JPS62204085A - Method of laying construction of water bottom intake pipe - Google Patents
Method of laying construction of water bottom intake pipeInfo
- Publication number
- JPS62204085A JPS62204085A JP61043948A JP4394886A JPS62204085A JP S62204085 A JPS62204085 A JP S62204085A JP 61043948 A JP61043948 A JP 61043948A JP 4394886 A JP4394886 A JP 4394886A JP S62204085 A JPS62204085 A JP S62204085A
- Authority
- JP
- Japan
- Prior art keywords
- water intake
- water
- pipes
- pipe
- intake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 69
- 238000010276 construction Methods 0.000 title claims description 12
- 238000000034 method Methods 0.000 title description 26
- 238000009434 installation Methods 0.000 claims description 7
- 239000000725 suspension Substances 0.000 claims description 6
- 238000013459 approach Methods 0.000 claims 1
- 238000007667 floating Methods 0.000 description 6
- 238000010248 power generation Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002352 surface water Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Landscapes
- Sewage (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Supports For Pipes And Cables (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野1
本発明は、例えば海洋温度差発電における水底取水管の
敷設工法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a construction method for laying a water bottom intake pipe in, for example, ocean temperature difference power generation.
[従来技術]
海洋温度差発電は、太陽エネルギーによって加熱された
海洋の表層湯水(24〜28℃)と海洋大循環の中で、
極地方から循環している深層(100〜1000TrL
)の冷水(4〜7℃)との間の湿度差(20’C萌)を
用いて、熱機関を働かせ、電気Tネルギー等の有効エネ
ルV−を得ようとするものである。[Prior art] Ocean thermal power generation uses ocean surface water (24 to 28 degrees Celsius) heated by solar energy and ocean general circulation.
Deep layers circulating from the polar regions (100 to 1000 TrL)
) and cold water (4 to 7°C) (20'C Moe) to operate a heat engine and obtain effective energy V- such as electric T energy.
その方式には大別して、クローズドサイクル方式とオー
ブンサイクル方式とがある。−例としてクローズドサイ
クル方式につき第1図に示ず。The methods can be roughly divided into a closed cycle method and an oven cycle method. - As an example, a closed cycle system is not shown in FIG.
図において、aは冷水取水管、bは冷水ポンプ、Cは凝
縮器、dは温水取水管、eは温水ポンプ、「は蒸発器、
qは作動流体ポンプ、hはタービン、iは発電機であり
、アンモニア、フロン系媒体、プロパン簀の低沸点媒体
に海水からの熱を伝え、エネルギー密度を高めて発電す
るものであり、りローズドサイクル方式の場合には、作
動流体は蒸発、膨張、凝縮を繰返し、絶えず閉ループを
循環している。In the figure, a is a cold water intake pipe, b is a cold water pump, C is a condenser, d is a hot water intake pipe, e is a hot water pump, " is an evaporator,
q is a working fluid pump, h is a turbine, and i is a generator, which transmits heat from seawater to ammonia, fluorocarbon-based media, and low-boiling-point media such as propane tanks to increase energy density and generate electricity. In the case of a double cycle system, the working fluid repeats evaporation, expansion, and condensation, and constantly circulates in a closed loop.
ところで、かかる海洋温度差発電において重要な技術の
一つは、深層(100〜1000m)から冷水を取水す
るための冷水取水管の敷設にある。By the way, one of the important technologies in such ocean temperature difference power generation is the construction of cold water intake pipes for taking cold water from deep layers (100 to 1000 m).
一般的に海底バイブラインの敷設工法としては、海底曳
航工法、浮遊曳航工法および敷設船工法が知られている
。Generally, the submarine towing method, floating towing method, and laying ship method are known as methods for laying submarine vibrating lines.
