JPS62204177A - Pulse compressing radar transmitter and receiver - Google Patents

Pulse compressing radar transmitter and receiver

Info

Publication number
JPS62204177A
JPS62204177A JP61046760A JP4676086A JPS62204177A JP S62204177 A JPS62204177 A JP S62204177A JP 61046760 A JP61046760 A JP 61046760A JP 4676086 A JP4676086 A JP 4676086A JP S62204177 A JPS62204177 A JP S62204177A
Authority
JP
Japan
Prior art keywords
signal
read
memory
pulse
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61046760A
Other languages
Japanese (ja)
Other versions
JP2534659B2 (en
Inventor
Motoharu Fukai
深井 元春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61046760A priority Critical patent/JP2534659B2/en
Publication of JPS62204177A publication Critical patent/JPS62204177A/en
Application granted granted Critical
Publication of JP2534659B2 publication Critical patent/JP2534659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To easily realize various pulse compression and modulation characteristics by generating a transmit signal and compressing pulses digitally and principally, in a read-only memory with clock signals generated by a common generation source. CONSTITUTION:The digitized signal which is generated by the read-only memory 5 under sequence control 4 is D/A-converted 6, passed through a filter 7 and a mixer 8, and amplified 9 to a specific electric power level, and the signal is led to an antenna through a duplexer 10 and radiated in the air. Then, a radio wave reflected by a target is passed through the antenna and duplexer 10 and amplified 11, and the amplified signal is A/D-converted 13 through a mixer 12 and stored 14. The received signal which is stored 14 is read out with a readout address specifying signal from a readout address specifying circuit while a signal corresponding to the transmit pulse width is shifted by each time corresponding to distance resolution. A correlation signal, on the other hand, is stored in a correlator 15, which multiplies the input received signal by the correlation signal to perform pulse compression.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、パルス圧縮し−ダ送受信装置に関し特に送信
信号の発生手段および受信信号のパルス圧縮手段のディ
ジタル化に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pulse compressor transmitter/receiver, and more particularly to digitization of a transmission signal generation means and a reception signal pulse compression means.

(従来の技術) 通常のパルスレーダにおいてその探知距離を増大するた
めには送信平均電力を大きくする必要があるが尖頭電力
を大きくする点については技術的限界があるため、他の
手段として送信パルス幅を広くする手段が考えられる。
(Prior art) In order to increase the detection distance of a normal pulse radar, it is necessary to increase the average transmission power, but since there is a technical limit to increasing the peak power, other means of transmitting A possible method is to widen the pulse width.

しかし送信パルス幅を広くすると距離分解能が低下する
という問題があり、結局、探知距離を増大させることと
距離分解能を向上させることとは衝突する性能要求とい
うことになる。
However, there is a problem in that increasing the transmission pulse width reduces distance resolution, and as a result, increasing the detection distance and improving distance resolution are conflicting performance requirements.

この問題の解決手段として考えられているのがパルス圧
縮技術を用いたパルス圧縮レーダ装置である。このパル
ス圧縮技術は、送信平均電力を増大させるために送信パ
ルス幅を広くする一方、パルス幅内において所定の時間
対周波数変化率で周波数変調を掛けて送信し、目標物か
ら反射されて受信された信号は、送信パルス内における
時間対周波数変化率と丁度逆の周波数遅延時間特性を有
する遅延フィルタを通過させることによりパルス内に順
番に分散されていた周波数成分が1点に集中されて、急
峻なインパルス状になることを利用している。このこと
は近接する2つの目標が分離識別し易くなることを意味
している。
A pulse compression radar system using pulse compression technology is considered as a solution to this problem. This pulse compression technology widens the transmission pulse width in order to increase the average transmission power, and at the same time applies frequency modulation at a predetermined time-to-frequency change rate within the pulse width. The signal is passed through a delay filter that has a frequency delay time characteristic that is exactly opposite to the time-to-frequency change rate in the transmitted pulse, so that the frequency components that were sequentially dispersed in the pulse are concentrated at one point, resulting in a sharp signal. It takes advantage of the fact that it becomes an impulse. This means that it becomes easier to separate and identify two nearby targets.

即ち、パルス圧縮技術は送信パルス幅を広げることによ
り探知距離の増大が図れるとともに高分解能が得られる
という技術である。
That is, pulse compression technology is a technology that can increase the detection distance and obtain high resolution by widening the transmission pulse width.

第2図はパルスレーダ一般の構成を示すブロック図であ
る。本構成では、送信装置61とデュプレクサ62と空
中線63と受信装置64とを備えており、送信装置61
の出力はデュプレクサ62を通じて空中線63から目標
物に対して発射され、目標物から反射により戻って来た
電波を受信してふたたびデュプレクサ62を通して受信
装置64へ入力する。そして、パルス圧縮レーダ装置に
おいては、送信装置61中に送信パルス幅内において周
波数変調を施す手段が設けられており、受信装置64内
に送信パルス内の周波数変調と丁度逆の周波数対遅延時
間特性を有する遅延フィルタが設けられている0次に周
波数変調の詳細を第3図および第4図により説明する。
FIG. 2 is a block diagram showing the general configuration of a pulse radar. This configuration includes a transmitting device 61, a duplexer 62, an antenna 63, and a receiving device 64.
The output is emitted from an antenna 63 to a target object through a duplexer 62, and the radio waves reflected from the target object are received and inputted to a receiving device 64 through the duplexer 62 again. In the pulse compression radar device, the transmitting device 61 is provided with a means for frequency modulating within the transmission pulse width, and the receiving device 64 has a frequency versus delay time characteristic that is exactly opposite to the frequency modulation within the transmitted pulse. Details of zero-order frequency modulation in which a delay filter having a delay filter is provided will be explained with reference to FIGS. 3 and 4.

