JPS6220526B2 - - Google Patents
Info
- Publication number
- JPS6220526B2 JPS6220526B2 JP53074021A JP7402178A JPS6220526B2 JP S6220526 B2 JPS6220526 B2 JP S6220526B2 JP 53074021 A JP53074021 A JP 53074021A JP 7402178 A JP7402178 A JP 7402178A JP S6220526 B2 JPS6220526 B2 JP S6220526B2
- Authority
- JP
- Japan
- Prior art keywords
- scanned
- image
- plane
- optical system
- deflector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 claims description 50
- 238000003384 imaging method Methods 0.000 claims description 33
- 201000009310 astigmatism Diseases 0.000 claims description 3
- 230000004075 alteration Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 17
- 210000001747 pupil Anatomy 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 2
- 108091008695 photoreceptors Proteins 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
- G02B27/0031—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for scanning purposes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Optical Systems Of Projection Type Copiers (AREA)
- Facsimile Scanning Arrangements (AREA)
- Exposure Or Original Feeding In Electrophotography (AREA)
- Lenses (AREA)
Description
本発明は高速に回転又は回転振動する偏向器を
使用した走査装置、特にスリツト状に被走査面を
走査するのに適した走査装置に関するものであ
る。
従来、回転若しくは回転振動する偏向器を用い
て平坦な被走査面を走査する場合、偏向器の回転
に伴つて偏向器と被走査面の間の光路長が変化す
る難点がある。従つて斯様な走査系を組み込んだ
装置に於いては、上記光路長の変化を何等かの手
段で補正する必要がある。第1図は上記走査装置
を組み込んだ複写光学系の一例を示す概略図で、
被走査面1は回転反射鏡3の回転軸2を中心とし
た円筒面を形成している。従つて、被走査面1か
らの光束が、回転反射鏡3で偏向され、結像レン
ズ系4を介して記録ドラム5上に到達する際、回
転反射鏡3の回転角に拘わりなく、常に被走査面
と記録ドラム5の間の光路長は一定に保たれる。
しかし、この様に被走査面を円筒面とすること
は、大きな円筒面を製造する事が困難であるだけ
でなく平面状の被走査物を走査する事ができな
い。
本発明は、上記欠点の改良を目的とするもの
で、回転若しくは回転振動する偏向器で被走査面
を走査する際、被走査面が平坦な面であつても光
路長の補正が成された走査装置を提供するもので
ある。
本発明の更なる目的は、上記構成の走査装置に
於いて、被走査面上で等速の走査が得られる様な
走査装置を提供する事にある。
本発明に係る走査装置に於いては、回転若しく
は回転振動する偏向器と平坦な被走査面の間に回
転非対称な結像光学系を設ける事により上記目的
を達成したものである。
上記回転非対称結像光学系は、平坦な被走査面
の像を形成する際偏向器の偏向面の法線が偏向器
の回転に伴つて経時的に構成する平面内(以後本
明細書ではこの平面を偏向走査平面と呼ぶ)に於
いては、この像の位置が恰かも偏向器の偏向面か
ら見てほぼ等しい距離にあるかの如く像を形成す
るものである。換言すれば、上記偏向走査平面内
に於いて、非対称結像光学系により形成される被
走査面の像の各点で垂線を立てれば、被走査面の
像と偏向面の間の上記各々の垂線に沿つた距離は
ほぼ等しくなる。
本発明に係る走査装置に於いては、上記偏向走
査平面内で、上記回転非対称光学系は三次の収差
領域で、
=0,P=1/g′
を満たす。ここでは非点収差、Pはペツツヴア
ール和、g′は上記偏向走査平面内に於いて、上記
被走査平面の像の中心を通り且つ上記被走査平面
に垂直な線内で、偏向器の偏向面から上記被走査
平面の像までの距離を表わすもので、回転非対称
結像光学系による被走査平面の像が虚像であれば
g′は負の量を、又実像であればg′は正の量を表わ
す。
更に本発明の走査装置に於いては、偏向器の偏
向面を等角速度で回転させた時被走査平面を等速
度で走査する為に、回転非対称結像光学系の三次
の歪曲収差Vの値を、上記偏向走査平面内に於い
て−2/3としている。
本発明に係る走査装置は、上記被走査面上を上
記偏向走査平面に或る一定のスリツト巾でスリツ
ト走査する走査方法、又はスリツトの長手方向、
即ち被走査面上では偏向走査平面と直交する方向