海底曳航工法は、バイブヤードについては管路の延長上
に長管の製作および曳航のスペースと機材が必要であり
、また進水設備が必要である。また使用機材として大型
の曳航設備を必要とする。The submarine towing method requires space and equipment for manufacturing and towing a long pipe on the extension of the pipeline in the case of a vibe yard, and also requires launching equipment. It also requires large towing equipment.
さらに管重聞の調節として海底とのFJ擦力を小さくし
て、曳航力を少なくするため、管の水中@吊を小さくす
るためのブイを必要とする。Furthermore, to adjust the weight of the pipe, a buoy is required to reduce the amount of suspension of the pipe underwater in order to reduce the FJ frictional force with the seabed and reduce the towing force.
浮遊曳航工法は、パイプヤードとしては管路の延長上で
なくてもよいが、長管の製作および曳航進水のスペース
と機材が必要である。また使用機材は多数の船舶を必要
とする。さらに管重量の調節として海面から海底に鋼管
がスムーズにたわむように、管の水中重量を小さく海面
する必要がある。その他11境条f1として比較的静穏
な天候が要求される。The floating towing method does not require the pipe yard to be an extension of the pipeline, but it does require space and equipment to manufacture long pipes and launch the tow. In addition, the equipment used requires a large number of ships. Furthermore, in order to adjust the weight of the pipe, it is necessary to reduce the underwater weight of the pipe so that it can bend smoothly from the sea surface to the seabed. Other 11 conditions f1 require relatively calm weather.
敷設船工法は、パイプヤードとしては鋼管貯蔵ヤード以
外、陸上ヤードは不要であるが、使用機材として特別に
装備した敷設船を必要とする。また管重串の調節として
敷設船から海底に鋼管がスムーズに設置できるように調
整する必要がある。The laying ship method does not require a land yard other than a steel pipe storage yard as a pipe yard, but it does require a specially equipped laying ship as equipment. In addition, it is necessary to adjust the pipe weight so that the steel pipe can be installed smoothly from the laying ship to the seabed.
さらに環境条件として比較的静穏な天候が要求される。Furthermore, relatively calm weather is required as an environmental condition.
海底曳航工法、浮遊曳航工法および敷設船工法のうち、
海洋温度差発電における冷水取水管の敷設に実施し得る
工法は、海底曳航工法および浮遊曳航工法であるが、こ
れ等の工法には上述の問題点があった。Of the submarine towing method, floating towing method and laying ship method,
Possible construction methods for laying cold water intake pipes for ocean thermal power generation are the submarine towing method and the floating towing method, but these methods have the above-mentioned problems.
[発明が解決しようとする問題点]
本発明は、従来の海底バイブラインの敷設工法として採
用されている海底曳航工法、浮遊曳航工法および敷設船
工法の上記問題点を解決し、パイプヤードについては陸
上ヤードは不要であり、また環境条件にほとんど影響さ
れることがなく、また使用機材については普通の台船を
改造し、蟻装するだけでよく、かつ船舶をあまり多く必
要とせず、また管の重量を調節する必要はなく、また適
用範囲については深海の配管に適し、大口径管の敷設も
可能な温度差発電にお【プる水底取水管の敷設工法を提
供すべくなされたものである。[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems of the submarine towing method, floating towing method, and laying ship construction method that have been adopted as conventional methods for laying submarine vibrate lines, and solves the problems described above for pipe yards. There is no need for a land yard, it is almost unaffected by environmental conditions, the equipment used is simply a modified ordinary barge and dovetailing, it does not require many ships, and it is easy to manage. There is no need to adjust the weight of the pipe, and the range of application is suitable for deep-sea pipes.It was designed to provide a construction method for installing underwater intake pipes for temperature difference power generation, which allows the installation of large-diameter pipes. be.
