JPS6220400B2 - - Google Patents

Info

Publication number
JPS6220400B2
JPS6220400B2 JP7389378A JP7389378A JPS6220400B2 JP S6220400 B2 JPS6220400 B2 JP S6220400B2 JP 7389378 A JP7389378 A JP 7389378A JP 7389378 A JP7389378 A JP 7389378A JP S6220400 B2 JPS6220400 B2 JP S6220400B2
Authority
JP
Japan
Prior art keywords
liquid
rotating body
end plate
hole
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7389378A
Other languages
Japanese (ja)
Other versions
JPS551427A (en
Inventor
Kuniharu Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP7389378A priority Critical patent/JPS551427A/en
Publication of JPS551427A publication Critical patent/JPS551427A/en
Publication of JPS6220400B2 publication Critical patent/JPS6220400B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は駆動マグネツトの回転に伴う従動マグ
ネツトの磁力回転により従動マグネツトと一体の
回転体を介して羽根車を回転させて液体の送給を
行うマグネツトポンプに関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention rotates an impeller through a rotating body integrated with the driven magnet by magnetic rotation of the driven magnet as the driving magnet rotates, thereby feeding liquid. This relates to magnetic pumps.

(従来の技術) 従来のこの種マグネツトポンプとしては、第2
図に示すように、端板6により開口を覆つた筒状
の隔槽5内に該隔槽5の外側に設けた駆動マグネ
ツト4の回転磁界により回転される従動マグネツ
ト10付の回転体7を流体通路11を介して設け
るとともに、端板6の外側に設けられた羽根車室
14内で端板6の中央に軸支されている回転体7
の支軸端に羽根車12を取付けたものが知られて
いる。このようなマグネツトポンプは回転体7の
両支軸部21,22を軸支する軸受8,9の作動
の円滑化や摩耗防止およびマグネツトポンプ自体
の温度上昇の防止等のために、吸入圧送する液体
の一部を隔槽5と回転体7とによつて形成される
空間を流体通路として軸受8,9の隙間に導入し
て潤滑および冷却を行つている。この液体は空運
転防止のためマグネツトポンプを駆動する前に流
体通路中に導入されるものであるが、流体通路中
の空気やガスなどの気体を完全に排除することが
困難で若干気体が残留した状態で運転が行われる
ことになつて、軸受部分には発熱を伴つた摩擦が
発生して損傷が著しく、また、流体通路中に液体
を充填した状態での運転中においても、該流体通
路中における液体の循環流動や流体通路中への新
しい液体の導入が充分に行われないので、長時間
の運転後には軸受部分がきわめて高温状態になつ
て、前記の軸受部分はさらにその軸受特性が低下
するとともに回転体7その他の構成部の温度上昇
により駆動マグネツト4と従動マグネツト10の
磁力の低下を招くこととなつてポンプ効率の低下
やマグネツトポンプ自体の寿命を短くする等の欠
点があつた。
(Prior art) As a conventional magnetic pump of this type, the second
As shown in the figure, a rotating body 7 with a driven magnet 10 rotated by the rotating magnetic field of a drive magnet 4 provided outside the partition 5 is placed inside a cylindrical partition 5 whose opening is covered by an end plate 6. A rotating body 7 is provided via a fluid passage 11 and is pivotally supported at the center of the end plate 6 within an impeller chamber 14 provided outside the end plate 6.
It is known that an impeller 12 is attached to the end of the spindle. Such a magnetic pump uses a suction pump in order to smooth the operation and prevent wear of the bearings 8 and 9 that support both the support shafts 21 and 22 of the rotating body 7, and to prevent a rise in temperature of the magnetic pump itself. A part of the liquid to be pumped is introduced into the gap between the bearings 8 and 9 using the space formed by the partition tank 5 and the rotating body 7 as a fluid passage for lubrication and cooling. This liquid is introduced into the fluid passage before driving the magnetic pump to prevent dry running, but it is difficult to completely eliminate gases such as air and gas from the fluid passage, and some gas may be present. If the operation is carried out with the residual fluid remaining in the bearing, friction with heat generation will occur in the bearing part, resulting in significant damage. Since the circulation of liquid in the passages and the introduction of new liquid into the fluid passages are not sufficiently carried out, the bearing parts become extremely hot after long-term operation, and the bearing parts further deteriorate their bearing characteristics. As the temperature decreases, the temperature of the rotating body 7 and other components increases, leading to a decrease in the magnetic force of the drive magnet 4 and the driven magnet 10, resulting in disadvantages such as a decrease in pump efficiency and a shortened lifespan of the magnetic pump itself. It was hot.

