JPS6220424B2 - - Google Patents

Info

Publication number
JPS6220424B2
JPS6220424B2 JP4292883A JP4292883A JPS6220424B2 JP S6220424 B2 JPS6220424 B2 JP S6220424B2 JP 4292883 A JP4292883 A JP 4292883A JP 4292883 A JP4292883 A JP 4292883A JP S6220424 B2 JPS6220424 B2 JP S6220424B2
Authority
JP
Japan
Prior art keywords
flow path
pilot
pilot hole
main
main flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4292883A
Other languages
Japanese (ja)
Other versions
JPS59166768A (en
Inventor
Kazutoshi Koda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danle Co Ltd
Original Assignee
Danle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danle Co Ltd filed Critical Danle Co Ltd
Priority to JP4292883A priority Critical patent/JPS59166768A/en
Publication of JPS59166768A publication Critical patent/JPS59166768A/en
Publication of JPS6220424B2 publication Critical patent/JPS6220424B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/02Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm
    • F16K7/04Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force
    • F16K7/07Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force by means of fluid pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Driven Valves (AREA)
  • Float Valves (AREA)

Description

【発明の詳細な説明】 本発明は弁装置、特にゴム等の弾性材料又は可
撓性材料から成る筒状部材が流路構成部と成り且
つ該筒状部材自体が流路を遮断する形式の弁装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a valve device, particularly a valve device of the type in which a cylindrical member made of an elastic material such as rubber or a flexible material constitutes a flow path, and the cylindrical member itself blocks the flow path. This relates to a valve device.

上記形式の弁として例えばピンチバルブがある
が、これは外部から筒状部材としての弾性管1の
一部を挟圧して流路を遮断するものであり、流路
を完全に遮断するため要求される挟圧力はあまり
小さくできない。例えば第1図に示すような自動
給水装置へ使用にした場合、フロート3は水位2
の上昇と共に浮上し、これに伴なつて該フロート
に連設したロツドヘツド31がそのフロートの浮
力によつて持ち上げられ、やがて水位が規定の高
さに成つたときに、この浮力の作用を受けてロツ
ドヘツド31が弾性管1を直径方向に押圧変形さ
せて流路4を遮断するものである。
An example of the above-mentioned type of valve is a pinch valve, which blocks a flow path by pinching a part of the elastic tube 1 as a cylindrical member from the outside, and is required to completely block the flow path. The clamping force cannot be made too small. For example, when used in an automatic water supply device as shown in Fig. 1, the float 3 is set at a water level of 2.
The rod head 31 connected to the float is lifted up by the buoyancy of the float, and when the water level reaches a specified height, the rod head 31 is raised by the buoyancy of the float. The rod head 31 presses and deforms the elastic tube 1 in the diametrical direction to block the flow path 4.

上記従来のものの場合、流路4を遮断するため
の外力、即ちロツドヘツド31の押圧力としては
前記管壁に加わる圧力の総和以上に設定する必要
がある。従つて前記ロツドヘツド31の押圧力を
前記圧力の総和以下に設定することができない。
In the case of the above-mentioned conventional device, the external force for blocking the flow path 4, ie, the pressing force of the rod head 31, must be set to be greater than the sum of the pressures applied to the tube wall. Therefore, the pressing force of the rod head 31 cannot be set below the sum of the pressures.

これは流路4の遮断に必要な力を全て流路外部
の作用力に依存するからである。
This is because the force necessary to block the flow path 4 is entirely dependent on the acting force outside the flow path.

本発明は、小さな力で流路を閉鎖し得るように
するために、流路内の流体圧の流路遮断力として
利用できるようにすることを課題とする。
An object of the present invention is to enable fluid pressure within a flow path to be used as a flow path blocking force in order to close the flow path with a small force.

上記課題を解決する為の本発明の技術的手段
は、『両端開放の筒体内を軸線と平行な弾性隔壁
33で区画してメイン流路19とパイロツト流路
18を形成し、パイロツト流路18はその下流側
を閉塞すると共に、該パイロツト流路18には、
大気中又はメイン流路19の下流部に連通するパ
イロツト孔16を設け、該パイロツト孔16には
これを外部から開閉する開閉手段を対向させた』
ことである。
The technical means of the present invention for solving the above problems is as follows: ``The inside of a cylindrical body with both ends open is partitioned by an elastic partition wall 33 parallel to the axis to form a main flow path 19 and a pilot flow path 18. blocks the downstream side thereof, and the pilot flow path 18 includes:
A pilot hole 16 communicating with the atmosphere or the downstream part of the main flow path 19 is provided, and an opening/closing means for opening and closing the pilot hole 16 from the outside is opposed to the pilot hole 16.
That's true.