その一つは、第3図に示すVCO<電圧制御発振器)を
有するPLL (Phase Locked Loop
:位相同期ループ)周波数変調器を用いた送信装置であ
る。
One of them is a PLL (Phase Locked Loop
: Phase-locked loop) is a transmitting device using a frequency modulator.

周波数発生器70の出力を同期信号発生器71に印加し
、これから安定化した周波数の信号をPLL変調回路7
3に印加し、同時に掃引電圧発生回路72を通して、直
線周波数変調に必要な傾斜信号を加え、PLL変調回路
73から出力する直線周波数変調された信号は同期信号
発生器71の出力で制御されるスイッチ回路74でその
出力信号の立上り立下り部分を整形され周波数変換器7
5に入力される。ここに入力された信号は送信周波数に
変換されて、電力増幅器76で必要な電力の送信出力信
号となって、デュプレクサ77を介して空中線78から
放射される。
The output of the frequency generator 70 is applied to the synchronization signal generator 71, and the stabilized frequency signal is sent to the PLL modulation circuit 7.
3 and simultaneously add a slope signal necessary for linear frequency modulation through the sweep voltage generation circuit 72, and the linear frequency modulated signal output from the PLL modulation circuit 73 is controlled by the output of the synchronization signal generator 71. The rising and falling parts of the output signal are shaped by the circuit 74 and the frequency converter 7
5 is input. The signal inputted here is converted to a transmission frequency, becomes a transmission output signal with the necessary power by a power amplifier 76, and is radiated from an antenna 78 via a duplexer 77.

目標物からの反射信号(受信信号)は空中線78で受信
され、デュプレクサ77を介して受信装置79に入力さ
れパルス圧縮され受信信号313となって出力される。
A reflected signal (received signal) from the target is received by an antenna 78, inputted to a receiving device 79 via a duplexer 77, pulse-compressed, and outputted as a received signal 313.

他の一つは、第4図に示すS AW (Acousti
c 5urfase Wave:弾性表面波)利用の遅
延分散素子を用いた装置である。
The other one is the SAW (Acousti
This is a device using a delay dispersion element that utilizes 5 surface acoustic waves (surface acoustic waves).

周波数発生器80の出力を同期信号発生器81に印加し
、これから安定化した周波数の信号をパルス変調回路8
2を通して矩形包絡線の短パルス波とし、SAW遅延分
散素子83に入力する。
The output of the frequency generator 80 is applied to the synchronization signal generator 81, and the stabilized frequency signal is sent to the pulse modulation circuit 8.
2 to form a short pulse wave with a rectangular envelope, and input it to the SAW delay dispersion element 83.

SAW遅延分散索子83がらは周波数変調された信号が
出力され、同期信号発生器81の出方で制御されている
スイッチ回路84に入力されてその立上り立下り部分が
整形され、周波数変換器85へ入力される0周波数変換
器85へ入力された信号は送信周波数に変換されて、電
力増幅器86で必要な電力の送信出力信号に増幅されて
、デュプレクサ87を介して空中!88がら放射される
A frequency modulated signal is output from the SAW delay dispersion probe 83 and input to a switch circuit 84 controlled by the output of the synchronizing signal generator 81, where its rising and falling parts are shaped and sent to a frequency converter 85. The signal input to the zero frequency converter 85 is converted to a transmission frequency, amplified by a power amplifier 86 to a transmission output signal with the required power, and transmitted to the air via a duplexer 87! It is radiated from 88.

目標物からの反射信号は空中線88で受信され、デュプ
レクサ87を介して受信装置8つに入力され受信信号4
13となって出力される。
The reflected signal from the target is received by the antenna 88, and is inputted to eight receiving devices via the duplexer 87 to receive the received signal 4.
13 and is output.

(発明が解決しようとする問題点) 以上のように、従来のパルス圧縮レーダ装置の送信パル
ス内周波数変調手段としてはPLL変調回路又はSAW
遅延分散素子が用いられているが、例えばSAW遅延分
散素子としてよく用いられる水晶の周波数温度係数は一
24X10−’/”Cであり、ゲルマニウム酸ビスマス
の周波数温度係数は一122X10−6/’Cである。
(Problems to be Solved by the Invention) As described above, as the frequency modulation means within the transmission pulse of the conventional pulse compression radar device, the PLL modulation circuit or the SAW
A delay dispersion element is used. For example, the frequency temperature coefficient of crystal often used as a SAW delay dispersion element is -24X10-'/'C, and the frequency temperature coefficient of bismuth germanate is -122X10-6/'C. It is.

このようなSAW遅延分散素子を用いた場合、環境温度
が変化することにより当然その出力周波数が変化するこ
とになる。
When such a SAW delay dispersion element is used, its output frequency naturally changes as the environmental temperature changes.

このことは送信パルス幅内の時間に対する周波数の変化
の割合(チャープ率)が変化することになり受信装置に
設けられている相関フィルタの特性との不一致を招くこ
とになる。
This causes a change in the rate of change in frequency with respect to time within the transmission pulse width (chirp rate), resulting in a mismatch with the characteristics of the correlation filter provided in the receiving device.

