JPS6220519B2 - - Google Patents

Info

Publication number
JPS6220519B2
JPS6220519B2 JP54083480A JP8348079A JPS6220519B2 JP S6220519 B2 JPS6220519 B2 JP S6220519B2 JP 54083480 A JP54083480 A JP 54083480A JP 8348079 A JP8348079 A JP 8348079A JP S6220519 B2 JPS6220519 B2 JP S6220519B2
Authority
JP
Japan
Prior art keywords
control rod
coolant
flow rate
rod element
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54083480A
Other languages
Japanese (ja)
Other versions
JPS568595A (en
Inventor
Kenji Fujiki
Keiji Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8348079A priority Critical patent/JPS568595A/en
Publication of JPS568595A publication Critical patent/JPS568595A/en
Publication of JPS6220519B2 publication Critical patent/JPS6220519B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は、高速増殖炉に使用される制御棒集合
体に係り、特に、上・下に可動な制御棒と炉心支
持板に固定される制御棒案内管との間に冷却材流
量を制限する伸縮可能な流量調整機構を設けた制
御棒集合体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control rod assembly used in a fast breeder reactor, and in particular, to a control rod assembly used in a fast breeder reactor. This invention relates to a control rod assembly equipped with an extendable flow rate adjustment mechanism that limits the flow rate of coolant.

従来、制御棒と制御棒案内管との隙間(外側流
路)には、制御棒が原子炉の反応度調節等で移動
しても常に流量を制限する様な流量調整機構は設
置されていなかつた。従つて、制御棒内を流れ、
制御棒要素から熱を奪つて高温となつた冷却材
と、制御棒の外側流路と流れる低温の冷却材とが
制御棒出口付近で合流し、制御棒出口温度として
は低い温度となつていた。このため、隣接する燃
料集合体出口冷却材温度との間に大きな差が生
じ、炉心上方に設置される炉心上部機構の整流格
子部には、狭い範囲に大きな温度差がつくため大
きな熱応力を発生させることとなり、原子炉の健
全性に悪影響を与えていた。
Conventionally, there was no flow rate adjustment mechanism installed in the gap between the control rod and the control rod guide tube (outer flow path) that would always limit the flow rate even if the control rod moved to adjust the reactivity of the reactor. Ta. Therefore, the flow inside the control rod,
The high-temperature coolant that took heat from the control rod elements and the low-temperature coolant flowing through the control rod's outer flow path merged near the control rod exit, resulting in a low control rod exit temperature. . As a result, a large temperature difference occurs between the outlet coolant temperature of adjacent fuel assemblies, and the rectifying grid section of the upper core mechanism installed above the reactor core is subject to large thermal stress due to the large temperature difference in a narrow range. This had an adverse effect on the health of the reactor.

本発明は、上記問題点に対してなされたもの
で、制御棒出口冷却材温度を上昇させ隣接の燃料
集合体出口冷却材温度との温度差を制御棒の位置
にかかわらず常に小さく出来かつ制御棒動作のス
ムースな制御棒集合体を提供することを目的とし
ている。
The present invention has been made to solve the above-mentioned problems, and it is possible to increase the temperature of the control rod outlet coolant, thereby constantly reducing the temperature difference between the control rod outlet coolant temperature and the outlet coolant temperature of an adjacent fuel assembly, regardless of the position of the control rod. The purpose is to provide a control rod assembly with smooth rod movement.

以下、図面を参照して本発明の例について説明
する。
Examples of the present invention will be described below with reference to the drawings.

始めに、本発明の構成を説明する。 First, the configuration of the present invention will be explained.