に対してはビームを高速度で走査し、この状態で
偏向走査平面内に於いてもビームを走査する方法
による所謂被走査平面の二次元的な走査方法があ
る。又、被走査面の走査は、被走査面の情報の読
取り、又は被走査面に情報の書込み等の走査が可
能である。
従つて、本発明の走査装置では、平坦な被走査
面を高速で歪みなく走査することを可能とするも
のである。以下、図面を併用し、本発明を詳述す
る。
第2図は本発明に係る走査装置の原理を説明す
る為の走査装置の一例を使用した記録装置の一実
施例を示す図である。第2図に於いて、被走査平
面11と回転軸14を中心として回転する回転反
射ミラー15の間に配された回転非対称結像光学
系13により、被走査平面11の虚像12が形成
される。この回転非対称結像光学系13は、回転
反射ミラー15の面法線が回転に伴つて経時的に
形成する面(第2図では、この面は紙面に平行な
面で、上記偏向走査平面と同じ)内に於いて、被
走査平面の像12は円筒面状に結像される。上記
偏向走査平面内に於いて、円筒状の被走査平面の
像12の中心を通り、且つ被走査平面11に垂直
な線18は、この場合回転反射ミラー15の回転
軸14を通過する。この線18が回転反射ミラー
の偏向面と交わる位置(第2図に於いては実質的
には回転軸14と見做し得る)から見て、上記像
12はほぼ等しい距離にある如く、円筒状に結像
される。故に被走査面11の点P1から出た光束は
回転非対称光学系13に入射し、恰かもその共役
像12の点P2から光束が出射したかの様に回転反
射ミラー15に入射する。
回転反射ミラー15は前記像点P2の鏡像を常に
一定位置P3に形成する様に回転する。そして点P3
に形成される鏡像は結像レンズ系16により記録
ドラム17上の一定位置P4に結像される。以上の
様に回転反射ミラー15の回転に伴つて被走査面
11上の被走査点P1は、上記偏向走査平面内(紙
面内)に於いて、被走査面11上を移動し、該P1
点は回転非対称結像光学系13、回転反射ミラー
15及び結像レンズ系16を介して常に記録ドラ
ム17上の点P4に結像される。従つて回転反射ミ
ラー15の角速度と同期して記録ドラム17を回
転すれば、被走査面11上の情報は記録ドラム1
7上に記録される。
第2図に示す様に、本発明に於いては平坦な被
走査面11を第1図で示した円筒状の被走査面1
と等価な面にする為に回転非対称結像光学系13
で被走査面11の像12を形成しているもので、
平坦な被走査面の走査を可能としている。
上記回転非対称結像光学系は、偏向走査平面内
に於いて、被走査面11の像を上述した如く円筒
状の像12に形成する為、三次の収差領域内に於
いて、三次の非点収差係数及びベツツヴアール
和Pは
=O,P=1/g′ ……(i)
を満足する。但しg′は上述した線18(実際は非
対称回転結像光学系の光軸と一致)が回転反射ミ
ラーと交わる点から上記線18に沿つて像12ま
での距離を示すもので、結像光学系13による被
走査面11の像12が第2図に示す様に虚像の場
合はg′の物理量は負、これに対して結像光学系1
3による被走査面11の像が実像の場合はg′の物
理量は正となる。
又、回転反射ミラー15を等速度で回転させた
時、被走査面上を等速度で走査させる為に、上記
偏向走査平面内に於いて回転非対称結像光学系1
3の歪曲収差係数Vの値を
V=−2/3 ……(ii)
とするものである。
但し上記収差係数を定める条件として、回転非
対称結像光学系13の光軸18を含む偏向走査平
面内に於いて、回転反射ミラー15の中心位置
(即ち射出瞳位置)で光軸からの高さが1.0となる
様に正規化された射出瞳半径を用いることにす
る。
次に、回転非対称結像光学系が満たす、上記条
件(i),(ii)について述べる。第3図はこの為の説明
図で、まず、等速性の条件について述べる。第2
図の回転反射ミラー15は回転非対称結像光学系
13の射出瞳の位置にあり等角速で回転してい
る。半径g(第3図に於いては、座標系は右手系
とし、この場合gは定義より正量であるが、第2
図に示す負量である。)の円孤上にある像面の微
小部△lは、回転反射ミラーの微小回転角を△θ
とすると、
△l=g′・△θ ……(1)
である。いま回転反射ミラーは等角速度で回動す
るので
△θ=ωdt ……(2)
ω:ミラーの角速度(一定)
△l=g′ωdt ……(3)
である。
また被走査面上での微小部分を△Y1とすると、
被走査面上を等速で走査するためには
△l=g′ωdt=β△Y1 ……(4)
(β:倍率)
でなければならない。
(4)式から ωdt=β/g′△Y1
両辺を積分して ωt=β/g′Y1+C1 ……(5)
(C1:積分定数)
を得る。
Y1=0のとき t=0 であるので C1=0
ωt=β/g′Y1 ……(6)
である。
第3図からωt=θで、湾曲した像面の理想像
高を光軸からの垂線と円弧の交点までとし、これ
をYc′とすると
θ=sin-1(Y′c/g′) ……(7)
となる。
(7)式を(6)式に代入して
sin-1(Yc′/g′)=β/g′Y1
Yc′=g′sin(β/g′Y1) ……(8)
すなわち被走査面上の走査速度を一定にするた
めには理想像高Yc′は(8)式で定めなければならな
い。
(8)式を3次の項まで展開すると
Yc′=g′〔(βY1/g′)−1/6(βY1/g
′)3〕……(9)
また、収差論(松居著:応用物理第28巻第12号5
次収差論の実用化)によると、
但し N′;像空間の屈折率
α;物体近軸光線の入射換算傾角
α′;物体近軸光線の出射換算傾角
′;瞳近軸光線の出射換算傾角
であるから、(10)式を(9)式に代入して整理すると
Yc′=−1/2α′
