel material F (having a two-phase structure in which ferrite I/(l) crystallized with a high Cr content in an electrolytic solution using an anode drop 1. An object of the present invention is to provide a method for producing porous steel, which is characterized in that a phase with a low Cr content is eliminated by constant potential dissolution, and a phase with a high Cr content remains.

[作 用] 本発明は鉄鋼材料において数10 /4 +nサイスの
気孔を有する多孔質鋼の製造方法に関ゴるものであり、
その原理3以下に説明ずろ9 高クロム−ニッケル鋼においC、オーステナイト生成元
素及びフェライト生成元素を調整することにより、語調
の組成はオーステナイト〜・相、マルテンサイト−相、
フェライト−相またはこれらの二相または三相が混在し
たものが得られる。なお、本発明の製造方法の対象とな
る高クロム−ニッケル鋼はフェライト相にオーステナイ
ト相またはフルテンサイ1〜相のいずれかまたは両方を
含む二相組織または3相組織を呈するものである。この
とき、フェライト相はオーステナイト相またはマルテン
サイト相に比較してCrの分配が大きく、C「含有Iが
相対的に高くなる。本発明製造方法は上述の如く、相間
におけるCr含有量の差によるアノード溶解挙動の変化
を利用したものである。
[Function] The present invention relates to a method for producing porous steel having pores of several 10/4 + n size in steel materials,
The principle 3 is explained below.9 By adjusting C, austenite-forming elements and ferrite-forming elements in high chromium-nickel steel, the tone composition can be changed to austenite phase, martensite phase, martensite phase,
A ferrite phase or a mixture of these two or three phases can be obtained. The high chromium-nickel steel to which the manufacturing method of the present invention is applied exhibits a two-phase or three-phase structure containing a ferrite phase and either or both of an austenite phase and a full tensile strength 1 to 1 phase. At this time, the ferrite phase has a larger distribution of Cr than the austenite phase or martensite phase, and the C content is relatively high. This method takes advantage of changes in anode dissolution behavior.

第1図はCr含有量の異なるクロム鋼(Fe−Crフェ
ライト系合金)のアノード分極曲線を示すもので、Cr
含有量の増加に伴って不動悪化電位(El+)が卑な方
向にずれるから、Cr含有量の少ない鋼がアノードビー
ク電流にある電位では、Cr−含有量の高い鋼はすでに
不動態化されているためアノード溶解は抑制される。
Figure 1 shows the anode polarization curves of chromium steel (Fe-Cr ferritic alloy) with different Cr contents.
Since the immobility deterioration potential (El+) shifts towards the base with increasing content, at the potential where the steel with low Cr content is at the anodic peak current, the steel with high Cr- content is already passivated. Therefore, anodic dissolution is suppressed.

従って、不動態化?生ずる不動態化−2位(Eb)によ
り溶解を行なう(定電位溶解)と、Cr含有1の多い相
のみが残存して多孔質鋼を製造することができる。ちな
みに、フェライト相と、オーステナイ1−相及び/また
はマルテンサイト相とからなる高クロム鋼に上記の定電
位溶解を行なうとクロム含有量の多いフェライト相が残
存して他の相は溶解してしまうことにより多孔質鋼を製
造することができる。
Therefore, passivation? When the resulting passivation-2 position (Eb) is used for melting (potential-potential melting), only the Cr-rich 1-rich phase remains, making it possible to produce porous steel. By the way, if the above constant potential melting is performed on high chromium steel consisting of a ferrite phase and an austenite phase and/or a martensitic phase, the ferrite phase with a high chromium content will remain and the other phases will dissolve. Porous steel can be produced by this process.

定電位溶解を行なうための装置は任意の照合電極(例え
ば市販の飽和せ采電極)を使用するポテンシオスタット
であり、作用電極すなわちアノードにフェライト相と他
の相からなる鉄鋼材料を用いる。
The device for performing potentiostatic dissolution is a potentiostat using any reference electrode (eg, a commercially available saturated glaze electrode), and the working electrode or anode is a steel material consisting of a ferrite phase and other phases.

定電位溶解に使用することができる電解液は塩酸、硫酸
、硝酸系溶液またはそれらの混合液であり、定電位溶解
を行なう鋼によって電解液の種類と濃度を選択すること
ができる。
The electrolyte that can be used for constant potential dissolution is a hydrochloric acid, sulfuric acid, nitric acid solution, or a mixture thereof, and the type and concentration of the electrolyte can be selected depending on the steel to be subjected to constant potential dissolution.