(発明が解決しようとする問題点) 本発明は以上のような従来の欠点を解決して、
マグネツトポンプの隔槽内の軸受を気体残留のな
い液体によつて充分に冷却することができ、ポン
プ効率の低下やポンプ寿命の低下を防止すること
ができるマグネツトポンプを目的として完成され
たものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional drawbacks, and
It was completed with the aim of creating a magnetic pump that can sufficiently cool the bearings in the magnetic pump's partition tank with liquid without residual gas, thereby preventing a drop in pump efficiency or shortened pump life. It is something.

(問題点を解決するための手段) 本発明は端板により開口を覆つた筒状の隔槽内
に該隔槽の外側に設けた駆動マグネツトの回転磁
界により回転される従動マグネツト付の回転体を
周囲に流体通路を介して設けるとともに、端板の
外側に設けられた羽根車室内で該端板の中央に軸
受により軸支されている回転体の支軸端には羽根
車を取付けたマグネツトポンプにおいて、回転体
には隔槽の槽底に面する端面の中央から端板に面
する他端面の外周寄りの部分に向けて傾斜し、回
転体の回転によつて槽底から軸受を介して液体を
吸引して端板と回転体との間に形成される空間の
中心寄りの部分に液体を吐出させたうえ、軸受を
介して羽根車室へもどす複数個の貫通孔を回転体
の軸心のまわりに均等に透設し、また端板には上
記貫通孔の開口位置よりも外周寄りに開口し、羽
根車室内で加圧された液体を前記空間の外周寄り
の部分に導き、更に前記流体通路へ送り込む複数
個の貫通孔を形成したことを特徴とするものであ
る。
(Means for Solving the Problems) The present invention provides a rotary body with a driven magnet that is rotated by the rotating magnetic field of a drive magnet provided outside the cylindrical tank whose opening is covered by an end plate. is provided around it via a fluid passage, and an impeller is attached to the spindle end of the rotating body, which is supported by a bearing in the center of the end plate in an impeller chamber provided outside the end plate. In the net pump, the rotating body is inclined from the center of the end face facing the tank bottom of the partition tank toward the outer periphery of the other end face facing the end plate, and the bearing is removed from the tank bottom by the rotation of the rotating body. The rotor has multiple through-holes that suck the liquid through the rotor, discharge it toward the center of the space formed between the end plate and the rotor, and return it to the impeller chamber via the bearing. The through hole is equally spaced around the axis of the impeller, and the end plate is opened closer to the outer periphery than the opening position of the through hole, and the liquid pressurized in the impeller chamber is guided to the part closer to the outer periphery of the space. , further comprising a plurality of through holes for feeding the fluid into the fluid passage.

(実施例) 以下に本発明を図示の実施例について詳細に説
明する。
(Embodiments) The present invention will be described in detail below with reference to illustrated embodiments.