〔−2(αY1)+1/3(α′/N′)2(αY1)3
〕……(11)
(11)式の右辺第2項の(α1Y1)3はアパーチヤーに
関係なく画角の項であるから上記収差論より、像
面が湾曲している三次の歪曲収差係数Vcは
Vc=1/3(α′/N′)2 ……(12)
になる。
Vcは像面が湾曲しているときの3次の歪曲収
差係数が必要とすべき条件であるが、これを光学
系固有の歪曲収差係数Vに変換する。
第5図から X′c〓1/2D3Y′c2+1/8D3 4Y′
c4……(13)
(13)式におけるD3,D4は像面の湾曲係数であ
る。いま像面は半径g′の円弧上にあるから
D3=D4=−1/g′である収差論によると
Vc=V+α′/α′ D3/N′ ……(14)
であるから V=Vc−α′/α′ D3/N′
これにD3=−1/g′と(12)式を代入すると
V=−2/3(α′/N′)2 ……(15)
となる。′は射出瞳基準で正規化を考えている
から′=−1、またN′は像空間の屈折率である
からN′=1である。故に回転非対称結像光学系
の3次の歪曲収差Vが−2/3であれば等速走査が可
能である。
次に上記条件(i)に関して述べる。像面が湾曲し
ているときの非点収差係数cと球欠像面湾曲係
数IVcは、光学系固有の収差係数とIVで表わす
と、上記収差論から、それぞれ
c=
IVc=IV+D3/N′ ……(16)
である。したがつて像面が半径gの円弧上にある
ためには
c==0
IVc=0 ……(17)
でなければならない。
(17)式の下の式から
IVc=IV+D3/N′=0
IV++PとD3=−1/g′を代入すると
+P−1/N′g′=0
(17)式から=0であるからIVc=0であるた
めには
P=1/N′g′ ……(18)
でなければならない。いまN′=1であるから、
結局Pは
P=1/g′になる。
第5図は第2図の回転非対称な光学系13の実
施例である。回転非対称結像光学系23は第5図
の紙面に垂直な母線をもつ3枚のシリンドリカル
レンズからなつている。回転非対称光学系23
は、被走査平面(□170×□170)の共役像を円筒
面22上につくる。そしてその円筒面の中心軸と
偏向ミラー24の回転中心軸を一致させているの
で、被走査面21上の点から出た光束は回転非対
称光学系23に入射し、その共役像点すなわち円
筒面22上の点から光束が出射したかのように偏
向ミラー24に入射する。第7図はそのときの光
路図である。
次に回転非対称光学系23の構成を以下に示
す。上記したように光学系23は紙面に垂直な面
内はパワーをもたないシリンドリカルレンズから
なつているので紙面に平行な面内の曲率rと、
(19)式に示される非球面係数B,Cと面間隔D
と屈折率Nを示す。
但し、非球面の形状は第7図に示す如く、非球
面の頂点に於ける近軸曲率半径をr、光軸上に光
の進行方向に一致してX軸、それと垂直方向で非
球面の頂点を通るY軸を取つたときの、Y座標が
hに於ける偏量がxである。
The present invention relates to a scanning device using a deflector that rotates or vibrates at high speed, and particularly to a scanning device suitable for scanning a surface to be scanned in the form of a slit. Conventionally, when scanning a flat surface to be scanned using a rotating or rotationally vibrating deflector, there is a problem in that the optical path length between the deflector and the surface to be scanned changes as the deflector rotates. Therefore, in an apparatus incorporating such a scanning system, it is necessary to correct the change in the optical path length by some means. FIG. 1 is a schematic diagram showing an example of a copying optical system incorporating the above scanning device.
The surface to be scanned 1 forms a cylindrical surface centered on the rotation axis 2 of the rotary reflecting mirror 3. Therefore, when the light beam from the surface to be scanned 1 is deflected by the rotating reflector 3 and reaches the recording drum 5 via the imaging lens system 4, it is always reflected regardless of the rotation angle of the rotating reflector 3. The optical path length between the scanning surface and the recording drum 5 is kept constant.