定電位溶解を行なうための電解条件のなかで重要なもの
は設定電位であり、CrJlの高いデルタフェライト相
は不動態化して溶出せず、他のマトリックスのみが溶解
するような電位を選ばなければならない。そのためには
用いる鉄鋼材料で予めアノード分極曲線を測定したけれ
ばならない。第2図に実施例で使用する下記の第1表に
示す化学組成を有する高クロム−ニラゲル鋼のアノード
分極曲線を示す。責な電位側に現れるアノードビーク(
2次アノードビーク)はCr含有量の少ない相が不動態
化しにくいため引きずられて生ずるものであり、この電
位においては、デルタフェライト相は既に不動態化して
いる。従って、この2次アノードピークを示す電位が設
定電位として最適である。
Among the electrolytic conditions for potentiostatic dissolution, the important thing is the set potential, and the potential must be selected so that the delta ferrite phase with high CrJl becomes passivated and cannot be eluted, and only other matrices are dissolved. It won't happen. For this purpose, it is necessary to measure the anode polarization curve of the steel material used in advance. FIG. 2 shows an anode polarization curve of high chromium-Nyragel steel having the chemical composition shown in Table 1 below, which is used in the examples. Anode beak (
The secondary anode beak) is caused by the phase having a low Cr content being difficult to passivate, and at this potential, the delta ferrite phase has already been passivated. Therefore, the potential exhibiting this secondary anode peak is optimal as the set potential.

[実  施  例コ 実」1泗− 以下の第1表に示す化学組成を有し、マルテンサイト+
フェライト+オーステナイト三相からなる高クロム−ニ
ラゲル鋼を用いて本発明方法により多孔質鋼を製造した
[Example Example 1] - Having the chemical composition shown in Table 1 below, martensite +
A porous steel was manufactured by the method of the present invention using a high chromium-Nylagel steel consisting of three phases of ferrite and austenite.

コ)二L’、<    3’Ji  −(’)  ”’
     (ffi、ffE%)まず、前述の如く、第
1表の組成を有する高クロム−ニッケル鋼の飽和甘木電
極に対するアノード分極曲線を1規定H、S O、電解
溶液中で求め、第2図を得な。次いで、ポテンシオスタ
ットを使用し、1規定のH2SO,電解溶液中で第2図
より0ポル(へを設定電位として約24時間にわたり定
電位溶解を行ない多孔質鋼を得た。
J) 2L', <3'Ji-(')'''
(ffi, ffE%) First, as mentioned above, the anode polarization curve for a saturated Amagi electrode of high chromium-nickel steel having the composition shown in Table 1 was determined in 1N H, SO, electrolytic solution, and Fig. Good value. Next, using a potentiostat, constant potential melting was carried out for about 24 hours in an electrolytic solution of 1N H2SO with a set potential of 0 pol (as shown in FIG. 2) to obtain porous steel.

本発明方法により処理された高りロl\−ニッケル鋼は
デルタフェライト相だけが残存し、オーステナイ1〜並
びにマルテンサイト相が溶解消失した多孔質鋼となる。
The high-strength nickel steel treated by the method of the present invention becomes a porous steel in which only the delta ferrite phase remains, and the austenite 1 to martensite phases have dissolved and disappeared.

[発明の効果] 本発明方法により従来は製造できなかった多孔質鋼が製
造可f1ヒになった。
[Effects of the Invention] By the method of the present invention, porous steel, which could not be manufactured in the past, can now be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はF e −Cr合金のアノード5+極曲線を示
す図であり、第2図は実施例で使用した高クロム−ニラ
ゲル鋼のアノード分極曲線を示す図である。 特許出願人 株式会社日本製鋼所 第2図 ↑   電但Eh(V) Vじデ警立
FIG. 1 is a diagram showing the anode 5+ polar curve of the Fe--Cr alloy, and FIG. 2 is a diagram showing the anode polarization curve of the high chromium-Nyragel steel used in the examples. Patent applicant Japan Steel Works, Ltd. Figure 2 ↑ Dentan Eh (V) Vjide Keitatsu

Claims (1)