1はマグネツトポンプの基盤で、その一側には
図示されない電動機により回転される駆動軸2に
一体状に固定された駆動マグネツト支持体3が設
けられていてその先端部には駆動マグネツト4が
均斉に配設され、また、駆動マグネツト支持体3
内には一端をもつて基盤1に固定された筒状の隔
槽5がその中心軸線を駆動軸2の軸中心線と一致
させて嵌装保持されており、該隔槽5の一端の開
口には中央に開口を設けた端板6により覆われて
いる。7は隔槽5内において一端の支軸部21を
端板6の中央の開口との間に設置される軸受8に
軸支させるとともに他端の支軸部22を隔槽5の
槽底5aの中央に形成された凹部23との間に設
置される軸受9に軸支させている回転体で、該隔
槽5と回転体7との間には一連の流体通路11が
形成され、また、回転体7の胴部外面には隔槽5
の筒壁をはさんで駆動マグネツト4と対応するよ
うに複数個の従動マグネツト10が配設されてい
てこの従動マグネツト10付の回転体7は前記駆
動軸2の回転による駆動マグネツト4の回転磁界
により軸受8,9の支持のもとに回転されるよう
になつている。13は端板6の外側において基盤
1にボルト等により保持されて端板6との間に羽
根車室14を形成するケーシングで、該ケーシン
グ13には液体の吸込口31と吐出口32が設け
られてあり、また、該羽根車室14内で回転体7
の端板6側の支持端には回転体7の回転に伴い回
転するように羽根車12が取付けられていてこの
羽根車12の回転により液体はケーシング13の
前面の吸込口31より吸入されて上方の吐出口3
2へ圧送される。
Reference numeral 1 designates a base of a magnetic pump, and on one side thereof is provided a drive magnet support 3 integrally fixed to a drive shaft 2 rotated by an electric motor (not shown), with a drive magnet 4 at the tip thereof. The drive magnet supports 3 are arranged symmetrically and
A cylindrical partition tank 5 whose one end is fixed to the base plate 1 is fitted and held inside with its center axis aligned with the axis center line of the drive shaft 2, and an opening at one end of the partition tank 5 is fitted. is covered with an end plate 6 having an opening in the center. In the partition tank 5, a support shaft 21 at one end is supported by a bearing 8 installed between the opening at the center of the end plate 6, and a support shaft 22 at the other end is supported by a support shaft 22 at the bottom 5a of the partition tank 5. A rotating body is supported by a bearing 9 installed between a recess 23 formed in the center of the partition tank 5 and a series of fluid passages 11 are formed between the partition tank 5 and the rotating body 7. , a partition tank 5 is provided on the outer surface of the body of the rotating body 7.
A plurality of driven magnets 10 are disposed so as to correspond to the drive magnet 4 across the cylindrical wall of the rotor. The shaft is rotated with the support of bearings 8 and 9. A casing 13 is held on the outside of the end plate 6 by bolts or the like to form an impeller chamber 14 between the end plate 6 and the casing 13. The casing 13 is provided with a liquid suction port 31 and a liquid discharge port 32. In addition, the rotating body 7 is
An impeller 12 is attached to the support end on the side of the end plate 6 so as to rotate with the rotation of the rotating body 7, and as the impeller 12 rotates, liquid is sucked through the suction port 31 on the front surface of the casing 13. Upper outlet 3
2.

回転体7には隔槽5の槽底5aに面する端面の
中央から端板6に面する他端面の外周寄りの部分
に向け傾斜する複数個の貫通孔19を回転体7の
軸心のまわりに均等に透設して、端板6と回転体
7との間に形成される空間40の中心寄りの部分
と隔槽5の槽底5aに面する流体通路11の中央
部分とを連通させている。この貫通孔19はその
槽底5a側の一端開口を回転体7の端面の軸受9
の内側に形成された凹部20に臨ませたもので、
回転体7の回転により生ずる遠心力によつて液体
を槽底5aから軸受9を介して吸引して上記空間
40の中心寄りの部分に吐出させるものである。
このようにして貫通孔19から空間40の中心寄
りの部分に吐出された液体は軸受8を介して羽根
車室14へ戻される。
The rotating body 7 is provided with a plurality of through holes 19 that are inclined from the center of the end face facing the tank bottom 5a of the partition tank 5 toward the outer periphery of the other end face facing the end plate 6. Transparent holes are provided evenly around the circumference to communicate a portion near the center of the space 40 formed between the end plate 6 and the rotating body 7 and a central portion of the fluid passage 11 facing the tank bottom 5a of the partition tank 5. I'm letting you do it. This through hole 19 has one end opening on the side of the tank bottom 5a as a bearing 9 on the end surface of the rotating body 7.
It faces the recess 20 formed inside the
Liquid is sucked from the tank bottom 5a through the bearing 9 by the centrifugal force generated by the rotation of the rotating body 7, and is discharged into a portion near the center of the space 40.
The liquid discharged from the through hole 19 into a portion near the center of the space 40 in this manner is returned to the impeller chamber 14 via the bearing 8.