However, using a cylindrical surface to be scanned in this way not only makes it difficult to manufacture a large cylindrical surface, but also makes it impossible to scan a flat object. The present invention aims to improve the above-mentioned drawbacks, and it is possible to correct the optical path length even when the surface to be scanned is flat when the surface to be scanned is scanned with a rotating or rotationally vibrating deflector. A scanning device is provided. A further object of the present invention is to provide a scanning device having the above-mentioned structure, which can scan a surface to be scanned at a constant speed. In the scanning device according to the present invention, the above object is achieved by providing a rotationally asymmetrical imaging optical system between a rotating or rotationally vibrating deflector and a flat surface to be scanned. In the rotationally asymmetric imaging optical system, when forming an image of a flat scanned surface, the normal line of the deflection surface of the deflector is within a plane that is formed over time as the deflector rotates. In the plane (referred to as a deflection scanning plane), an image is formed as if the position of the image were at approximately the same distance from the deflection plane of the deflector. In other words, if a perpendicular line is drawn at each point of the image of the scanned surface formed by the asymmetric imaging optical system in the deflection scanning plane, each of the above points between the image of the scanned surface and the deflection surface will be The distances along the perpendicular lines are approximately equal. In the scanning device according to the present invention, within the deflection scanning plane, the rotationally asymmetric optical system satisfies the following in a third-order aberration region: =0, P=1/g'. Here, P is the astigmatism, P is the Petzvaar sum, and g' is the deflection surface of the deflector within the deflection scanning plane, within a line passing through the center of the image of the scanned plane and perpendicular to the scanned plane. It represents the distance from
g' represents a negative quantity, and if it is a real image, g' represents a positive quantity. Furthermore, in the scanning device of the present invention, in order to scan the scanned plane at a constant speed when the deflection surface of the deflector is rotated at a constant angular speed, the value of the third-order distortion aberration V of the rotationally asymmetric imaging optical system is is set to -2/3 in the deflection scanning plane. The scanning device according to the present invention includes a scanning method in which a slit scans the surface to be scanned on the deflection scanning plane with a certain slit width, or a scanning method in which a slit is scanned in the longitudinal direction of the slit,
In other words, the beam is scanned at high speed on the scanned surface in a direction perpendicular to the deflection scanning plane, and in this state, the beam is also scanned within the deflection scanning plane. There are several scanning methods. Further, scanning of the surface to be scanned can be performed by reading information on the surface to be scanned or writing information on the surface to be scanned. Therefore, the scanning device of the present invention makes it possible to scan a flat surface to be scanned at high speed and without distortion. Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 2 is a diagram showing an embodiment of a recording device using an example of a scanning device for explaining the principle of the scanning device according to the present invention. In FIG. 2, a virtual image 12 of the scanned plane 11 is formed by a rotationally asymmetric imaging optical system 13 disposed between the scanned plane 11 and a rotating reflection mirror 15 rotating about a rotation axis 14. . This rotationally asymmetric imaging optical system 13 has a surface that is formed over time by the surface normal of the rotational reflection mirror 15 as it rotates (in FIG. In the same case), the image 12 of the scanned plane is formed into a cylindrical surface. In the deflection scanning plane, a line 18 passing through the center of the image 12 of the cylindrical scanned plane and perpendicular to the scanned plane 11 passes through the rotation axis 14 of the rotary reflection mirror 15 in this case. When viewed from the position where this line 18 intersects the deflection plane of the rotating reflection mirror (which can be considered as the rotational axis 14 in FIG. 2), the image 12 is located at approximately the same distance as the cylinder. The image is formed into a shape. Therefore, the light beam emitted from the point P 1 on the scanned surface 11 enters the rotationally asymmetric optical system 13, and then enters the rotational reflection mirror 15 as if it were emitted from the point P 2 on the conjugate image 12 thereof. The rotating reflection mirror 15 rotates so as to always form a mirror image of the image point P 2 at a constant position P 3 . and point P 3
The mirror image formed is focused by the imaging lens system 16 onto a fixed position P 4 on the recording drum 17 . As described above, as the rotary reflection mirror 15 rotates, the scanned point P1 on the scanned surface 11 moves on the scanned surface 11 within the deflection scanning plane (in the plane of the paper), and 1
The point is always imaged onto a point P 4 on the recording drum 17 via the rotationally asymmetric imaging optical system 13 , the rotary reflection mirror 15 and the imaging lens system 16 . Therefore, if the recording drum 17 is rotated in synchronization with the angular velocity of the rotating reflective mirror 15, the information on the scanned surface 11 will be transferred to the recording drum 1.
recorded on 7. As shown in FIG. 2, in the present invention, the flat scanned surface 11 is replaced by the cylindrical scanned surface 1 shown in FIG.
A rotationally asymmetric imaging optical system 13 is used to make the surface equivalent to
The image 12 of the scanned surface 11 is formed by
It is possible to scan a flat surface to be scanned. The rotationally asymmetric imaging optical system forms the image of the scanned surface 11 into the cylindrical image 12 as described above in the deflection scanning plane. The aberration coefficient and Betsuvial sum P satisfy the following: =O, P=1/g' (i). However, g' indicates the distance from the point where the above-mentioned line 18 (which actually coincides with the optical axis of the asymmetrical rotating imaging optical system) intersects with the rotating reflection mirror to the image 12 along the above-mentioned line 18, and the imaging optical system If the image 12 of the scanned surface 11 by 13 is a virtual image as shown in FIG. 2, the physical quantity g' is negative;
When the image of the surface to be scanned 11 obtained by 3 is a real image, the physical quantity g' is positive. Furthermore, in order to scan the surface to be scanned at a constant speed when the rotating reflection mirror 15 is rotated at a constant speed, the rotationally asymmetric imaging optical system 1 is installed in the deflection scanning plane.