[問題点を解決するための手段]
本発明による水底取水管の敷設工法は作業船を冷水取水
部の設置水深以上の沖合で位置を保持し、取水部と取水
部に取付けるチェーンアンカおよび吊りワイヤを作業船
上でセットし、単管を接続して単管の外周に所定の間隔
ごとに支承架台を取付け、吊りワイヤを垂直にのばして
単管を取水部の所定の水深まで接続し、陸に向って作業
船を移動して、チェーンアンカと取水部を着底させ、取
水部の着底状況を確認しLli管を接続し、吊りワイヤ
をのばすと同時に、作業船を陸へ移動して、取水管を順
次水底部に敷設し、岸に近付いたら、陸側より陸上げ用
メツセンジャーワイヤにて、吊りワイ1−を作業船から
陸上へ引き上げ、取水管を斜面部に着底させた後アンカ
に固定し、斜面部の残りの配管を行い、冷水貯水池(発
電所)まで配管するようになっている。[Means for Solving the Problems] The method of laying a bottom water intake pipe according to the present invention maintains a work boat offshore at a water depth greater than the installation depth of the cold water intake, and installs a chain anchor and a hanging wire attached to the water intake and the water intake. Set up on a work boat, connect the single pipes, install support frames at specified intervals around the outer circumference of the single pipes, extend the hanging wire vertically, connect the single pipes at the specified water depth of the water section, and return to land. Move the workboat towards the shore, place the chain anchor and water intake on the bottom, check the status of the water intake on the bottom, connect the Lli pipe, extend the suspension wire, and at the same time move the workboat to land. The intake pipes were laid one by one on the bottom of the water, and when they approached the shore, the lifting wire 1- was pulled up from the work boat to land using the landing metsenger wire, and the intake pipes were placed on the bottom of the slope. It is fixed to an anchor and the rest of the piping is done on the slope, leading to the cold water reservoir (power plant).
[実施例]
1、 工事仕様
1.1 冷水取水部
■ 取水m : 70m/m i n
■ 取水管:内径1000m+(流速−1,50m/5
ec)
■ 延 良:傾斜部900m (リーフラインから取水
口まで)
水平部180m(リーフラインか
らプラントまで)
■ 取水深さ:RL−600m
1.2 温水取水工
■ 取水at : 100m/m i r)■ 取水路
二輪2m 有効水深17FL以上のブIIンネル
■ 延 長:180m(リーフラインからプラントまで
)
■ 取水深さ:表面水を取水(R低水位より1m以上)
2、 冷水取水管の検討
2゜1 管材料
海底配管の材料は、鋼管、FRP管、硬質塩ビ管及び硬
質ポリエチレン管なとがあるが、その必要条件は、■断
熱性が良い。■耐久性がある。■耐衝撃性が強い。■大
口径管の制作実績を有することである。これ等のことか
らして、実用プラントにはFRP管を採用する。[Example] 1. Construction specifications 1.1 Cold water intake section ■ Water intake m: 70 m/min ■ Water intake pipe: inner diameter 1000 m + (flow velocity -1,50 m/5
ec) ■ Nobu Ryo: Inclined part 900m (from the leaf line to the water intake) Horizontal part 180m (from the leaf line to the plant) ■ Water intake depth: RL-600m 1.2 Hot water intake system ■ Water intake at: 100m/m ir ) ■ Two-wheel intake channel 2m B II channel with an effective water depth of 17 FL or more ■ Extension: 180m (from the reef line to the plant) ■ Water intake depth: Intake of surface water (1 m or more from the R low water level) 2. Examination of cold water intake pipes 2゜1 Pipe materials Materials for submarine piping include steel pipes, FRP pipes, hard PVC pipes, and hard polyethylene pipes, and the requirements for these are: 1) Good insulation. ■Durable. ■Strong impact resistance. ■Have a track record of manufacturing large diameter pipes. Considering these factors, FRP pipes will be adopted for practical plants.
2.2 継手の方式
単管長(1本の管の長さ)としては10mのものを使用
し、継手により接合する。継手の方式としては、施工性
、確実性等の観点から7ランジ方式を採用する。2.2 Coupling method A single pipe length of 10 m is used, and the pipes are joined using a coupling. The 7-lunge method will be adopted as the joint method from the viewpoint of ease of construction and reliability.