また端板6には羽根車室14の外周部付近と前
記空間40の外周寄りの部分とを連通させる複数
個の貫通孔18が透設されている。この貫通孔1
8の空間40側の開口位置は前記貫通孔19の開
口位置よりも外周寄りにあり、また貫通孔18は
空間40側の開口位置よりも羽根車室14側の開
口位置を外周側に位置させてある。この貫通孔1
8は羽根車室14内で加圧された液体を空間40
の外周寄りの部分に導き、更に前記の流体通路1
1へ送り込むためのものである。なお上記のよう
に空間40の外周寄りの部分には貫通孔18を介
して液体が流入し、中心寄りの部分には貫通孔1
9から液体が吐出されるうえ、空間40に面する
軸受8からは液体が吸引され、インペラ背面のボ
ス外周が低圧になるので空間40の内部には半径
方向に大きい圧力勾配が形成される。この圧力勾
配が中心寄りの部分で高くなると貫通孔19から
の液体の吐出がスムーズに行われなくなるので、
必要に応じて貫通孔18や貫通孔19の孔径を調
節したり、空間40の内部に適当な圧力制御手段
を形成して空間40の圧力勾配を調節してもよ
い。
In addition, a plurality of through holes 18 are provided in the end plate 6 to communicate the vicinity of the outer circumference of the impeller chamber 14 with a portion near the outer circumference of the space 40 . This through hole 1
The opening position of the through hole 8 on the space 40 side is closer to the outer periphery than the opening position of the through hole 19, and the opening position of the through hole 18 on the impeller chamber 14 side is located closer to the outer periphery than the opening position of the through hole 18 on the space 40 side. There is. This through hole 1
8 transfers the pressurized liquid in the impeller chamber 14 to a space 40
The fluid passage 1 is guided to a portion near the outer periphery of the
It is for sending to 1. As mentioned above, the liquid flows into the portion near the outer periphery of the space 40 through the through hole 18, and the liquid flows into the portion near the center through the through hole 1.
In addition to the liquid being discharged from the bearing 8 facing the space 40, the liquid is sucked from the bearing 8 facing the space 40, and the outer circumference of the boss on the back side of the impeller is under low pressure, so a large pressure gradient is formed inside the space 40 in the radial direction. If this pressure gradient becomes high near the center, the liquid will not be discharged smoothly from the through hole 19.
If necessary, the diameters of the through holes 18 and 19 may be adjusted, or a suitable pressure control means may be formed inside the space 40 to adjust the pressure gradient in the space 40.