その結果、受信信号に対してパルス圧縮処理を行っても
充分なパルス圧縮が行われず距離分解能が尖化するとい
う問題がある。そして周波数温度係数に対する要求は信
号帯域幅(送信パルス幅内における最大量小の周波数差
)と遅延分散時間が大になる程厳しくなる4例えばチャ
ープ率の変動許容差が±0.1%とし、SAW遅延分散
素子としてゲルマニウム酸ビスマスを用いた場合、前述
の温度係数(−122X10−6/”C)から、許容温
度変化範囲は約8.2℃、水晶の場合でも約42℃とな
る。
As a result, there is a problem in that even if pulse compression processing is performed on the received signal, sufficient pulse compression is not achieved and the distance resolution becomes sharp. The requirements for the frequency temperature coefficient become stricter as the signal bandwidth (maximum small frequency difference within the transmission pulse width) and delay dispersion time become larger4.For example, assume that the chirp rate fluctuation tolerance is ±0.1%, When bismuth germanate is used as the SAW delay dispersion element, the allowable temperature change range is about 8.2°C from the above-mentioned temperature coefficient (-122 x 10-6/''C), and even in the case of quartz, it is about 42°C.

従って、ゲルマニウム酸ビスマスの場合には送信装置が
地上に設けられる場合でも複雑な温度補償回路を付加す
るか或いは恒温槽に入れるかする必要があり、水晶の場
合でも航空機搭載や衛星搭載の場合にはやはり温度補償
回路や恒温槽なしでは使用不能になる。しかし、搭載機
器の場合には重量や占有空間に大きな制約があるため問
題となる0本発明の目的は、上記従来技術における問題
点に顧みて、周波数変調のかかっているパルス信号の発
生と受信された信号のパルス圧縮処理を連動するクロッ
ク信号によってディジタル的に行わせることにより環境
温度変化による問題を解決しようとするものである。
Therefore, in the case of bismuth germanate, even if the transmitting device is installed on the ground, it is necessary to add a complicated temperature compensation circuit or put it in a constant temperature oven, and even in the case of crystal, it is necessary to install it on an aircraft or satellite. However, it becomes unusable without a temperature compensation circuit or thermostat. However, in the case of on-board equipment, there are significant restrictions on weight and occupied space, which poses a problem.The purpose of the present invention is to generate and receive frequency-modulated pulse signals in consideration of the problems in the prior art described above. This method attempts to solve problems caused by environmental temperature changes by digitally performing pulse compression processing of the generated signals using an interlocking clock signal.

(問題点を解決するための手段) 本発明は、上記の目的を達成するために次の手段構成を
有する。即ち、本発明のパルス圧縮レーダ送受信装置は
、パルス圧縮レーダの送信信号発生手段として、シーケ
ンス制御信号を受けて、所定の時間幅内において予め定
められた周波数変化率に従って周波数変調が施されたア
ナログ信号に変換されるべきディジタル信号を出力する
送信読出し専用メモリと; レーダの送信パルス繰り返
し周波数信号を受けてパルス繰り返し毎に読出しアドレ
ス指定のためのシーケンス制御信号を出力し読出し専用
メモリへ送出するシーケンス制御器と; 前記読出し専
用メモリから読出されたディジタル信号をアナログ信号
に変換するD/A変換器と; を有し、受信信号のパル
ス圧縮手段として、受信信号をディジタル信号に変換す
るA/D変換器と; 該A/D変換器からの受信信号を
記憶する受信信号メモリと; 該受信信号メモリに記憶
された受信信号から送信パルス幅相当の信号を設定距離
分解能に応じた時間幅ずつ移動させて読出すための読出
しアドレス指定信号を前記受信信号メモリへ出力する読
出しアドレス指定回路と; 時間対周波数特性において
送信信号と相互相関のある相関信号を記憶している相関
信号読出し専用メモリと: 相関信号読出し専用メモリ
からの相関信号を前記受信信号メモリからの送信パルス
幅相当の読出し受信信号に対応させて出力させる相関信
号読出し制御信号を相関信号読出し専用メモリへ送出す
る制御器と; 前記受信信号メモリからの受信信号と前
記相関信号読出し専用メモリからの相関信号とを受けて
送信パルス幅相当区分毎に乗算することによりパルス圧
縮し、その結果を加算して出力する相関器と; を有し
、前記送信信号発生手段およびパルス圧縮手段へ発生源
を共通にするクロックパルスを供給する同期信号発生回
路を有することを特徴とするパルス圧縮レーダ送受信装
置である。
(Means for Solving the Problems) The present invention has the following means configuration to achieve the above object. That is, the pulse compression radar transmitting/receiving device of the present invention serves as a transmission signal generating means for the pulse compression radar, and receives a sequence control signal and receives an analog signal which is frequency-modulated according to a predetermined rate of frequency change within a predetermined time width. A transmission read-only memory that outputs a digital signal to be converted into a signal; A sequence that receives a radar transmission pulse repetition frequency signal and outputs a sequence control signal for specifying a read address for each pulse repetition and sends it to the read-only memory. a controller; a D/A converter that converts the digital signal read from the read-only memory into an analog signal; and an A/D converter that converts the received signal into a digital signal as pulse compression means for the received signal. a converter; a received signal memory that stores the received signal from the A/D converter; moves a signal equivalent to the transmission pulse width from the received signal stored in the received signal memory by a time width corresponding to a set distance resolution; a read addressing circuit that outputs a read addressing signal for readout to the received signal memory; a correlated signal read only memory that stores a correlation signal that is cross-correlated with the transmitted signal in time versus frequency characteristics; a controller that sends a correlation signal read control signal to the correlation signal read-only memory to output the correlation signal from the correlation signal read-only memory in correspondence with a read reception signal corresponding to a transmission pulse width from the received signal memory; a correlator that receives the received signal from the signal memory and the correlation signal from the correlation signal read-only memory, compresses the pulse by multiplying it for each division corresponding to the transmission pulse width, adds the results, and outputs the result; The pulse compression radar transmitting/receiving apparatus is characterized in that it has a synchronizing signal generating circuit that supplies clock pulses having a common source to the transmitting signal generating means and the pulse compressing means.