第1図は原子炉の縦断面図である。この図にお
いて符号1は、原子炉容器、2は原子炉容器1の
下部に設置される原子炉容器入口ノズルを示す。
原子炉容器1の内部には制御棒集合体9、燃料集
合体10等の炉心構成要素が収納され、この炉心
構成要素を搭載、支持するために炉心支持板3が
設けられる。4はこれら炉心構成要素を横方向に
支持する炉心槽であり、炉心構成要素の上方には
炉心上部機構5がしやへいプラング7を貫通して
設置される。また炉心上部機構5の下部には冷却
材の流れを調整する整流格子6が設置される。さ
らに炉心内を通過した冷却材が流出するための原
子炉容器出口ノズル8が、前記原子炉容器に取り
付けられる。
FIG. 1 is a longitudinal cross-sectional view of the nuclear reactor. In this figure, reference numeral 1 indicates a reactor vessel, and 2 indicates a reactor vessel inlet nozzle installed at the bottom of the reactor vessel 1.
Reactor core components such as a control rod assembly 9 and a fuel assembly 10 are housed inside the reactor vessel 1, and a core support plate 3 is provided to mount and support these core components. Reference numeral 4 denotes a core barrel that supports these core components in the lateral direction, and a core upper mechanism 5 is installed above the core components by penetrating through a shield plunger 7. Further, a rectifying grid 6 is installed at the bottom of the upper core mechanism 5 to adjust the flow of coolant. Furthermore, a reactor vessel outlet nozzle 8 is attached to the reactor vessel, through which the coolant that has passed through the reactor core flows out.

尚、前記制御棒集合体9は、周囲を燃料集合体
10により包囲される配置となる。
The control rod assembly 9 is surrounded by a fuel assembly 10.

第2図は本発明の一実施例による制御棒集合体
9である。この制御棒集合体9は炉心支持板に挿
入され冷却材を流入させる下部のエントランスノ
ズル11と、制御棒要素15を内部に収納する制
御棒案内管12と、制御棒案内管12上方に連設
されるハンドリングヘツド13とから構成され
る。また、前記制御棒要素15を制御棒駆動機構
で移動させるために連結部材16を設ける。制御
棒要素15の下部には制御棒内部へ冷却材を流入
させる入口オリフイス17、さらに制御棒外部へ
冷却材を流出させる出口オリフイス18を設け
る。
FIG. 2 shows a control rod assembly 9 according to one embodiment of the present invention. The control rod assembly 9 includes a lower entrance nozzle 11 that is inserted into the core support plate and allows coolant to flow in, a control rod guide tube 12 that houses the control rod elements 15 inside, and a control rod guide tube 12 that is connected above the control rod guide tube 12. and a handling head 13. Further, a connecting member 16 is provided for moving the control rod element 15 by a control rod drive mechanism. At the bottom of the control rod element 15, an inlet orifice 17 is provided to allow coolant to flow into the control rod, and an outlet orifice 18 is provided to allow the coolant to flow out of the control rod.

第3図は、第2図の制御棒集合体9の連結部材
16部を拡大して示す縦断面図である。第3図に
示すように制御棒要素の外側流路を制限するため
のリング状の流路閉塞板19を前記連結部材16
と案内管12間に設置し、これを制御棒の上・下
移動にかかわらず常に外側流路に保持するバネ2
0を閉塞板19上方に設ける。この流路閉塞板と
バネで制御棒要素の外側流路を制限する流量調整
機構を構成している。
FIG. 3 is an enlarged vertical cross-sectional view of the connecting member 16 of the control rod assembly 9 of FIG. 2. FIG. As shown in FIG.
A spring 2 is installed between the control rod and the guide tube 12 and keeps it in the outer flow path regardless of whether the control rod moves up or down.
0 is provided above the closing plate 19. The flow passage blocking plate and the spring constitute a flow rate adjustment mechanism that restricts the outer flow passage of the control rod element.

第4図は、第3図に示した流量調整機構の他の
実施例であり外側流路上端部に帯状の弾性体21
を使用した伸縮自在な流量調整機構を設置したも
のである。
FIG. 4 shows another embodiment of the flow rate adjustment mechanism shown in FIG.
It is equipped with a telescopic flow rate adjustment mechanism using.

第5図は、第3図の流量調整機構の他の実施例
を示し、外側流路上部に、リング状部材を嵌合せ
た嵌合せ型の伸縮自在な流量調整機構22を設置
したものである。
FIG. 5 shows another embodiment of the flow rate adjustment mechanism shown in FIG. 3, in which a fit-type telescopic flow rate adjustment mechanism 22 fitted with a ring-shaped member is installed above the outer flow path. .