上記の工事使用に基づく取水管の敷設につき、図面を参
照して以下に説明する。The installation of water intake pipes based on the above construction use will be explained below with reference to the drawings.
取水管を水深L=600mまで吊り下げ、単管を接合し
ながら陸に向って作業船を移動し、取水管を敷設する。Suspend the intake pipe to a water depth of L = 600m, move the work boat towards land while joining the single pipes, and lay the intake pipe.
以下にその手順の詳細を説明する。The details of the procedure will be explained below.
第2図は作業船の平面配置図を示し、伯業船1を陸上A
のビット2と海底Bのアンカ3各2か所および海側曳船
4(1隻)にて、水深600m以上の沖合で位置を保持
する。作業船1上にはウィンチ5、クローラ−クレーン
6等が設けられている。Figure 2 shows the plan layout of the work vessel, with industrial vessel 1 being connected to land A.
The position will be maintained offshore at a depth of 600 m or more using two locations each on Bit 2 on the sea floor, Anchor 3 on the seabed B, and a seaside tugboat 4 (one boat). A winch 5, a crawler crane 6, etc. are provided on the work boat 1.
第3図は作業船の断面配置図を示し、取水部8とチェー
ンアンカ11および3本の吊りワイヤ12を作業船1上
でセットし、長さ10mの例えばFRP製の単管9を接
続して、5mごとに支承架台13を取付け、吊りワイヤ
12を垂直にのばして単管9を取水のための所定の水深
まで接続する。FIG. 3 shows a cross-sectional layout of the work boat, in which the water intake section 8, chain anchor 11, and three hanging wires 12 are set on the work boat 1, and a single pipe 9 made of, for example, FRP with a length of 10 m is connected. Then, a support frame 13 is installed every 5 m, and the hanging wire 12 is extended vertically to connect the single pipe 9 at a predetermined water depth for water intake.
第4図に全体の断面図を示し、陸上ビット2の撃留ワイ
ヤ2a(第2図)を巻き取り、陸Aに向って作業船1を
移動して、チェーンアンカ11と取水部8を着底させる
。Fig. 4 shows a cross-sectional view of the entire structure, and the locking wire 2a (Fig. 2) of the onshore bit 2 is wound up, the work boat 1 is moved toward land A, and the chain anchor 11 and water intake part 8 are attached. Let it bottom out.
ROM等遠隔操作水中テレビ15を用いて、取水部8の
着底状況を確認する。もし良くなければ敷設し直ず。そ
の後も取水管7の敷設状況を確認する。Using a remote-controlled underwater television 15 such as a ROM, check the status of the water intake section 8 reaching the bottom. If it's not good, reinstall it. After that, the installation status of the water intake pipe 7 will also be confirmed.
単管9を接続し、吊りワイヤ12をのばすと同時に作業
船1を陸へへ移動して、取水管7を順次海底Bに敷設し
ていく。At the same time as connecting the single pipe 9 and extending the suspension wire 12, the work boat 1 is moved to land, and the water intake pipes 7 are successively laid on the seabed B.
リーフラインA−1から約N =30m付近で、陸A側
より陸上げ用メツセンジャワイヤ16にて、吊りワイヤ
12を作業船1から陸上へ引き上げ、取水管7を徐々に
着底させた後、予め掘削された埋設用1−レンチ内のア
ンカに固定する。At approximately N = 30 m from the reef line A-1, the suspension wire 12 is pulled up from the work boat 1 to land using the landing hookup wire 16 from the land A side, and the water intake pipe 7 is gradually brought to the bottom. , fix to the anchor in the pre-drilled buried 1-wrench.