(作 用) 以下、本発明の作用について述べる。(for production) The effects of the present invention will be described below.

本発明のパルス圧縮レーダ送受信装置は、上記手段構成
において述べた如く送信信号の発生は、所定の時間幅内
において予め定められた周波数変化率に従って周波数変
調(Frequency Modulation: F
M)が施されたアナログ信号に変換されるべきディジタ
ル信号を記憶している送信読出し専用メモリをシーケン
ス制御器からのシーケンス制御信号によって制御するこ
とによりディジタル化されたFM信号が読み出される。
As described in the above means configuration, the pulse compression radar transmitting/receiving device of the present invention generates a transmission signal by frequency modulation (Frequency Modulation: F) according to a predetermined frequency change rate within a predetermined time width.
A digitized FM signal is read out by controlling a transmission read-only memory storing a digital signal to be converted into an analog signal subjected to M) by a sequence control signal from a sequence controller.

シーケンス制御信号はレーダ送信パルス繰り返し毎に送
信読出専用メモリから前記ディジタル化FM信号を読出
すための読出しアドレス指定を行う。送信読出し専用メ
モリから読出された信号はD/A変換器でアナログ信号
に変換され、その後従来のレーダ装置と同様に周波数変
換器で所定の送信周波数に周波数変換された後、電力増
幅器によって所定の電力レベル迄増幅され、デュプレク
サを介して空中線へ導かれ空間へ放射される。目標物か
ら反射されて戻って来た電波は空中線、デュプレクサを
経由して、従来のレーダ装置同様、増幅器で増幅され、
次いで周波数変換器で以後の処理が行い易い周波数に変
換される。本発明のパルス圧縮レーダのパルス圧縮は、
周波数変換された受信信号をA/D変換器でディジタル
信号に変換し、受信信号メモリに記憶させる。記憶され
た受信信号は、読出しアドレス指定回路からの読出しア
ドレス指定信号によって送信パルス幅相当の信号を距離
分解能に対応した時間ずつ移動させて読み出す。読み出
された信号は相関器に加えられる。     ′一方相
関器には相関信号読出し専用メモリからの相関信号が加
えられている。相関信号読出し専用メモリには送信信号
読出し専用メモリに記憶されている信号と時間対周波数
特性において傾斜が丁度逆になる関係の相関信号が記憶
されており、制御器からの相関信号読出し制御信号を受
けて、前記受信信号メモリからの送信パルス幅相当の読
出し受信信号に対応して相関信号を出力する。
The sequence control signal designates a read address for reading the digitized FM signal from the transmit read-only memory for each repetition of the radar transmit pulse. The signal read from the transmission read-only memory is converted into an analog signal by a D/A converter, then frequency-converted by a frequency converter to a predetermined transmission frequency, similar to conventional radar equipment, and then converted to a predetermined transmission frequency by a power amplifier. It is amplified to a power level, guided to an antenna via a duplexer, and radiated into space. The radio waves reflected from the target object go through an antenna and a duplexer, and are amplified by an amplifier, similar to conventional radar equipment.
Next, a frequency converter converts the signal to a frequency that is easier to perform subsequent processing. The pulse compression of the pulse compression radar of the present invention is as follows:
The frequency-converted received signal is converted into a digital signal by an A/D converter and stored in a received signal memory. The stored reception signal is read out by moving a signal corresponding to the transmission pulse width by a time interval corresponding to the distance resolution using a read address designation signal from a read address designation circuit. The read signal is applied to a correlator. 'On the other hand, the correlation signal from the correlation signal read-only memory is applied to the correlator. The correlation signal read-only memory stores a correlation signal whose slope is exactly opposite to the signal stored in the transmission signal read-only memory in terms of time versus frequency characteristics, and the correlation signal read control signal from the controller is stored in the correlation signal read-only memory. In response, a correlation signal is output in response to the read reception signal corresponding to the transmission pulse width from the reception signal memory.

相関器では入力された受信信号と相関信号とを乗算する
ことによりパルス圧縮が行われる。
The correlator performs pulse compression by multiplying the input received signal and the correlation signal.

そして、以上述べて来た送信信号の発生およびパルス圧
縮は発生源を共通にするクロック信号によりディジタル
的に行われる。
The transmission signal generation and pulse compression described above are performed digitally using a clock signal that has a common source.

従って、従来装置のPLL変調回路やSAW遅延分散素
子に較べ環境温度の変化の影響を受けに<<、仮に温度
変化の影響によってクロック周波数に多少の変動が生じ
たとしても、それは送信信号の発生手段とパルス圧縮手
段に共通であるため、一方だけが変化した場合のような
影響は現われず分解能は影響を受けない。
Therefore, compared to PLL modulation circuits and SAW delay dispersion elements of conventional devices, they are less affected by environmental temperature changes. Since this is common to both the pulse compression means and the pulse compression means, the effect that would occur if only one of them were changed does not appear, and the resolution is not affected.