(作用) このように構成されたものは、マグネツトポン
プの駆動開始前にケーシング13へ液体を供給す
れば、該液体は羽根車室14より端板6に透設さ
れた各貫通孔18のうち下部側に位置する貫通孔
18を通つて流体通路11中へ容易、かつ、迅速
に流入し、これにより前記の流体通路11内およ
び貫通孔19内の空気、ガスなどの気体は流入し
た液体の圧力によつて流体通路11の外周部付近
に流体通路側開口が位置している貫通孔18を通
してケーシング13より外部へ排除されて隔槽5
内は液体で充満され、完全な排気および各軸受
8,9の潤滑が達成される。このような排気が終
了したのち図示されない電動機により駆動軸2を
回転させると、これに伴い回転する駆動マグネツ
ト4により従動マグネツト10が磁力回転されて
回転体7は軸受8,9の支持のもとに回転し、こ
れによる羽根車12の回転により液体はケーシン
グ13を通して吸引圧送される。その際において
前記した回転体7や羽根車12の回転により新し
い液体が端板6に配設された貫通孔18を経て羽
根車室14から空間40の外周寄りの部分へ流入
し、空間40内の液体の一部は端板6の軸受8の
隙間を通つて羽根車室14内へ吸引されるという
液体の流動を生じて端板6側の軸受8の冷却およ
び潤滑が行われる。また貫通孔18を経て空間4
0の外周寄りの部分へ流入した液体の残部は流体
通路11を経て槽底5aに面する部分へと流動
し、軸受9の隙間を通つて軸受9の冷却を行いつ
つ回転体7に透設された貫通孔19へ吸収される
という循環流動を生ずる。これと同時に回転体7
の貫通孔19内に充満されている液体は回転体7
の回転により遠心力を受けて槽底5a側より空間
40の内周寄りの部分へ流出し、さらに上記した
貫通孔18から空間40の外周寄りの部分へ流入
した液体の一部と合流して軸受8の隙間を通つて
軸受8を冷却しつつ羽根車室14へ入り、これに
ともなつて前記と同様に新たな液体が貫通孔18
を通つて液体通路11へ導入される。なお、空間
40の中心寄りの部分の圧力が貫通孔19の出口
付近の圧力よりも高圧となる遠心力による貫通孔
19からの液体の吐出が行われなくなるが、前述
のとおり軸受8からの液体の吸引により空間40
の内部には中心に向かつて低下する大きい圧力勾
配が形成されているので、貫通孔19からの液体
の吐出は円滑に行われ、逆流のおそれはない。こ
のような液体の循環によつて両軸受8,9の冷却
および潤滑が行われるとともに隔槽5内の液体の
温度上昇が防止される。なお、回転体7に透設さ
れる貫通孔19の槽底5aに面する端面の中央に
ある開口位置は端板6に面する端面にある開口位
置より駆動軸線側寄りとなるよう末広がり状に傾
斜させたので該貫通孔19内を流動する液体に対
して遠心力が最もバランスよく働き、かつ、液体
抵抗が最も小さくて円滑に該貫通孔19内を液体
が流動し、隔槽5内の流体通路11等への液体の
循環量が多くなつて軸受8,9の冷却、潤滑およ
びその他の部分の冷却がきわめて効果的に行われ
る。また、槽底5aの中央部に凹部を設けるとと
もに隔槽5の槽底5aに軸支させている回転体7
の支軸部22の端面に凹部20を設けて該凹部2
0内に前記貫通孔19の一端開口を臨ませておけ
ば該貫通孔19内にある液体により効果的に遠心
力や吸引力を働かせ、隔槽5内の流体通路11等
を循環する液体量も増加されて前記同様に冷却、
潤滑等に一層有効である。
(Function) With this structure, if liquid is supplied to the casing 13 before the magnetic pump starts driving, the liquid will flow from the impeller chamber 14 to each through hole 18 provided in the end plate 6. The gases such as air and gas in the fluid passage 11 and the through hole 19 easily and quickly flow into the fluid passage 11 through the through hole 18 located on the lower side, so that gases such as air and gas in the fluid passage 11 and the through hole 19 are absorbed by the liquid. Due to the pressure of
The interior is filled with liquid to achieve complete evacuation and lubrication of each bearing 8,9. When the drive shaft 2 is rotated by an electric motor (not shown) after such evacuation is completed, the driven magnet 10 is magnetically rotated by the drive magnet 4 which rotates accordingly, and the rotating body 7 is supported by the bearings 8 and 9. Due to the rotation of the impeller 12, the liquid is suctioned and pumped through the casing 13. At that time, new liquid flows from the impeller chamber 14 to a portion near the outer periphery of the space 40 through the through hole 18 provided in the end plate 6 due to the rotation of the rotating body 7 and the impeller 12 described above, and flows into the space 40. A part of the liquid is sucked into the impeller chamber 14 through the gap between the bearings 8 of the end plate 6, creating a flow of liquid, thereby cooling and lubricating the bearing 8 on the end plate 6 side. Also, through the through hole 18, the space 4
The remainder of the liquid that has flowed into the part near the outer periphery of the tank flows through the fluid passage 11 to the part facing the tank bottom 5a, and cools the bearing 9 through the gap in the bearing 9 while being transparently inserted into the rotating body 7. A circulating flow is generated in which the liquid is absorbed into the through hole 19. At the same time, the rotating body 7
The liquid filling the through hole 19 of the rotating body 7
The liquid flows out from the tank bottom 5a side toward the inner periphery of the space 40 due to the centrifugal force caused by the rotation of the liquid, and further merges with a part of the liquid that has flowed into the outer periphery of the space 40 from the through hole 18. The bearing 8 is cooled through the gap in the bearing 8 and enters the impeller chamber 14, and as a result, new liquid flows into the through hole 18 in the same way as above.
The liquid is introduced into the liquid passageway 11 through the liquid passageway 11 . Note that the pressure near the center of the space 40 is higher than the pressure near the outlet of the through hole 19, which prevents liquid from being discharged from the through hole 19 due to centrifugal force. Space 40 due to suction of
Since a large pressure gradient that decreases toward the center is formed inside the through hole 19, the liquid is smoothly discharged from the through hole 19, and there is no risk of backflow. Such circulation of the liquid cools and lubricates both bearings 8 and 9, and prevents the temperature of the liquid in the partition tank 5 from rising. Note that the opening position at the center of the end face facing the tank bottom 5a of the through hole 19 transparently provided in the rotating body 7 is flared toward the drive axis side than the opening position at the end face facing the end plate 6. Because it is tilted, the centrifugal force acts on the liquid flowing in the through hole 19 in the most balanced manner, and the liquid flows smoothly in the through hole 19 with the smallest liquid resistance. The amount of liquid circulating to the fluid passages 11 and the like is increased, and the bearings 8 and 9 are cooled and lubricated and other parts are cooled very effectively. Further, a recess is provided in the center of the tank bottom 5a, and a rotating body 7 is pivotally supported on the tank bottom 5a of the partition tank 5.
A recess 20 is provided in the end face of the support shaft 22 of the recess 2.
If one end of the opening of the through hole 19 faces inside the through hole 19, centrifugal force and suction force will be effectively exerted on the liquid in the through hole 19, and the amount of liquid circulating in the fluid passage 11 etc. in the partition tank 5 will be reduced. Cooling is also increased as above,
It is more effective for lubrication, etc.