海底Bの残り配管は、作業船1上のクレーン6を利用し
て単管9を海底Bに吊り下し、予め掘削された埋設用ト
レンヂ内で潜水士により単管9の接続を行う。For the remaining piping on the seabed B, the single pipe 9 is suspended onto the seabed B using the crane 6 on the work boat 1, and the single pipe 9 is connected by a diver within a trench for burial excavated in advance.
リーフラインA−1付近には第7図に示すようにベント
管9aを取付ける。その後は第5図および第6図に示す
陸上仮設道路りよりクレーンと潜水士にて冷水貯水池C
まで配管する。また必要に応じて可撓継手10(第7図
)を用いる。A vent pipe 9a is installed near the leaf line A-1 as shown in FIG. After that, a crane and a diver were taken to the cold water reservoir C from the temporary land road shown in Figures 5 and 6.
Piping up to. Further, a flexible joint 10 (FIG. 7) is used as necessary.
第8図工、■、■に冷水取水部の詳細を示し、鋼製取水
部8と単管9とは7ランジ継手7a(第9図)により接
続されている。取水部8には回転可能な六角形の支承架
台13を取付け、吊りワイヤ12がセットされている。Details of the cold water intake section are shown in Fig. 8, ■ and ■, and the steel water intake section 8 and the single pipe 9 are connected by a 7-lunge joint 7a (Fig. 9). A rotatable hexagonal support frame 13 is attached to the water intake part 8, and a hanging wire 12 is set therein.
又、開口端には回転可能な六角形の支承架台14を取付
け、チェーンアンカ11がセットされている。Further, a rotatable hexagonal support frame 14 is attached to the open end, and a chain anchor 11 is set therein.
第9図1、■に取水管の支承架台の詳細を示し、単管9
の接続部7aにおける取水管7の外周には正面視で六角
形の支承架台13が取付番ノられている。この支承架台
13の取付は間隔は、ψ管の長さを10TrLとすると
5TrLごとに支承架台13を取イ1ける。また支承架
台13には3本の吊りワイヤ12をヒツトするクリップ
部材13aが3か所設けられている。Figure 9 1, ■ shows the details of the support frame for the water intake pipe, and the single pipe 9
A hexagonal support frame 13 is attached to the outer periphery of the water intake pipe 7 at the connecting portion 7a when viewed from the front. When installing the support frames 13, the spacing is such that if the length of the ψ tube is 10 TrL, one support frame 13 is installed for every 5 TrL. Further, the support frame 13 is provided with three clip members 13a for hitting the three hanging wires 12.
[発明の効果]
本発明に係る冷水取水管の敷設工法によれば、次のよう
な優れた効果が得られる。[Effects of the Invention] According to the cold water intake pipe installation method according to the present invention, the following excellent effects can be obtained.
(1) 管の引き出しに伴う陸上の進水設備が不要であ
る。(1) Land-based launching equipment associated with pipe extraction is not required.
(2) いかなる管の継手方式にも適応できる。(2) Can be adapted to any type of pipe joint system.
(3) 波浪が比較的平穏な沖合で、垂直接続して敷設
を始めるので、波の影響を受ける部分は少なく、安全で
工事期間が短い。(3) Since the installation is started in a vertical connection offshore where waves are relatively calm, there are few areas affected by waves, making it safe and shortening the construction period.
(4) 海底地盤の傾斜が緩い場合は勿論、急な場合で
も吊りワイAyを固定することにより、取水管を海底地
盤の斜面上に安全に設置できる。(4) By fixing the hanging wire Ay, the intake pipe can be safely installed on the slope of the seabed, not only when the slope of the seabed is gentle, but also when it is steep.
(5) 浮遊曳航法に比較して作業船団が少ない。(5) Compared to the floating towing method, there are fewer work fleets.
(6) 海底曳航法における重量バランスに必要なブイ
が不要である。(6) Buoys required for weight balance in the submarine towing method are not required.