また、本発明装置では送信読出し専用メモリと相関信号
読出し専用メモリの記憶内容を変えるだけで種々のパル
ス圧縮変調特性を容易に実現できる。
Further, in the device of the present invention, various pulse compression modulation characteristics can be easily realized by simply changing the storage contents of the transmission read-only memory and the correlation signal read-only memory.

(実 施 例) 次に本発明について実施例を示す図面を参照して詳細に
説明する。第1図は本発明の一実施例の構成を示すブロ
ック図である。
(Embodiments) Next, the present invention will be described in detail with reference to drawings showing embodiments. FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

本発明は、あらかじめ周波数変調された送信信号をディ
ジタル化してROM (読出し専用メモリ)へ格納して
おき、送信ごとに読出してD/A変換して送信信号とし
、受信時には受信信号をA/D変換し、送信信号と相互
相関のある相関器を通すことによってパルス圧縮するも
ので、クロックパルス信号を安定化しておけば環境条件
が変っても殆ど変化のない安定した送信信号および圧縮
パルスが得られる。なお変調特性(1個の送信パルスの
中の時間と周波数との関係)は直線FM変調波で代表さ
れるがメモリを入れ替えることにより、これに限らず非
直線FM変調波も容易に得られる。
The present invention digitizes a frequency-modulated transmission signal in advance and stores it in a ROM (read-only memory), reads it every time it is transmitted, performs D/A conversion, and converts the received signal into an A/D signal. The clock pulse signal is converted and compressed by passing it through a correlator that has a cross-correlation with the transmitted signal.If the clock pulse signal is stabilized, stable transmitted signals and compressed pulses that hardly change even if the environmental conditions change can be obtained. It will be done. The modulation characteristic (the relationship between time and frequency within one transmitted pulse) is typically represented by a linear FM modulated wave, but by replacing the memory, not only this but also a non-linear FM modulated wave can be easily obtained.

ここで本発明の一実施例の構成と動作について説明する
。安定化発振器1から出力される安定化周波数信号10
8は、同期信号発生器2に入力される。同期信号発生器
2は、送信間隔と送信時間を定める送信繰返周波数信号
102を出力する繰返し周波数発生器3に制御信号を出
力する。
Here, the configuration and operation of an embodiment of the present invention will be explained. Stabilized frequency signal 10 output from stabilized oscillator 1
8 is input to the synchronization signal generator 2. The synchronization signal generator 2 outputs a control signal to the repetition frequency generator 3, which outputs a transmission repetition frequency signal 102 that determines the transmission interval and transmission time.

また、同期信号発生器2は、送信読出し専用メモリ5の
読出し番号を指定するシーケンス制御器4に安定化信号
を供給し、送信読出し専用メモリ5とD/A変換器6に
はそれぞれ読出しタロツク信号105とクロックパルス
信号106を出力する送信読出し専用メモリ5では、シ
ーケンス制御器4から読出し番地指定信号103を受は
送信繰返し周波数に従って読出し番地を指定されると、
読出しクロック信号105に従ってあらかじめ格納され
ているディジタル信号が出力され、D/A変換器6でア
ナログ信号に変換され、周波数変調された送信信号10
7となってろ波器7へ入力する。ろ波器7は低域または
帯域ろ波器で構成され、上述のアナログ信号の不要成分
を除去して混合器8へ入力する。混合器8では安定化発
振器1がらの安定化周波数信号f1によって送信周波数
に変換される。電力増幅器9は、必要なレベルまで送信
信号を増幅し、送信出力信号として送信装置100から
出力する。
Further, the synchronization signal generator 2 supplies a stabilizing signal to the sequence controller 4 that specifies the read number of the transmission read-only memory 5, and the transmission read-only memory 5 and the D/A converter 6 each receive a read tarock signal. The transmission read-only memory 5 which outputs the clock pulse signal 105 and the clock pulse signal 106 receives the read address designation signal 103 from the sequence controller 4, and when the read address is designated according to the transmission repetition frequency,
A pre-stored digital signal is output according to the read clock signal 105, converted into an analog signal by the D/A converter 6, and frequency-modulated as a transmission signal 10.
7 and is input to the filter 7. The filter 7 is composed of a low-pass or bandpass filter, and removes unnecessary components from the analog signal and inputs it to the mixer 8 . In the mixer 8, the stabilized frequency signal f1 from the stabilized oscillator 1 is converted into a transmission frequency. Power amplifier 9 amplifies the transmission signal to a required level and outputs it from transmitter 100 as a transmission output signal.

送信出力信号はデュプレクサ10を介して空中線から目
標物に放射される。目標物からの反射信号は空中線で受
信され、デュプレクサ10を介して受信装置101へ送
られる。増幅器11は、受信信号を増幅し混合器12に
出力する。
The transmitted output signal is radiated from the antenna to the target via the duplexer 10. The reflected signal from the target object is received by an antenna and sent to the receiving device 101 via the duplexer 10. Amplifier 11 amplifies the received signal and outputs it to mixer 12 .