さらに第6図は、第3図の流量調整機構の他の
実施例を示したもので外側流路上部にベローズシ
ール23を取付けた伸縮自在な流量調整機構を示
している。
Furthermore, FIG. 6 shows another embodiment of the flow rate adjustment mechanism shown in FIG. 3, and shows a telescopic flow rate adjustment mechanism in which a bellows seal 23 is attached to the upper part of the outer flow path.

次に作用を説明する。 Next, the action will be explained.

原子炉冷却材であるナトリウムは、原子炉容器
入口ノズル2より流入し、炉心支持板4の下部か
ら炉心構成要素内を通つて上部へ流出する。炉心
出口の直上には、炉心上部機構5の整流格子6が
あつて、冷却材は、この中を通つて上部プレナム
に流出し、原子炉出口ノズル8を通つて原子炉容
器外へ出る。制御棒集合体9において冷却材は、
炉心支持板4の下部からエントランスノズル11
を通つて流入し、エントランスノズルを出たとこ
ろで、制御棒内部を流れるものと、外側流路を流
れるものとに分かれ、上方で、制御棒出口オリフ
イス18から出た冷却材と外側流路を流れた冷却
材とは合流してハンドリングヘツド13を通つて
上方へ流出する。
Sodium, which is a reactor coolant, flows in through the reactor vessel inlet nozzle 2 and flows out from the lower part of the core support plate 4 through the core components to the upper part. Immediately above the core outlet is a straightening grid 6 of the core upper mechanism 5, through which the coolant flows out into the upper plenum and exits the reactor vessel through the reactor outlet nozzle 8. In the control rod assembly 9, the coolant is
Entrance nozzle 11 from the bottom of core support plate 4
When it exits the entrance nozzle, it is divided into the coolant that flows inside the control rod and the coolant that flows through the outer flow path. The coolant flows upward through the handling head 13.

従つて制御棒出口温度は、制御棒内部を流れ制
御棒要素15から熱を奪つて高温となつた冷却材
と、外側流路を流れた低温の冷却材との混合割合
により決まる。
Therefore, the control rod exit temperature is determined by the mixing ratio of the coolant that flows inside the control rod and becomes high temperature by removing heat from the control rod element 15, and the low temperature coolant that flows through the outer flow path.

本発明の制御棒集合体においては、外側流路を
流れる低温の冷却材流量を制限して制御棒集合体
出口冷却材温度を上昇させることができる。
In the control rod assembly of the present invention, the flow rate of the low temperature coolant flowing through the outer flow path can be restricted to increase the temperature of the control rod assembly outlet coolant.

つまり、第3図における流量調整機構にあつて
は外側流路の流量は流路閉塞板19により制限さ
れる。流路閉塞板19は制御棒要素15が原子炉
反応度制御あるいは緊急炉停止といつた時に移動
しても追随して動く様、弾性体20により常に下
方向に押しつけられている。このため制御棒要素
15本体には常に下向きの力が加わつており、制
御棒緊急挿入時には制御棒要素を下向きに加速す
る。
That is, in the flow rate adjustment mechanism shown in FIG. 3, the flow rate of the outer flow path is restricted by the flow path closing plate 19. The passage blocking plate 19 is always pressed downward by an elastic body 20 so that it can follow the movement of the control rod element 15 during reactor reactivity control or emergency reactor shutdown. For this reason, a downward force is always applied to the main body of the control rod element 15, and the control rod element is accelerated downward when the control rod is urgently inserted.

第4図に示す構造においては、弾性体21その
ものが流路を制限する。弾性体21は帯状である
ため常に重なり合つて流路を制限出来る。また、
この弾性体21は制御棒要素15に対し常に下向
きの力が加わる様な形としており、制御棒緊急挿
入時にも加速力となつて有利に働く。
In the structure shown in FIG. 4, the elastic body 21 itself limits the flow path. Since the elastic bodies 21 are band-shaped, they always overlap to restrict the flow path. Also,
The elastic body 21 is shaped so that a downward force is always applied to the control rod element 15, and it works advantageously as an accelerating force even when the control rod is inserted in an emergency.