【特許請求の範囲】[Claims]  Cr含有量の多いフェライト相が晶出した二相以上の
組織を有する鉄鋼材料をアノードとして電解液中でCr
含有量の少ない相を定電位溶解消失させ、Cr含有量の
多いフェライト相を残存させることを特徴とする多孔質
鋼の製造方法。
Using a steel material with a structure of two or more phases in which a ferrite phase with a high Cr content is crystallized as an anode, Cr is applied in an electrolyte.
A method for producing porous steel, characterized in that a phase with a low content is eliminated by constant potential dissolution, and a ferrite phase with a high Cr content remains.
JP4725486A 1986-03-06 1986-03-06 Production of porous steel Pending JPS62205300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4725486A JPS62205300A (en) 1986-03-06 1986-03-06 Production of porous steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4725486A JPS62205300A (en) 1986-03-06 1986-03-06 Production of porous steel

Publications (1)

Publication Number Publication Date
JPS62205300A true JPS62205300A (en) 1987-09-09

Family

ID=12770133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4725486A Pending JPS62205300A (en) 1986-03-06 1986-03-06 Production of porous steel

Country Status (1)

Country Link
JP (1) JPS62205300A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013300A1 (en) * 2000-08-05 2002-02-14 Ineos Chlor Limited Stainless steel substrate treatment
GB2385333A (en) * 2002-02-13 2003-08-20 Ineos Chlor Ltd A Treatment for Stainless Steel Plates Used in Electrochemical Cell Assemblies

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013300A1 (en) * 2000-08-05 2002-02-14 Ineos Chlor Limited Stainless steel substrate treatment
AU2001272664B2 (en) * 2000-08-05 2006-02-16 Ineos Enterprises Limited Stainless steel substrate treatment
GB2385333A (en) * 2002-02-13 2003-08-20 Ineos Chlor Ltd A Treatment for Stainless Steel Plates Used in Electrochemical Cell Assemblies
EP1336670A3 (en) * 2002-02-13 2003-08-27 Ineos Chlor Limited Plate treatment
GB2385333B (en) * 2002-02-13 2005-09-28 Ineos Chlor Ltd Plate treatment

Similar Documents

Publication Publication Date Title
Tomashov et al. Effect of supplementary alloying elements on pitting corrosion susceptibility of 18Cr-14Ni stainless steel
Streicher Development of pitting resistant Fe-Cr-Mo alloys
Miyamoto et al. Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing
Söderberg et al. Corrosion behaviour of Fe–Mn–Si based shape memory steels trained by cold rolling
Della Rovere et al. Corrosion behavior of shape memory stainless steel in acid media
Myers et al. Anodic polarization behavior of nickel-chromium alloys in sulfuric acid solutions
Osozawa et al. Effects of Alloying Elements on the Pitting Corrosion of Stainless Steels
Lizlovs et al. Anodic polarization behavior of 25% chromium ferritic stainless steels
Fushimi et al. Microelectrochemistry of dual-phase steel corroding in 0.1 M sulfuric acid
García-García et al. Effect of cavitation on the corrosion behaviour of welded and non-welded duplex stainless steel in aqueous LiBr solutions
Itzhak et al. The effect of Cu addition on the corrosion behaviour of sintered stainless steel in H2SO4 environment
Kina et al. Influence of heat treatments on the intergranular corrosion resistance of the AISI 347 cast and weld metal for high temperature services
Maji et al. The corrosion behaviour of Fe–15Mn–7Si–9Cr–5Ni shape memory alloy
JPS62205300A (en) Production of porous steel
Nelson et al. Characterization of the weld structure in a duplex stainless steel using color metallography
Muthupandi et al. Corrosion behaviour of duplex stainless steel weld metals with nitrogen additions
CN105714208B (en) A kind of anti-corrosion high chromium content ferrite stainless steel and preparation method and application
Li et al. Improved corrosion resistance of new Fe-based amorphous alloys
Moisio et al. The influence of tempering on the anodic polarization of a precipitation hardening low-C martensitic stainless steel
Jang et al. Effects of Crystallization on the Corrosion and Passivity of Amorphous Pd-Fe-Co-Si-B Alloys
Romanovskaia et al. Formation and long-time exposure aging of oxides on Ni-Cr and Ni-Cr-X (X= Mo, W) alloys in acidic chloride solutions: Ramifications towards corrosion resistance
Číhal et al. The potential polarization method for the evaluation of martensite-austenite stainless steels
Daniel et al. Evaluation of corrosion behavior of an amorphous Ni60Nb40–alloy with its crystalline form in stimulated PEMFC conditions
Scharfstein Corrosion Resistance of Alloy 20 Cb in Sulfuric Acid
Sharma et al. Effect of Cr addition on pitting behaviour of iron aluminide intermetallic