The value of the distortion aberration coefficient V of No. 3 is set to V=-2/3 (ii). However, as a condition for determining the above aberration coefficient, in the deflection scanning plane including the optical axis 18 of the rotationally asymmetric imaging optical system 13, the height from the optical axis at the center position (i.e., exit pupil position) of the rotational reflection mirror 15. We will use the exit pupil radius normalized so that is 1.0. Next, the above conditions (i) and (ii) that are satisfied by the rotationally asymmetric imaging optical system will be described. FIG. 3 is an explanatory diagram for this purpose, and first, the conditions for uniform velocity will be described. Second
The rotating reflection mirror 15 shown in the figure is located at the exit pupil of the rotationally asymmetric imaging optical system 13 and rotates at a constant angular velocity. Radius g (In Figure 3, the coordinate system is right-handed, and in this case g is a positive quantity by definition, but the second
This is the negative amount shown in the figure. ) is a minute portion of the image plane on the circular arc of △θ.
Then, △l=g′・△θ ...(1). Now, since the rotating reflecting mirror rotates at a constant angular velocity, △θ=ωdt ...(2) ω: angular velocity of the mirror (constant) △l=g'ωdt ...(3). Also, if the minute part on the scanned surface is △Y 1 ,
In order to scan the surface to be scanned at a constant speed, △l=g′ωdt=β△Y 1 ...(4) (β: magnification) must be satisfied. From equation (4), integrate both sides of ωdt=β/g′△Y 1 to obtain ωt=β/g′Y 1 +C 1 ...(5) (C 1 : integral constant). Since t=0 when Y 1 =0, C 1 =0 ωt=β/g'Y 1 ...(6). From Fig. 3, ωt = θ, and if the ideal height of the curved image plane is up to the intersection of the perpendicular from the optical axis and the circular arc, and this is Yc', then θ=sin -1 (Y'c/g')... …(7) becomes. Substituting equation (7) into equation (6), sin -1 (Yc′/g′)=β/g′Y 1 Yc′=g′sin(β/g′Y 1 ) ……(8) That is, In order to keep the scanning speed on the surface to be scanned constant, the ideal image height Yc' must be determined by equation (8). Expanding equation (8) to the cubic term, Yc′=g′[(βY 1 /g′)−1/6(βY 1 /g
') 3 ]...(9) Also, aberration theory (written by Matsui: Applied Physics Vol. 28, No. 12, 5)
According to the practical application of the theory of second-order aberrations, However, N' is the refractive index of the image space α; the inclination angle α′ of the object paraxial ray is converted to the incidence; the inclination angle converted the output of the object paraxial ray ′ is the inclination angle converted the output of the pupil paraxial ray; Substituting into equation 9) and rearranging, we get Yc′=-1/2α′ [-2(αY 1 )+1/3(α′/N′) 2 (αY 1 ) 3
]...(11) Since (α 1 Y 1 ) 3 , the second term on the right side of equation (11), is a field angle term regardless of the aperture, from the aberration theory mentioned above, it is a third-order distortion where the image plane is curved. The aberration coefficient Vc is Vc=1/3(α'/N') 2 (12). Vc is a condition that requires a third-order distortion aberration coefficient when the image plane is curved, but this is converted into a distortion aberration coefficient V specific to the optical system. From Figure 5, X'c〓1/2D 3 Y'c 2 +1/8D 3 4 Y'
c 4 ...(13) D 3 and D 4 in equation (13) are the curvature coefficients of the field surface. Since the image plane is now on a circular arc with radius g', D 3 = D 4 = -1/g' According to aberration theory, Vc = V + α'/α' D 3 /N' ...(14) V=Vc−α′/α′ D 3 /N′ Substituting D 3 =−1/g′ and equation (12) into this, V=−2/3(α′/N′) 2 ……(15 ) becomes. ' is considered normalization based on the exit pupil, so '=-1, and N' is the refractive index of the image space, so N' = 1. Therefore, uniform speed scanning is possible if the third-order distortion V of the rotationally asymmetric imaging optical system is -2/3. Next, the above condition (i) will be described. The astigmatism coefficient c and the spherical field curvature coefficient IVc when the image plane is curved are expressed by the aberration coefficient specific to the optical system and IV. From the above aberration theory, c= IVc=IV+D 3 /N, respectively. ′...(16). Therefore, in order for the image plane to be on a circular arc with radius g, it must be c==0 IVc=0 (17). From the equation below equation (17), IVc=IV+D 3 /N'=0 Substituting IV++P and D 3 =-1/g', +P-1/N'g'=0 From equation (17), = 0. Therefore, in order for IVc = 0, P = 1/N'g'...(18). Since N′=1 now,
In the end, P becomes P=1/g'. FIG. 5 shows an embodiment of the rotationally asymmetric optical system 13 of FIG. The rotationally asymmetrical imaging optical system 23 consists of three cylindrical lenses whose generatrix is perpendicular to the plane of the paper in FIG. Rotationally asymmetric optical system 23
creates a conjugate image of the scanned plane (□170×□170) on the cylindrical surface 22. Since the central axis of the cylindrical surface and the rotational central axis of the deflection mirror 24 are made to coincide with each other, the light beam emitted from a point on the scanned surface 21 enters the rotationally asymmetric optical system 23, and its conjugate image point, that is, the cylindrical surface. The light beam enters the deflection mirror 24 as if it were emitted from a point on the deflection mirror 22. FIG. 7 is an optical path diagram at that time. Next, the configuration of the rotationally asymmetric optical system 23 will be shown below. As mentioned above, the optical system 23 is composed of a cylindrical lens that has no power in the plane perpendicular to the plane of the paper, so the curvature r in the plane parallel to the plane of the paper is
Aspheric coefficients B, C and surface spacing D shown in equation (19)
and the refractive index N. However, as shown in Figure 7, the shape of the aspheric surface is as follows: r is the paraxial radius of curvature at the apex of the aspheric surface, r is the paraxial radius of curvature at the apex of the aspheric surface; When taking the Y axis that passes through the vertex, the amount of deviation when the Y coordinate is h is x.