第5図に示す構造においては、流量調整機構2
2の伸縮自在なリング同志の嵌め合わせにより流
路を制限する。リングの形状については、挿入に
対して緊急挿入時の制御棒移動時にその支障とな
らない様になつている。また冷却材ナトリウムに
ついても挿入時にはリング状の隙間から上部へ漏
れ出るので、下部の圧力が上つて支障となること
はない。
In the structure shown in FIG.
The flow path is restricted by fitting the two telescopic rings together. The shape of the ring is such that it does not interfere with the movement of the control rod during emergency insertion. Furthermore, when the coolant sodium is inserted, it leaks to the upper part through the ring-shaped gap, so the pressure at the lower part does not increase and cause problems.

第6図に示す構造においては、冷却材ナトリウ
ムは伸縮自在なベローズシール23により流路を
制限される。制御棒の移動に際しては、ベローズ
23自体の弾性により制御棒には下向きの力がか
かり、緊急挿入時には、制御棒が先に落下するた
め、制御棒とベローズシール23の間に隙間が出
来、この隙間から冷却材ナトリウムが漏れるた
め、下部の圧力により緊急挿入の支障となること
はない。
In the structure shown in FIG. 6, the flow path of the coolant sodium is restricted by a retractable bellows seal 23. When moving the control rod, a downward force is applied to the control rod due to the elasticity of the bellows 23 itself, and in the event of emergency insertion, the control rod will fall first, creating a gap between the control rod and the bellows seal 23. Since coolant sodium leaks from the gap, the pressure at the bottom will not interfere with emergency insertion.

以上説明したように本発明による制御棒集合体
は制御棒要素の動作に追従して伸縮可能な流量調
節機構を備えているので制御棒が移動してもこれ
に追従して外側流路の流量を制限出来かつ制御棒
の動きを妨げることがない。従つて制御棒出口温
度を常に高くすることが出来るので、隣接の燃料
集合体出口冷却材温度との温度差を小さく出来
る。
As explained above, the control rod assembly according to the present invention is equipped with a flow rate adjustment mechanism that can expand and contract in accordance with the movement of the control rod elements, so even if the control rods move, the flow rate in the outer flow path is adjusted accordingly. can be restricted without interfering with the movement of the control rod. Therefore, since the control rod outlet temperature can be kept high, the temperature difference between the control rod outlet coolant temperature and the adjacent fuel assembly outlet coolant temperature can be reduced.

このため炉心上部機構整流格子に発生する熱応
力が小さくできるので原子炉の構造健全性を向上
させることができる。また、制御棒集合体の主要
機能の1つである緊急制御棒挿入に関しては、悪
影響を与えないため機能を損うことはない。
Therefore, the thermal stress generated in the rectifying grid of the upper core mechanism can be reduced, and the structural integrity of the reactor can be improved. Furthermore, the insertion of emergency control rods, which is one of the main functions of the control rod assembly, does not have any adverse effects, so the function is not impaired.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原子炉の縦断面図、第2図は本発明の
一実施例による制御棒集合体の縦断面図、第3図
ないし第6図は第2図の制御棒集合体の流量調整
機構の他の実施例を示した縦断面図である。 11……エントランスノズル、12……制御棒
案内管、15……制御棒要素、19……流路閉塞
板、20……バネ、21……帯状の弾性体、22
……嵌合せ型流量調整機構、23……ベローズシ
ール。
FIG. 1 is a vertical cross-sectional view of a nuclear reactor, FIG. 2 is a vertical cross-sectional view of a control rod assembly according to an embodiment of the present invention, and FIGS. 3 to 6 are flow rate adjustment of the control rod assembly shown in FIG. FIG. 7 is a vertical cross-sectional view showing another embodiment of the mechanism. DESCRIPTION OF SYMBOLS 11... Entrance nozzle, 12... Control rod guide tube, 15... Control rod element, 19... Channel closing plate, 20... Spring, 21... Band-shaped elastic body, 22
...Fitting type flow rate adjustment mechanism, 23...Bellows seal.