混合器12は、安定化発振器1から入力される安定化し
た周波数信号f2によってA/D変換できる低い周波数
に周波数変換し、A/D変換器13にする。A/D変換
器13は、同期信号発生器2から出力されるクロックパ
ルス信号に従ってA/D変換する。A/D変換された受
信信号は受信信号メモリ14に蓄えられる。
The mixer 12 converts the frequency of the stabilized frequency signal f2 inputted from the stabilized oscillator 1 to a low frequency that can be A/D converted, and converts it into an A/D converter 13. The A/D converter 13 performs A/D conversion according to the clock pulse signal output from the synchronization signal generator 2. The A/D converted received signal is stored in the received signal memory 14.

制御器16は、同期信号発生器2がらの制御器用クロッ
ク信号110をもとに受信信号メモリ14および相関器
15に信号を送る。制御器16がら受信信号メモリ14
に送られる読出し番地指定信号111は、メモリに記憶
された受信データを読み出す、ここで制御器16は受信
信号の読出しアドレス指定回路の機能と相関信号読出し
制御信号を送出する制御器の機能とを有しており、相関
信号読出し専用メモリは相関器15の中に含まれている
。受信データは、繰返し周波数発生器3がら制御器16
に送られる信号によって送信パルス繰り返し周期毎にリ
セットされる。
The controller 16 sends a signal to the received signal memory 14 and the correlator 15 based on the controller clock signal 110 from the synchronization signal generator 2. Controller 16 as well as received signal memory 14
The read address designation signal 111 sent to reads the received data stored in the memory. Here, the controller 16 has the function of a read address designation circuit for the received signal and the function of a controller for sending out a correlation signal read control signal. The correlation signal read-only memory is included in the correlator 15. The received data is transferred from the repetition frequency generator 3 to the controller 16.
It is reset every transmission pulse repetition period by a signal sent to .

今、送信パルス幅をτ、最小周波数をfl、最大周波数
をf2とし直線状の周波数変調がががっている振幅一定
の送信パルスを第5図に示す。
Now, FIG. 5 shows a transmission pulse with a constant amplitude in which the transmission pulse width is τ, the minimum frequency is fl, and the maximum frequency is f2, and the linear frequency modulation is steep.

送信読出し専用メモリ5には、D/A変換器6を通すと
第5図に示すようなアナログ信号が得られるようなディ
ジタル符号化された信号が記憶されている。このような
信号を第6図に示す周波数対遅延時間特性を有する回路
即ち時間と周波数の関係が逆傾斜を有する回路を通過さ
せると第7図のようにパルス幅が 1/Δf(但しΔf
=f、−f1  これを信号帯域幅という)で振幅がJ
Tll”のパルスが得られることは広く知られている。
The transmission read-only memory 5 stores digitally encoded signals such that when passed through the D/A converter 6, an analog signal as shown in FIG. 5 is obtained. When such a signal is passed through a circuit having the frequency vs. delay time characteristic shown in FIG. 6, that is, a circuit in which the relationship between time and frequency has an inverse slope, the pulse width becomes 1/Δf (however, Δf
= f, -f1 (this is called the signal bandwidth) and the amplitude is J
It is widely known that a pulse of "Tll" can be obtained.

本実施例では制御器16がらの相関信号読出し制御信号
によって、相関器15内の相関信号読出し専用メモリか
ら相関信号を読出し受信信号と乗算することにより、あ
たかも第6図の如き周波数遅延時間特性を有する回路を
通過させたと等価になるように相関信号読出し専用メモ
リにディジタル化された信号が記憶されている。
In this embodiment, the correlation signal is read out from the correlation signal read-only memory in the correlator 15 using the correlation signal readout control signal from the controller 16, and multiplied by the received signal, so that the frequency delay time characteristic as shown in FIG. 6 is obtained. The digitized signal is stored in the correlation signal read-only memory in such a manner that it is equivalent to passing through a circuit having the correlation signal.

受信信号と相関信号との乗算は、受信信号メモリから送
信パルス幅相当の信号を1区分とし、信号帯域幅によっ
て定まる距離分解能に応じた時間幅ΔTずつ移動させて
読出し、各区分毎に相関信号と乗算が行われパルス圧縮
が行われる。
To multiply the received signal and the correlation signal, the signal corresponding to the transmission pulse width is read out from the received signal memory as one section, moved by a time width ΔT according to the distance resolution determined by the signal bandwidth, and the correlation signal is calculated for each section. Multiplication is performed and pulse compression is performed.

圧縮された信号はそのままのタイミングで加算されて、
出力される。このように時間幅ΔTずつ移動させて、圧
縮を行っていくタイミングは制御器16からの読出し番
地指定信号111および制御信号112によって定めら
れる。
The compressed signals are added at the same timing,
Output. The timing at which compression is performed by moving by a time width ΔT in this manner is determined by the read address designation signal 111 and control signal 112 from the controller 16.

(発明の効果) 以上説明したように、本発明のパルス圧縮レーダ送受信
装置の送信信号の発生およびパルス圧縮は、読出し専用
メモリを中心として、発生源を共通にするクロック信号
によりディジタル的に行っているため、従来装置のPL
L変調回路やSAW遅延分散素子に較べ温度変化の影響
を受けにくく、仮に温度変化の影響によってクロック周
波数に多少の変動が生じたとしてもそれは送信信号の発
生手段とパルス圧縮手段に共通であるため、従来装置に
おけるように一方だけ或いは両手段が独立に変化する場
合のような影響は現われず分解能は劣化しないという利
点がある。
(Effects of the Invention) As explained above, the transmission signal generation and pulse compression of the pulse compression radar transmitting/receiving device of the present invention are digitally performed using a clock signal having a common source, centered on a read-only memory. PL of conventional equipment
Compared to L modulation circuits and SAW delay dispersion elements, it is less affected by temperature changes, and even if the clock frequency changes slightly due to temperature changes, it is common to the transmission signal generation means and pulse compression means. , there is an advantage that the resolution does not deteriorate because there is no effect unlike in the conventional apparatus when only one means or both means are changed independently.