上記技術手段は次のように作用する。 The above technical means works as follows.

筒体内を軸線と平行に区画して形成したメイン
流路19とパイロツト流路18の上流端は共に上
流側流路に開放している。従つて、上流側流路か
ら流入する流体は、これらメイン流路19とパイ
ロツト流路18に分配される。
The upstream ends of the main flow path 19 and the pilot flow path 18, which are formed by partitioning the inside of the cylinder parallel to the axis, are both open to the upstream flow path. Therefore, the fluid flowing from the upstream flow path is distributed to the main flow path 19 and the pilot flow path 18.

この状態に於いてパイロツト流路18に設けら
れたパイロツト孔16を開放しておくと、パイロ
ツト流路18に流入した流体は、パイロツト孔1
6を介してメイン流路19に流れ込むか、又は、
パイロツト孔16を介して大気中に放出されるこ
ととなり、メイン流路19及びパイロツト流路1
8の流路中には共に流体の流れが存在することと
なる。
In this state, if the pilot hole 16 provided in the pilot flow path 18 is left open, the fluid flowing into the pilot flow path 18 will flow through the pilot hole 1.
6 into the main flow path 19, or
It will be released into the atmosphere through the pilot hole 16, and the main flow path 19 and the pilot flow path 1
A fluid flow exists in both flow paths of No.8.

従つて、これらメイン流路19とパイロツト流
路18間には圧力差が殆ど生じることはなく、こ
れら両流路18,19を区画する弾性隔壁は初期
状態に保持され、流体は、メイン流路19とパイ
ロツト流路18を介して下流側に供給され続け
る。
Therefore, almost no pressure difference occurs between the main flow path 19 and the pilot flow path 18, and the elastic partition walls that partition the flow paths 18 and 19 are maintained in their initial state, and the fluid flows through the main flow path. 19 and the pilot flow path 18 to the downstream side.

次に、流路を遮断するにはパイロツト孔を開閉
手段によつて閉じればよく、これにより、パイロ
ツト流路の流れが停止し、未だ流通状態にあるメ
イン流路内圧力よりも該パイロツト流路内圧力が
上昇する。これにより両流路を区画している弾性
隔壁は前記圧力差に応じて圧力が低いメイン流路
側へ変位し、やがて弾性隔壁がメイン流路を閉鎖
し流路全体を遮断することとなる。
Next, in order to shut off the flow path, it is sufficient to close the pilot hole using an opening/closing means, and as a result, the flow in the pilot flow path is stopped and the pressure inside the main flow path, which is still in a flowing state, is lowered. Internal pressure increases. As a result, the elastic partition wall that partitions both flow paths is displaced toward the main flow path where the pressure is lower according to the pressure difference, and eventually the elastic partition wall closes the main flow path and blocks the entire flow path.

次に流路全体を開放するにはパイロツト孔を開
けば良く、パイロツト孔が開放されるとパイロト
流路中に流れが生じ該パイロツト流路内圧力が低
下することとなり、他方メイン流路は閉鎖されて
いてその内部には流体の流れがないことから該部
分の圧力は大きく、この逆圧力差により弾性隔壁
は初期状態に復帰し流路全体が開放することとな
る。
Next, in order to open the entire flow path, it is sufficient to open the pilot hole, and when the pilot hole is opened, a flow occurs in the pilot flow path and the pressure inside the pilot flow path decreases, while the main flow path is closed. Since there is no flow of fluid inside the partition, the pressure in that part is high, and this reverse pressure difference causes the elastic partition wall to return to its initial state and open the entire flow path.

従つて、流路内の流体圧の作用によつてメイン
流路が閉鎖されるからパイロツト孔を開閉するだ
けの小さな力で流路が遮断できる。
Therefore, since the main flow path is closed by the action of fluid pressure within the flow path, the flow path can be shut off with a small force sufficient to open and close the pilot hole.

又、本発明は上記構成であるから次の特有の効
果を有する。
Further, since the present invention has the above configuration, it has the following unique effects.

大容量の回路を開閉する形式のものに使用した
場合、パイロツト孔を開閉するだけで流路が遮断
できるから流路を直接開閉するものに比べて操作
部の操作量が小さく成る。このことから、操作部
の操作手段として電磁ソレノイド等の電気的駆動
装置を使用した場合においてもその出力軸の作動
量が小さくてすみ、更にパイロツト弁の開閉力が
小さいことから、該電気的駆動装置が小型化でき
る利点がある。
When used in a type that opens and closes a large capacity circuit, the flow path can be shut off simply by opening and closing the pilot hole, so the amount of operation of the operating section is smaller than when the flow path is directly opened and closed. For this reason, even when an electric drive device such as an electromagnetic solenoid is used as the operation means for the operation part, the amount of operation of the output shaft is small, and furthermore, since the opening and closing force of the pilot valve is small, the electric drive This has the advantage that the device can be made smaller.