Claims (1)

【特許請求の範囲】[Claims] 1 炉心支持板に挿入されるエントランスノズル
と、このエントランスノズルに固定される制御棒
案内管と、この制御棒案内管に連設されるハンド
リングヘツドと、前記制御棒案内管内を上下動す
る上下端に冷却材流路を有した制御棒要素と、こ
の制御棒要素の上部に形成されて制御棒駆動機構
と連結する連結部材と、制御棒要素の上部とハン
ドリングヘツドの下部との間に介挿されて、制御
棒要素の外側を通つて上方へ流れる冷却材の流量
を制限する制御棒要素の動作に追従して伸縮可能
な流量調整機構とを具備してなる制御棒集合体。
1. An entrance nozzle inserted into the core support plate, a control rod guide tube fixed to the entrance nozzle, a handling head connected to the control rod guide tube, and an upper and lower end that moves up and down within the control rod guide tube. A control rod element having a coolant flow path in the control rod element, a connecting member formed at the upper part of the control rod element and connected to the control rod drive mechanism, and interposed between the upper part of the control rod element and the lower part of the handling head. and a flow rate adjustment mechanism that is extendable and retractable in accordance with the operation of the control rod element and that limits the flow rate of coolant flowing upward through the outside of the control rod element.
JP8348079A 1979-07-03 1979-07-03 Control rod assembly Granted JPS568595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8348079A JPS568595A (en) 1979-07-03 1979-07-03 Control rod assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8348079A JPS568595A (en) 1979-07-03 1979-07-03 Control rod assembly

Publications (2)

Publication Number Publication Date
JPS568595A JPS568595A (en) 1981-01-28
JPS6220519B2 true JPS6220519B2 (en) 1987-05-07

Family

ID=13803622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8348079A Granted JPS568595A (en) 1979-07-03 1979-07-03 Control rod assembly

Country Status (1)

Country Link
JP (1) JPS568595A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121797A (en) * 1982-01-08 1983-07-20 Mitsui Petrochem Ind Ltd Production of dicarboxylic acid
JPS6024191A (en) * 1983-07-16 1985-02-06 Showa Shell Sekiyu Kk Preparation of citric acid by fermentation
JPS6156991A (en) * 1984-08-28 1986-03-22 株式会社東芝 Control rod aggregate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241438A (en) * 1976-07-29 1977-03-31 Toshiko Hori Door of overlapped storage type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241438A (en) * 1976-07-29 1977-03-31 Toshiko Hori Door of overlapped storage type

Also Published As

Publication number Publication date
JPS568595A (en) 1981-01-28

Similar Documents

Publication Publication Date Title
EP0232187A2 (en) Thimble guide extender
JPS62250394A (en) Pressurized water type reactor
JPH03137597A (en) Control-rod guide-support structure
US3702282A (en) Nuclear reactor fuel elements
JPS6220519B2 (en)
US3816248A (en) Nuclear fuel pin
JP3126502B2 (en) Reactor controlled reflector
US4070241A (en) Nuclear reactor removable radial shielding assembly having a self-bowing feature
US4623512A (en) Device for fixing a fuel array to the lower core-supporting plate in a nuclear reactor
US4332030A (en) Paired absorber elements for gas cooled high temperature reactors
JP4843202B2 (en) Reflector-controlled fast reactor
US3239422A (en) Gas cooled nuclear reactor with improved shield and control rod arrangement
JP2698605B2 (en) Control rod for gas cooled reactor
JP2723295B2 (en) Control rod assembly
JPS63275999A (en) In-pile structure of nuclear reactor
JPH06798Y2 (en) Guidance structure for in-core instrumentation equipment
JPH04254791A (en) Fast breeder reactor
JPS6039994B2 (en) control rod
JPS58186080A (en) Nuclear fuel assembly
JPS6262309B2 (en)
JPH0421836B2 (en)
JPH04296697A (en) Control rod assembly
JPS5848879B2 (en) Nuclear reactor control device
JPH0523396B2 (en)
JPH063472A (en) Fuel assembly