【表】
但し、S1はレンズ系23のr1面から被走査平面
21までの軸上間隔、
tkはレンズ系23のr6面から偏向ミラー
24までの軸上間隔、
次に上記光学系の紙面に平行な面内の収差係数を
示す。
= 0.00000020451
= 0.000006828
=−0.0000021
P=−0.0019621
V=−0.62445
f= 39441.108
更に、第8図は第5図に示す回転非対称結像光
学系23の紙面に平行な面内での収差を示す図、
第9図は第5図に示す回転非対称結像光学系23
の紙面に垂直な面内での収差を示す図、第10図
は第5図に示す回転非対称結像光学系23の紙面
に平行な面から45゜回転した面内、即ち被走査面
の対角方向の収差を示す図である。
第11図は本発明に係る走査装置を適用した複
写機の一実施例を示す図で、主として光学系周辺
を抜き出して示したものである。第11図におい
て31は原稿、32は回転非対称レンズ34によ
る原稿31の共役像、33は照明装置、35は偏
向ミラー、36は結像レンズ、37はスリツト、
38は円筒ドラムである。原稿31から出た光束
は回転非対称レンズ34に入射し、その共役像点
すなわち円筒面32上の点から光束が出射したか
のように偏向ミラー35に入射する。偏向ミラー
35は前記共役像点を含み偏向ミラーの回転軸と
平行な線像の鏡像を常に結像レンズ36の光軸を
含み、偏向ミラーの回転軸と平行な線上にあるよ
うに回転振動する。鏡像は結像レンズ36によつ
て円筒ドラム38の一定線上39上に結像され
る。従つて偏向ミラー35が回転すると、結像レ
ンズ36及び回転非対称レンズ34により形成さ
れるスリツト37の像が被走査面の31上を走査
方向に沿つて一端から他端にかけて走査する。即
ち被走査面31はスリツト37の像の巾でスリツ
ト走査されるものである。円筒ドラム上38には
感光媒体が設けられていて、偏向ミラー35と同
期して円筒ドラム38が回転するので、原稿31
は円筒ドラム38上の感光媒体上に記録される。
この様に回転振動方式を用いた高速複写に適した
感光体としては、例えば、支持体上に光導電層を
有し、更にその上に絶縁層を有した3層構成を基
体としたものがよい。この支持体は導電性であつ
ても絶縁性であつても良い。
又、上記感光体に潜像を形成する一例としては
一次帯電、それに続く除電又は逆極性帯電、その
後の全面露光により潜像を形成し得るものであ
る。この光学系において偏向ミラー35は高速に
回動することが可能である。したがつて本装置に
おいて高速でかつ原稿面がフラツトな複写装置が
達成できる。そしてこの際偏向ミラー35の回動
だけで済むので回動入力構造は至極簡素化でき
る。
尚、上述した偏向器としては回転振動タイプの
ものを示したが、ポリゴンミラーの様なものを用
いることも可能である。
以上、本発明に係る走査装置に於いては、回転
若しくは回転振動する偏向器と被走査平面の間に
回転非対称な結像光学系を設ける事により、被走
査平面を歪みなく高速に走査出来るものであり、
優れた効果を有するものである。[Table] However, S 1 is the axial distance from the r 1 surface of the lens system 23 to the scanned plane 21, tk is the axial distance from the r 6 surface of the lens system 23 to the deflection mirror 24, and then the above optical system shows the aberration coefficient in the plane parallel to the paper surface. = 0.00000020451 = 0.000006828 = -0.0000021 P = -0.0019621 V = -0.62445 f = 39441.108 Furthermore, Fig. 8 is a diagram showing the aberration in the plane parallel to the plane of the paper of the rotationally asymmetric imaging optical system 23 shown in Fig. 5;
FIG. 9 shows the rotationally asymmetric imaging optical system 23 shown in FIG.