又、上記筒状弁を自動給水装置へ利用した場
合、流路を遮断するにはパイロツト孔を開閉する
だけでよいからフロートが小型化できるととも
に、フロートとロツドヘツドとの間にリンク機構
が不要となる。
Furthermore, when the above-mentioned cylindrical valve is used in an automatic water supply device, it is only necessary to open and close the pilot hole to shut off the flow path, so the float can be made smaller and no link mechanism is required between the float and the rod head. Become.

次に上記した本発明の実施例を図面に従つて説
明する。
Next, embodiments of the present invention described above will be described with reference to the drawings.

第2図から第4図に本発明の第1実施例を示す
が、第2図に於て筒状の弁を構成する弾性管1は
下流側13に於て一体となつたゴム等の弾性二重
管によつて形成されている。メイン流路19を形
成する内側の管14は後述のパイロツト流路18
と上記メイン流路19とを区画する弾性隔壁とし
て機能する。この内側の管14は上流側先端を該
部分の変形抵抗を大きくするため厚肉に形成し他
の部分は逆に容易に変形し得るように薄肉状に形
成してあると共にその下流部にはメイン流路19
とパイロツト流路18を連通させる為のパイロツ
ト孔16が穿設してある。他方外側の管17は内
側の管14との間にパイロツト流路18を形成す
べく該内側の管14よりも一回り大きく形成され
てある。
A first embodiment of the present invention is shown in FIGS. 2 to 4. In FIG. It is formed by double tubes. The inner tube 14 forming the main flow path 19 is a pilot flow path 18 which will be described later.
and the main flow path 19. The inner tube 14 has a thick wall at the upstream end to increase the deformation resistance of that part, and a thin wall at the other part so that it can be easily deformed. Main flow path 19
A pilot hole 16 is bored for communicating the pilot flow path 18 with the pilot hole 16. On the other hand, the outer tube 17 is formed one size larger than the inner tube 14 so as to form a pilot flow path 18 between the outer tube 17 and the inner tube 14.

上記の筒状弁は例えば第3図に示すようにホル
ダー5に収納されて自動給水装置に使用される。
上記ホルダー5の下部にはロツド32が昇降自在
に貫設されその先端部のロツドヘツド31は外側
の管17の外部から上記パイロツト孔16に臨ん
でいる。他方ロツド32の下部にはタンク21内
に位置するフロート3が固着されており、これら
が開閉手段となる。
The above-mentioned cylindrical valve is housed in a holder 5, as shown in FIG. 3, for example, and used in an automatic water supply device.
A rod 32 is installed through the lower part of the holder 5 so as to be able to rise and fall freely, and a rod head 31 at the tip thereof faces the pilot hole 16 from the outside of the outer tube 17. On the other hand, a float 3 located in the tank 21 is fixed to the lower part of the rod 32, and these serve as opening/closing means.