また、本発明装置では送信読出し専用メモリと相関信号
読出し専用メモリの記憶内容を変えるだけで種々のパル
ス圧縮変調特性を容易に実現でき  ′るという利点が
ある。
Furthermore, the device of the present invention has the advantage that various pulse compression modulation characteristics can be easily realized by simply changing the storage contents of the transmission read-only memory and the correlation signal read-only memory.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示すプロッり図、第
2図はパルスレーダ装置一般の構成を示すブロック図、
第3図は従来のパルス圧縮レーダ装置の構成の一例を示
すブロック図、第4図は従来のパルス圧縮レーダ装置の
他の構成の例を示すブロック図、第5図は直線状周波数
変調がかかっている送信パルス特性図、第6図はパルス
圧縮手段の周波数対遅延時間特性図、第7図はパルス圧
縮された波形図である。 1・・・・・・安定化発振器、2・・・・・・周期信号
発生器、3・・・・・・繰返し周波数発生器、 4・・
・・・・シーケンス制御器、 5・・・・・・送信読出
し専用メモリ、6・・・・・・D/A変換器、 7・・
・・・・ろ波器、 8・・・・・・混合器、 9・・・
・・・電力増幅器、 10・・・・・・デュプレクサ、
 11・・・・・・増幅器、 12・・・・・・混合器
、13・・・・・・A/D変換器、 14・・・・・・
受信信号メモリ、 15・・・・・・相関器、 16・
・・・・・制御器。 代理人 弁理士  八 幡  義 博 パルスし−グ焚−ffs−−f#支の君い民第2図 、従来0ノvルス万J宿レーグi僅ダニ4銭例第 3 
 図 従来のノVルス万J宿し−グ装置の4也のL隊威例率 
4  図 A(東状廁浪数畑力でヵ\力\っているX、傅ハっシス
第 5 図 )Vルス天J宿手段の周仮Oメ4優し簸埼間朝→1第 
C図 パルス圧N11されヒ彼形 第 7 図
FIG. 1 is a plot diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a block diagram showing the configuration of a general pulse radar device,
FIG. 3 is a block diagram showing an example of the configuration of a conventional pulse compression radar device, FIG. 4 is a block diagram showing another example of the configuration of a conventional pulse compression radar device, and FIG. 5 is a block diagram showing an example of the configuration of a conventional pulse compression radar device. FIG. 6 is a frequency vs. delay time characteristic diagram of the pulse compression means, and FIG. 7 is a pulse compressed waveform diagram. 1... Stabilizing oscillator, 2... Periodic signal generator, 3... Repetition frequency generator, 4...
... Sequence controller, 5 ... Transmission read-only memory, 6 ... D/A converter, 7 ...
...Filter, 8...Mixer, 9...
...Power amplifier, 10...Duplexer,
11...Amplifier, 12...Mixer, 13...A/D converter, 14...
Received signal memory, 15... Correlator, 16.
...Controller. Agent: Yoshihiro Yahata, Patent Attorney, Pulse Shi-gu-burning-ffs--f# Branch-no-Kimi-min Figure 2, Conventional 0 Nov Rus, 10,000 J Inns, I, Only 4 Sen, Case No. 3
Figure 4's L squad prestige rate of conventional NOV Luss 10,000 J storage device
4 Diagram A (X, Fu Hassis, who is in power with the power of the eastern state, Liang, and power, Figure 5)
Figure C Pulse pressure N11

Claims (1)