(7) 海底地盤には取水部から順次設置できるので、
取水口の水深を把握できる。(7) Since it can be installed sequentially on the seabed starting from the water intake,
The water depth at the water intake can be determined.
(8) 大口径管の敷設も施工できる。(8) Large diameter pipes can also be laid.
(9) 沖合プラントの取水管の施工にも適用できる。(9) Can also be applied to construction of water intake pipes for offshore plants.
46 図面のl!Iψな説明
第1図は尚洋温麿差発電の原理を示ず図、第2図は作業
船の平面配置図、第3図は作業船の断面配置図、第4図
は全体断面図、第5図は貯水池の詳細断面図、第6図は
陸上部の詳細縦断面図、第7図は浅海部の配管図、第8
図丁、■、■は冷水取水部の詳細側面図および平面図、
第9図工、■は取水管の支承架台の詳細縦断面図および
平面図である。46 Drawing l! Iψ Explanation Figure 1 is a diagram showing the principle of Shoyo temperature differential power generation, Figure 2 is a plan layout of the work boat, Figure 3 is a sectional layout of the work boat, Figure 4 is an overall sectional view, Figure 5 is a detailed cross-sectional view of the reservoir, Figure 6 is a detailed longitudinal cross-sectional view of the land area, Figure 7 is a piping diagram of the shallow water area, and Figure 8 is a detailed longitudinal cross-sectional view of the reservoir.
Figures ■ and ■ are a detailed side view and plan view of the cold water intake section,
Figure 9, ■ is a detailed vertical sectional view and a plan view of the support frame for the water intake pipe.
1・・・作業船 2・・・ピッ1−3・・・アンカ
4・・・曳船 5・・・ウィンチ6・・・クローラ
−クレーン 7・・・取水管 8・・・取水部
9・・・単管 10・・・可撓継手 11・・・チ
ェーンアンカ12・・・吊りワイヤ 13・・・取水
管支承架台 14・・・取水口支承架台 15・・
・遠隔操作水中テレビ 16・・・陸上げ用メッセン
ジャーワイヤ
第9図11...Work boat 2...Pitch 1-3...Anchor
4...Tugboat 5...Winch 6...Crawler crane 7...Water intake pipe 8...Water intake part
9...Single pipe 10...Flexible joint 11...Chain anchor 12...Hanging wire 13...Intake pipe support frame 14...Intake port support frame 15...
・Remotely controlled underwater television 16...Messenger wire for landing Figure 9 1
Claims (1)
し、取水部と取水部に取付けるチェーンアンカおよび吊
りワイヤを作業船上でセットし、単管を接続して単管の
外周に所定の間隔ごとに支承架台を取付け、吊りワイヤ
を垂直にのばして単管を取水部の所定の水深まで接続し
、陸に向って作業船を移動して、チェーンアンカと取水
部を着底させ、取水部の着底状況を確認し単管を接続し
、吊りワイヤをのばすと同時に、作業船を陸へ移動して
、取水管を順次水底部に敷設し、岸に近付いたら、陸側
より陸上げ用メッセンジャーワイヤにて、吊りワイヤを
作業船から陸上へ引き上げ、取水管を斜面部に着底させ
た後、アンカに固定し、斜面部の残りの配管を行い、陸
上まで配管することを特徴とする水底取水管の敷設工法
。Hold the work boat offshore at a water depth greater than the installation water depth of the cold water intake, set the water intake and the chain anchors and hanging wires to be attached to the water intake on the work boat, connect the single pipes, and place the specified lines around the outer circumference of the single pipes. Attach supporting frames at each interval, extend the suspension wire vertically and connect the single pipe at the specified water depth of the water intake part, move the workboat towards land, place the chain anchor and water intake part on the bottom, and start the water intake. At the same time, the work boat is moved to shore and the intake pipes are laid one by one on the bottom of the water, and when it approaches the shore, it is lifted from the land side. The suspension wire is raised from the work boat to shore using a messenger wire, and after the intake pipe reaches the bottom of the slope, it is fixed to the anchor, the remaining piping on the slope is done, and the piping is routed to land. Construction method for installing bottom water intake pipes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61043948A JPS62204085A (en) | 1986-03-03 | 1986-03-03 | Method of laying construction of water bottom intake pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61043948A JPS62204085A (en) | 1986-03-03 | 1986-03-03 | Method of laying construction of water bottom intake pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62204085A true JPS62204085A (en) | 1987-09-08 |