第3図の矢印に示すように上流から流体が流路
内に流れ込むと該流れはメイン流路19とパイロ
ツト流路18とに分配され、メイン流路19を通
過する流体は直接タンク21内に放水されて該タ
ンク21内の水位2を上昇させる。他方パイロツ
ト流路18を通過する流体はパイロツト孔16を
介してメイン流路19と再び合流し同様にタンク
21ないに放水される。タンク21内の水位2が
上昇するとその浮力によつてフロート3が浮上
し、これによつてロツド32が上昇するとともに
ロツドヘツド31がパイロツト孔16を閉塞す
る。パイロツト孔16が閉塞されるとパイロツト
流路18内の流れは停止しパイロツト流路18内
圧力は上昇するがメイン流路19内は流れが存在
し続けるからそれまでの流体圧力が維持されるこ
とと成り、結局パイロツト流路18とメイン流路
19間には圧力差が生じて内側の管14はその厚
肉15部分を除く薄肉10の部分に於て偏平状態
に変位しやがてメイン流路19を閉鎖することと
なる。(第4図) 水位2が低く成つてフロート3へ作用する浮力
が低下するとフロート3は自重によつて降下しこ
れに伴なつてロツド32も降下してロツドヘツド
31はパイロツト孔16を開放する。パイロツト
孔16が開放されるとパイロツト流路18内の流
体は該パイロツト孔16を介して下流側に放水さ
れパイロツト流路18内に再び流れが発生し該流
路内の圧力が低下する。他方メイン流路19内の
流体は停止したままの状態にあるから該流路内の
圧力は低下せず、従つて内側の管14はパイロツ
ト流路18とメイン流路19との圧力差によつて
上流側から下流側にかけて次第に外側に広がりメ
イン流路19は再び開放されるのである。この場
合、筒状弁は二重管構造を採るから流体の外部漏
れの必配がない。
When fluid flows into the flow path from upstream as shown by the arrow in FIG. Water is discharged to raise the water level 2 in the tank 21. On the other hand, the fluid passing through the pilot channel 18 joins the main channel 19 again through the pilot hole 16 and is similarly discharged into the tank 21. When the water level 2 in the tank 21 rises, the float 3 rises due to its buoyancy, which causes the rod 32 to rise and the rod head 31 to close the pilot hole 16. When the pilot hole 16 is blocked, the flow in the pilot channel 18 stops and the pressure in the pilot channel 18 increases, but the flow continues in the main channel 19, so the fluid pressure up to that point is maintained. As a result, a pressure difference is created between the pilot flow path 18 and the main flow path 19, and the inner tube 14 is displaced into a flattened state in the thin wall 10 excluding the thick wall 15, and eventually the main flow path 19 will be closed. (FIG. 4) When the water level 2 becomes lower and the buoyant force acting on the float 3 decreases, the float 3 descends due to its own weight, and the rod 32 also descends accordingly, causing the rod head 31 to open the pilot hole 16. When the pilot hole 16 is opened, the fluid in the pilot flow path 18 is discharged to the downstream side through the pilot hole 16, a flow is generated again in the pilot flow path 18, and the pressure in the flow path decreases. On the other hand, since the fluid in the main flow path 19 remains in a stopped state, the pressure within the flow path does not decrease, and therefore the inner tube 14 is caused by the pressure difference between the pilot flow path 18 and the main flow path 19. Then, the main flow path 19 gradually expands outward from the upstream side to the downstream side, and the main flow path 19 is opened again. In this case, since the cylindrical valve has a double pipe structure, there is no possibility of external leakage of fluid.

第5図に本発明の第2実施例を示すが、弾性管
1を薄肉の弾性画壁33によつて上下に区画され
るメイン流路19とパイロツト流路18とを形成
し、パイロツト流路18の低壁にパイロツト孔1
6を穿設したものである。
A second embodiment of the present invention is shown in FIG. 5, in which an elastic tube 1 is formed into a main flow path 19 and a pilot flow path 18 which are vertically divided by a thin elastic wall 33. 1 pilot hole in the low wall of 18
6 is perforated.

この第2実施例のものの場合、流れの中に置か
れた弾性管1はパイロツト孔16が開閉されると
既述した第1実施例のものと同様にパイロツト流
路18とメイン流路19との間に圧力差が生じこ
の圧力差の作用によつて弾性隔壁33が上下に変
位してメイン流路19を開閉することとなる。
In the case of this second embodiment, when the pilot hole 16 is opened and closed, the elastic tube 1 placed in the flow connects the pilot flow path 18 and the main flow path 19 as in the first embodiment described above. A pressure difference is generated between the two, and the elastic partition wall 33 is vertically displaced by the action of this pressure difference, thereby opening and closing the main channel 19.

第6図に本発明の第3実施例の要部断面図を示
すが、これは第1実施例のものいおいてパイロツ
ト孔16を直接ロツドヘツド31が嵌入閉塞し得
るようにしたものである。
FIG. 6 shows a sectional view of a main part of a third embodiment of the present invention, which is different from the first embodiment in that a rod head 31 can directly fit into and close the pilot hole 16.

この第3実施例のものの場合パイロツト孔16
の開閉が確実に行なわれる利点がある。
In the case of this third embodiment, the pilot hole 16
This has the advantage that opening and closing can be performed reliably.

第7図に本発明の第4実施例の要部断面図を示
すが、これは第1実施例のものにおいてパイロツ
ト孔16を弾性管1の先端正面部に設けたもので
第1実施例のものと同様に作用する。
FIG. 7 shows a sectional view of the main part of the fourth embodiment of the present invention, which is the same as that of the first embodiment in which the pilot hole 16 is provided in the front face of the tip of the elastic tube 1. It works the same way.