なお、以上に説明した循環流についての具体的
は流量及び圧力の一例を示せば、マグネツトポン
プの吐出量が0.2m3/分、吐出圧が3Kg/cm2、吸
込口の圧力が0Kg/cm2であるとき、端板6の貫通
孔181個当り500c.c./分の液体が流体通路11
の空間40の外周寄りの部分へ入り、その圧力は
空間40の外周寄りの部分では約3Kg/cm2である
が、液体通路11内を流れる間に低下し隔槽5の
槽底5aに面する部分では約2.8Kg/cm2である。
この圧力は軸受9を通過するときに1Kg/cm2だけ
低下して凹部20においては1.8Kg/cm2となる。
そして回転体7の貫通孔19を1個当り100c.c./
分で流れつつ遠心力によつて2.3Kg/cm2まで加圧
されて空間40の内周寄りの部分へ吐出され、貫通
孔18からの液体の一部とともに軸受8を介して
羽根車室14の中心寄りの部分へ戻ることとな
る。
In addition, to give an example of the flow rate and pressure of the circulating flow explained above, the discharge amount of the magnetic pump is 0.2 m 3 /min, the discharge pressure is 3 Kg/cm 2 , and the pressure of the suction port is 0 Kg/cm 2 . cm 2 , 500 c.c./minute of liquid per 181 through holes in the end plate 6 flows through the fluid passage 11.
The pressure is approximately 3 kg/cm 2 at the outer periphery of the space 40, but it decreases while flowing through the liquid passage 11, and the pressure drops to the bottom 5a of the partition tank 5. It is approximately 2.8Kg/cm 2 in the part where the weight is applied.
This pressure decreases by 1 Kg/cm 2 when passing through the bearing 9 and reaches 1.8 Kg/cm 2 in the recess 20 .
And the through holes 19 of the rotating body 7 are 100c.c./piece.
The liquid flows within 1 minute, is pressurized to 2.3 kg/cm 2 by centrifugal force, and is discharged to the inner circumferential portion of the space 40, through the bearing 8 together with a portion of the liquid from the through hole 18, into the impeller chamber 14. It will return to the part near the center.