JPH033830B2 JPH033830B2 (en) | 1991-01-21 |
Family
ID=12677929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61043948A Granted JPS62204085A (en) | 1986-03-03 | 1986-03-03 | Method of laying construction of water bottom intake pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62204085A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016067416A1 (en) * | 2014-10-30 | 2016-05-06 | 住友電気工業株式会社 | Protective material installation method and protective material installation device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2660277B1 (en) | 2010-12-28 | 2018-06-13 | Asahi Kasei Kabushiki Kaisha | Polyolefin porous membrane and method of producing the same |
-
1986
- 1986-03-03 JP JP61043948A patent/JPS62204085A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016067416A1 (en) * | 2014-10-30 | 2016-05-06 | 住友電気工業株式会社 | Protective material installation method and protective material installation device |
JPWO2016067416A1 (en) * | 2014-10-30 | 2017-08-31 | 住友電気工業株式会社 | Protective material installation method and protective material installation device |
Also Published As
Publication number | Publication date |
---|---|
JPH033830B2 (en) | 1991-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101280862B (en) | Seabed PE pipe rim spreading and imbedding construction method | |
US3749162A (en) | Arctic oil and gas development | |
US10807680B2 (en) | Mooring system and method for power generation systems and other payloads in water flows | |
AU2009312647B2 (en) | Method for assembling an operating rig for a fluid in a body of water and associated operating rig | |
NO178508B (en) | Flexible production riser assembly | |
US20130266381A1 (en) | Transfer System | |
NL2005099C2 (en) | Method and device for introducing an electrical cable at a depth in a seabed. | |
US4704049A (en) | Process and arrangement for installing a pipeline in an underwater environment and pipeline thus produced | |
US3479831A (en) | Method and system for laying pipe under water | |
JPS62204085A (en) | Method of laying construction of water bottom intake pipe | |
EP3874191B1 (en) | Installation of subsea pipelines | |
US4810133A (en) | Tension leg platform tendon installation by deep catenary tow | |
CN209146602U (en) | A kind of Multi-purpose pipeline to suspend in water | |
CN111692427B (en) | Underwater positioning method for large-diameter overlong HDPE (high-density polyethylene) pipeline | |
BRPI0709636A2 (en) | methods for towing a scr and a pipeline along the seabed, for installing a deepwater pipeline in a seabed anchor, for bottom towing and submerged launching of a rising pipe and for retrieving a rising pipe | |
JPH01216189A (en) | Method of construction for placing intake pipeline | |
BRPI0804577B1 (en) | SELF-SUPPORTED RISER OF MULTIPLE INTERCONNECTION LATCHING CONTROLLED CURVATURE | |
JPS5899584A (en) | Method of laying construction of water bottom pipe | |
JPH0143193B2 (en) | ||
JP3769722B2 (en) | Laying deep water pipes | |
WO2022149982A1 (en) | Arrangement for securing a floating wind turbine in a seabed, and use of a subsea well portion for securing the floating wind turbine in the seabed | |
McHale | Construction and deployment of an operational OTEC plant at Kona, Hawaii | |
JPS6147358B2 (en) | ||
RU122361U1 (en) | TOWING DEVICE FOR MOVING AND POSITIONING A NON-SELF-PROPELLED PLATFORM ON THE AIR PILLOW | |
KR20140062310A (en) | Soil friction coefficient calculation |