10 is a diagram showing aberrations in a plane perpendicular to the plane of the paper, and FIG. 10 is a diagram showing aberrations in a plane rotated by 45 degrees from a plane parallel to the plane of the paper of the rotationally asymmetric imaging optical system 23 shown in FIG. FIG. 3 is a diagram showing angular aberrations. FIG. 11 is a diagram showing an embodiment of a copying machine to which a scanning device according to the present invention is applied, mainly showing the periphery of the optical system. In FIG. 11, 31 is a document, 32 is a conjugate image of the document 31 by a rotationally asymmetric lens 34, 33 is an illumination device, 35 is a deflection mirror, 36 is an imaging lens, 37 is a slit,
38 is a cylindrical drum. The light beam emitted from the original 31 is incident on the rotationally asymmetric lens 34, and is incident on the deflection mirror 35 as if the light beam were emitted from its conjugate image point, that is, a point on the cylindrical surface 32. The deflection mirror 35 rotates and oscillates a mirror image of a line that includes the conjugate image point and is parallel to the rotation axis of the deflection mirror so that it is always on a line that includes the optical axis of the imaging lens 36 and is parallel to the rotation axis of the deflection mirror. . The mirror image is formed on a fixed line 39 of the cylindrical drum 38 by the imaging lens 36. Therefore, when the deflection mirror 35 rotates, the image of the slit 37 formed by the imaging lens 36 and the rotationally asymmetric lens 34 scans the scanned surface 31 from one end to the other along the scanning direction. That is, the scanned surface 31 is slit-scanned with the width of the image of the slit 37. A photosensitive medium is provided on the cylindrical drum 38, and since the cylindrical drum 38 rotates in synchronization with the deflection mirror 35, the original 31
is recorded on a photosensitive medium on a cylindrical drum 38.
As a photoreceptor suitable for high-speed copying using a rotary vibration method, for example, one has a three-layer structure, which has a photoconductive layer on a support and an insulating layer on top of the photoconductive layer. good. This support may be electrically conductive or insulating. Further, as an example of forming a latent image on the photoreceptor, a latent image can be formed by primary charging, followed by neutralization or reverse polarity charging, and then whole surface exposure. In this optical system, the deflection mirror 35 can rotate at high speed. Therefore, in this apparatus, a high-speed copying apparatus with a flat original surface can be achieved. At this time, since only the rotation of the deflection mirror 35 is required, the rotation input structure can be extremely simplified. Although the above-mentioned deflector is of a rotary vibration type, it is also possible to use something like a polygon mirror. As described above, in the scanning device according to the present invention, by providing a rotationally asymmetric imaging optical system between the rotating or rotationally vibrating deflector and the scanning plane, the scanning plane can be scanned at high speed without distortion. and
It has excellent effects.
第1図は従来の走査装置を用いた複写光学系の
一例を示す図、第2図は本発明に係る走査装置の
原理を説明する為の図、第3図及び第4図は本発
明の装置に用いる回転非対称結像光学系を説明す
る為の図、第5図は本発明に係る装置に用いる回
転非対称結像レンズの一実施例を示す図、第6図
は第7図に示すレンズの光路を示す図、第7図は
非球面の定義を説明する為の図、第8図,第9図
及び第10図は各々第6図に示すレンズの収差を
示す収差図、第11図は本発明に係る走査装置を
複写機に適用した場合の一実施例を示す図。
11…被走査面、12…被走査面の像、13…
回転非対称結像光学系、15…回転反射ミラー。
FIG. 1 is a diagram showing an example of a copying optical system using a conventional scanning device, FIG. 2 is a diagram for explaining the principle of a scanning device according to the present invention, and FIGS. 3 and 4 are diagrams showing an example of a copying optical system using a conventional scanning device. A diagram for explaining the rotationally asymmetrical imaging optical system used in the device, FIG. 5 is a diagram showing an example of the rotationally asymmetrical imaging lens used in the device according to the present invention, and FIG. 6 is the lens shown in FIG. 7. Figure 7 is a diagram for explaining the definition of an aspherical surface, Figures 8, 9, and 10 are aberration diagrams showing the aberrations of the lens shown in Figure 6, and Figure 11. 1 is a diagram showing an embodiment in which a scanning device according to the present invention is applied to a copying machine. 11... Surface to be scanned, 12... Image of surface to be scanned, 13...
Rotationally asymmetric imaging optical system, 15...rotating reflection mirror.