【特許請求の範囲】[Claims] パルス圧縮レーダの送信信号発生手段として、シーケン
ス制御信号を受けて、所定の時間幅内において予め定め
られた周波数変化率に従って周波数変調が施されたアナ
ログ信号に変換されるべきディジタル信号を出力する送
信読出し専用メモリと;レーダの送信パルス繰り返し周
波数信号を受けてパルス繰り返し毎に読出しアドレス指
定のためのシーケンス制御信号を出力し読出し専用メモ
リへ送出するシーケンス制御器と;前記読出し専用メモ
リから読出されたディジタル信号をアナログ信号に変換
するD/A変換器と;を有し、受信信号のパルス圧縮手
段として、受信信号をディジタル信号に変換するA/D
変換器と;該A/D変換器からの受信信号を記憶する受
信信号メモリと;該受信信号メモリに記憶された受信信
号から送信パルス幅相当の信号を設定距離分解能に応じ
た時間幅ずつ移動させて読出すための読出しアドレス指
定信号を前記受信信号メモリへ出力する読出しアドレス
指定回路と;時間対周波数特性において送信信号と相互
相関のある相関信号を記憶している相関信号読出し専用
メモリと;相関信号読出し専用メモリからの相関信号を
前記受信信号メモリからの送信パルス幅相当の読出し受
信信号に対応させて出力させる相関信号読出し制御信号
を相関信号読出し専用メモリへ送出する制御器と;前記
受信信号メモリからの受信信号と前記相関信号読出し専
用メモリからの相関信号とを受けて送信パルス幅相当区
分毎に乗算し、その結果を加算することによりパルス圧
縮を行う相関器と;を有し、前記送信信号発生手段およ
びパルス圧縮手段へ発生源を共通にするクロックパルス
を供給する同期信号発生回路を有することを特徴とする
パルス圧縮レーダ送受信装置。
As a transmission signal generation means for a pulse compression radar, a transmission device receives a sequence control signal and outputs a digital signal to be converted into an analog signal frequency-modulated according to a predetermined frequency change rate within a predetermined time width. a read-only memory; a sequence controller that receives a transmission pulse repetition frequency signal from the radar and outputs a sequence control signal for specifying a read address for each pulse repetition and sends it to the read-only memory; a D/A converter that converts a digital signal into an analog signal; and an A/D converter that converts the received signal into a digital signal as a pulse compression means for the received signal.
a converter; a received signal memory that stores the received signal from the A/D converter; moves a signal equivalent to the transmission pulse width from the received signal stored in the received signal memory by a time width according to the set distance resolution; a read addressing circuit that outputs a read addressing signal for readout to the received signal memory; a correlation signal read only memory that stores a correlation signal that is cross-correlated with the transmitted signal in time versus frequency characteristics; a controller that sends a correlation signal read control signal to the correlation signal read-only memory to output the correlation signal from the correlation signal read-only memory in correspondence with a read reception signal corresponding to a transmission pulse width from the received signal memory; a correlator that receives the received signal from the signal memory and the correlation signal from the correlation signal read-only memory, multiplies it for each transmission pulse width equivalent division, and performs pulse compression by adding the results; A pulse compression radar transmitting/receiving device comprising a synchronizing signal generating circuit that supplies clock pulses having a common source to the transmitting signal generating means and the pulse compressing means.
JP61046760A 1986-03-04 1986-03-04 Pulse compression radar transceiver Expired - Lifetime JP2534659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61046760A JP2534659B2 (en) 1986-03-04 1986-03-04 Pulse compression radar transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61046760A JP2534659B2 (en) 1986-03-04 1986-03-04 Pulse compression radar transceiver

Publications (2)

Publication Number Publication Date
JPS62204177A true JPS62204177A (en) 1987-09-08
JP2534659B2 JP2534659B2 (en) 1996-09-18

Family

ID=12756287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61046760A Expired - Lifetime JP2534659B2 (en) 1986-03-04 1986-03-04 Pulse compression radar transceiver

Country Status (1)

Country Link
JP (1) JP2534659B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144209A (en) * 1987-12-01 1989-06-06 Denki Kagaku Kogyo Kk Magnetic recording medium
JP2005277572A (en) * 2004-03-23 2005-10-06 Japan Radio Co Ltd Semiconductor power amplifier and radar transmitter
JP2008292083A (en) * 2007-05-25 2008-12-04 Denso Corp Refrigerant evaporator
KR102012386B1 (en) * 2018-04-16 2019-08-20 국방과학연구소 Apparatus for generating a deception signal for a pulse compression signal and method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135294A (en) * 1977-04-27 1978-11-25 Raytheon Co Chart pulse correlating method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135294A (en) * 1977-04-27 1978-11-25 Raytheon Co Chart pulse correlating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144209A (en) * 1987-12-01 1989-06-06 Denki Kagaku Kogyo Kk Magnetic recording medium
JP2005277572A (en) * 2004-03-23 2005-10-06 Japan Radio Co Ltd Semiconductor power amplifier and radar transmitter
JP2008292083A (en) * 2007-05-25 2008-12-04 Denso Corp Refrigerant evaporator
KR102012386B1 (en) * 2018-04-16 2019-08-20 국방과학연구소 Apparatus for generating a deception signal for a pulse compression signal and method therefor

Also Published As

Publication number Publication date
JP2534659B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
US4123719A (en) Chirp phase distortion detector in a wideband linearization feedback control loop
US2624876A (en) Object detection system
EP0469898A2 (en) Transmitter with dual conversion
US4360812A (en) FM-CW Fuze
US3423754A (en) Sampled radar system
MY126348A (en) Arrangement in a communication system
GB2165425A (en) Apparatus for compensating non- linearities in frequency-modulated signal
GB2090491A (en) Fm transmitter with frequency ramp phase and amplitude correction means
JPH04323583A (en) Transmission and reception part of pulse doppler radar
US4692766A (en) Linearizer frequency discriminator for frequency modulated radar transmitters
US3167714A (en) Signal-reference time-duplexed microwave radiometer
JPS62204177A (en) Pulse compressing radar transmitter and receiver
US3281842A (en) Electronic means for suppressing range side lobes of a compressed pulse signal
US2436627A (en) Dually frequency modulated altimeter
US4739331A (en) Channelized receiver continuous wave radar system
US4019185A (en) Phase modulation apparatus
US3101470A (en) Doppler radar
US3514718A (en) Apparatus for linearizing the output frequency variation rate of voltage tunable oscillators or the like
US3032717A (en) Method and apparatus for multiplexing and delaying normal and coherent video on one delay line
US5061933A (en) Short-range radar system
EP0048170B1 (en) Radar ranging system
US4320356A (en) High speed frequency acquisition apparatus for microwave synthesizers
US3460141A (en) Pulse radar apparatuses
US3380054A (en) Pulse-type radar system
US3382497A (en) Linear frequency modulated radar

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term