尚、上記実施例の場合においてはいずれもパイ
ロツト孔を閉塞する手段として、フロート3の浮
力を利用したが、ロツド32を電磁コイルやその
他の手段を利用して遠隔操作し得るようにするこ
とも可能であり、さらに、手動によりパイロツト
孔を開閉することも可能で自動給水装置だけでな
くその他のあらゆる弁装置として使用できる。
In the above embodiments, the buoyancy of the float 3 is used as a means to close the pilot hole, but the rod 32 may also be controlled remotely using an electromagnetic coil or other means. Furthermore, it is also possible to manually open and close the pilot hole, and it can be used not only as an automatic water supply device but also as any other valve device.

又、上記いずれの実施例も、メイン流路19の
上流端12の変形抵抗を大きくするため、この部
分を厚肉部としたが、この上流端12を外側の管
17の上流端に固定する構成も採用できる。
Furthermore, in all of the above embodiments, in order to increase the deformation resistance of the upstream end 12 of the main flow path 19, this portion is made thick, but this upstream end 12 is fixed to the upstream end of the outer pipe 17. configurations can also be adopted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の説明図、第2図は本発明第1
実施例に使用する筒状弁の断面斜視図、第3図及
び第4図はその使用説明図、第5図は本発明第2
実施例の要部説明図、第6図は本発明第3実施例
の要部断面図、第7図は本発明第4実施例の要部
断面図であり、図中、 16……パイロツト孔、18……パイロツト流
路、19……メイン流路。
FIG. 1 is an explanatory diagram of the conventional example, and FIG. 2 is an explanatory diagram of the first example of the present invention.
A cross-sectional perspective view of the cylindrical valve used in the example, FIGS. 3 and 4 are illustrations for explaining its use, and FIG.
6 is a cross-sectional view of the main parts of the third embodiment of the present invention, and FIG. 7 is a cross-sectional view of the main parts of the fourth embodiment of the present invention. In the figure, 16...pilot hole , 18...pilot flow path, 19...main flow path.

Claims (1)

【特許請求の範囲】[Claims] 1 両端開放の筒体内を軸線と平行な弾性隔壁3
3で区画してメイン流路19とパイロツト流路1
8を形成し、パイロツト流路18はその下流側を
閉塞すると共に、該パイロツト流路18には、大
気中又はメイン流路19の下流部に連通するパイ
ロツト孔16を設け、該パイロツト孔16にはこ
れを外部から開閉する開閉手段を対向させた弁装
置。
1 Elastic partition wall 3 parallel to the axis inside the cylinder with both ends open
The main flow path 19 and the pilot flow path 1 are divided into
8, the pilot flow path 18 closes its downstream side, and the pilot flow path 18 is provided with a pilot hole 16 that communicates with the atmosphere or the downstream part of the main flow path 19. is a valve device with opposing opening/closing means for opening and closing it from the outside.
JP4292883A 1983-03-14 1983-03-14 Valve apparatus Granted JPS59166768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4292883A JPS59166768A (en) 1983-03-14 1983-03-14 Valve apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4292883A JPS59166768A (en) 1983-03-14 1983-03-14 Valve apparatus

Publications (2)

Publication Number Publication Date
JPS59166768A JPS59166768A (en) 1984-09-20
JPS6220424B2 true JPS6220424B2 (en) 1987-05-07

Family

ID=12649678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4292883A Granted JPS59166768A (en) 1983-03-14 1983-03-14 Valve apparatus

Country Status (1)

Country Link
JP (1) JPS59166768A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021120124A1 (en) * 2021-08-03 2023-02-09 Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaft valve body and process valve

Also Published As

Publication number Publication date
JPS59166768A (en) 1984-09-20

Similar Documents

Publication Publication Date Title
US4193417A (en) Fluid check valve device
JPS6479441A (en) Controllable fluid damper assembly
US3076630A (en) Pilot operated valve
JPS6220424B2 (en)
US2895707A (en) Valve construction
JPH0432272B2 (en)
US2129958A (en) Float valve silencer
US2164622A (en) Siphon-breaking device
JPS6131263Y2 (en)
JP2524632Y2 (en) Main intake air valve
JPS5850379A (en) Fluid control valve
CN220622854U (en) Shutoff check valve
JP2844743B2 (en) Backflow prevention device
US2829666A (en) Accumulator control valve
US3599655A (en) Automatic refill device having fluidically operated control
KR100414161B1 (en) automatic valve controled by different pressure
JPH041425Y2 (en)
EP0063335A1 (en) Valve
CN204852539U (en) Static hand power device of solenoid valve
JPH08200542A (en) Float structure of air valve
JP2961342B2 (en) Pilot type steam trap
EP0061252A1 (en) Tube-diaphragm valve
JPS5814589B2 (en) non-return valve
JP3064454U (en) Constant pressure valve
JPH02138581A (en) Air valve