Claims (1)
な被走査面をスリツト状に走査する装置に於い
て、前記被走査面と偏向器との間には前記被走査
面の像を円筒状に形成する回転非対称結像光学系
を設け、前記偏向器の偏向面の法線がその回転に
伴つて経時的に形成する偏向走査平面内に於いて
前記回転非対称結像光学系の三次の非点収差係数
及び、ペツツバール和Pが、 =0,P=1/g′ 但しg′;前記偏向走査平面内に於いて、前記被
走査面の像の中心を通り且つ被走査面に垂直な線
に沿つて計つた偏向器から被走査面の像までの距
離 をほぼ満足する事を特徴とする走査装置。[Claims] 1. In an apparatus that scans a flat surface to be scanned in a slit shape using a rotating or rotationally vibrating deflector, an image of the surface to be scanned is disposed between the surface to be scanned and the deflector. A rotationally asymmetrical imaging optical system formed in a cylindrical shape is provided, and the normal line of the deflection surface of the deflector forms a tertiary axis of the rotationally asymmetrical imaging optical system within a deflection scanning plane formed over time as the deflector rotates. The astigmatism coefficient and the Petzval sum P are: =0, P=1/g', where g'; A scanning device characterized in that the distance from a deflector to an image of a scanned surface as measured along a line approximately satisfied.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7402178A JPS552231A (en) | 1978-06-19 | 1978-06-19 | Scanner |
DE19792924673 DE2924673A1 (en) | 1978-06-19 | 1979-06-19 | Scanner device with beam deflector - projects light beam from scanned surface onto given point of projection face |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7402178A JPS552231A (en) | 1978-06-19 | 1978-06-19 | Scanner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS552231A JPS552231A (en) | 1980-01-09 |
JPS6220526B2 true JPS6220526B2 (en) | 1987-05-07 |
Family
ID=13535037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7402178A Granted JPS552231A (en) | 1978-06-19 | 1978-06-19 | Scanner |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS552231A (en) |
DE (1) | DE2924673A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5857483A (en) * | 1981-09-30 | 1983-04-05 | Sekisui Chem Co Ltd | Bonding method |
JPS61103118A (en) * | 1984-10-26 | 1986-05-21 | Matsushita Electric Ind Co Ltd | Scanning type copying machine |
JP2563260B2 (en) * | 1986-04-11 | 1996-12-11 | 松下電器産業株式会社 | Optical beam scanning device |
JPH0746174B2 (en) * | 1986-11-14 | 1995-05-17 | キヤノン株式会社 | Scanning device |
JPH0656307U (en) * | 1992-12-28 | 1994-08-05 | 株式会社酒井機材製作所 | Floorboard for double floor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3750189A (en) * | 1971-10-18 | 1973-07-31 | Ibm | Light scanning and printing system |
US3881801A (en) * | 1973-09-19 | 1975-05-06 | Eltra Corp | Optical scanning system |
GB1530791A (en) * | 1975-02-05 | 1978-11-01 | Barr & Stroud Ltd | Radiation scanning system |
DE2728304C2 (en) * | 1976-06-23 | 1987-01-15 | Canon K.K., Tokio/Tokyo | Light beam scanning device - uses vibrating mirror and focussing lens to move light spot at uniform velocity over surface |
US4070089A (en) * | 1976-07-01 | 1978-01-24 | Xerox Corporation | Two dimensional laser scanner with movable cylinder lens |
-
1978
- 1978-06-19 JP JP7402178A patent/JPS552231A/en active Granted
-
1979
- 1979-06-19 DE DE19792924673 patent/DE2924673A1/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
JPS552231A (en) | 1980-01-09 |
DE2924673A1 (en) | 1980-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6226444B2 (en) | ||
JPH05346549A (en) | Scanning optical device | |
JPH0115046B2 (en) | ||
JPH0115047B2 (en) | ||
JP3420956B2 (en) | Optical scanning device, image reading device and image forming device using the same | |
JPH06230307A (en) | Laser scanning device and scanning lens | |
US6496293B2 (en) | Optical scanning device, scanning optical system, optical scanning method and image forming apparatus | |
JPH0310924B2 (en) | ||
US5570232A (en) | Anamorphic single lens for use in an optical scanner | |
JP3093337B2 (en) | Scanning optical device | |
JPS6220526B2 (en) | ||
JP3933759B2 (en) | Multi-beam scanning device | |
JP3943820B2 (en) | Optical scanning device, multi-beam optical scanning device, and image forming apparatus | |
US4259004A (en) | Scanning device with optical path length compensator | |
US4293184A (en) | Scanning projection device | |
US5771062A (en) | Beam scanning apparatus, for providing tilt correction to a rotary optical device | |
JP2003107382A (en) | Scanning optical system | |
JPH0618803A (en) | Optical scanning device | |
JP3275548B2 (en) | Optical scanning device | |
JP2003315712A (en) | Optical scanner and image forming apparatus | |
JP2786053B2 (en) | Post objective scanning optical system | |
JP4489852B2 (en) | Exposure apparatus and image forming apparatus | |
US5652611A (en) | Optical scanning system and image forming apparatus employing same for electrophoto graphically forming images | |
JP2773593B2 (en) | Light beam scanning optical system | |
JP3390118B2 (en) | Optical scanning device, image reading device and image forming device using the same |