(発明の効果) 本発明は上記の実施例からも明らかなように、
マグネツトポンプの隔槽内は液体で充満されて気
体が存在しない状態とされるため、各軸受は完全
に潤滑されて発熱や損傷が大幅に減少されて寿命
が延び、さらに、マグネツトポンプ運転中におけ
る隔槽内への液体の導入が容易に行われるととも
に隔槽内における液体の循環流動が効果的に行わ
れて各軸受の潤滑および冷却が有効に行われると
同時に各構成部分の温度上昇も防止される。従つ
て本発明によれば温度上昇による駆動マグネツト
や従動マグネツトの磁力低下が最小限に止めら
れ、マグネツトポンプを高性能のまま長期間維持
できる上にその保守点検作業は大幅に減少され
る。よつて本発明は従来のマグネツトポンプの問
題点を解決したものとして産業の発展に寄与する
ところ大である。
(Effects of the Invention) As is clear from the above examples, the present invention has the following effects:
Since the compartment of the magnetic pump is filled with liquid and gas-free, each bearing is completely lubricated, significantly reducing heat generation and damage, extending the service life of the magnetic pump. The liquid can be easily introduced into the bulkhead, and the liquid can be circulated effectively in the bulkhead, effectively lubricating and cooling each bearing, and at the same time increasing the temperature of each component. is also prevented. Therefore, according to the present invention, the decrease in the magnetic force of the driving magnet and the driven magnet due to temperature rise can be minimized, the magnetic pump can be maintained at high performance for a long period of time, and the maintenance and inspection work thereof can be greatly reduced. Therefore, the present invention greatly contributes to the development of industry as it solves the problems of conventional magnetic pumps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す中央縦断面図、
第2図は従来のマグネツトポンプを示す中央縦断
面図である。 4:駆動マグネツト、5:隔槽、6:端板、
7:回転体、10:従動マグネツト、11:流体
通路、12:羽根車、14:羽根車室、18,1
9:貫通孔、20:凹部、40:空間。
FIG. 1 is a central vertical sectional view showing an embodiment of the present invention;
FIG. 2 is a central vertical sectional view showing a conventional magnetic pump. 4: Drive magnet, 5: Separation tank, 6: End plate,
7: Rotating body, 10: Driven magnet, 11: Fluid passage, 12: Impeller, 14: Impeller chamber, 18,1
9: through hole, 20: recess, 40: space.

Claims (1)

【特許請求の範囲】 1 端板6により開口を覆つた筒状の隔槽5内に
該隔槽5の外側に設けた駆動マグネツト4の回転
磁界により回転される従動マグネツト10付の回
転体7を周囲に流体通路11を介して設けるとと
もに、端板6の外側に設けられた羽根車室14内
で該端板6の中央に軸受8,9により軸支させて
いる回転体7の支軸端には羽根車12を取付けた
マグネツトポンプにおいて、回転体7には隔槽5
の槽底5aに面する端面の中央から端板6に面す
る他端面の外周寄りの部分に向けて傾斜し、回転
体7の回転によつて槽底5aから軸受9を介して
液体を吸引して端板6と回転体7との間に形成さ
れる空間40の中心寄りの部分に液体を吐出させ
たうえ、軸受8を介して羽根車室14へもどす複
数個の貫通孔19を回転体7の軸心のまわりに均
等に透設し、また端板6には上記貫通孔19の開
口位置よりも外周寄りに開口し、羽根車室14内
で加圧された液体を前記空間40の外周寄りの部
分に導き、更に前記流体通路11へ送り込む複数
個の貫通孔18を形成したことを特徴とするマグ
ネツトポンプ。 2 隔槽5の槽底5aに軸支させている回転体7
の支軸端の端面に凹部20を設けて該凹部20内
に貫通孔19の一端開口を臨ませた特許請求の範
囲第1項記載のマグネツトポンプ。
[Scope of Claims] 1. A rotating body 7 with a driven magnet 10 rotated by the rotating magnetic field of a driving magnet 4 provided outside the cylindrical partition 5 whose opening is covered by an end plate 6. A support shaft of the rotating body 7 is provided around the end plate 6 via a fluid passage 11, and is supported by bearings 8 and 9 in the center of the end plate 6 within an impeller chamber 14 provided outside the end plate 6. In a magnetic pump with an impeller 12 attached to the end, a partition tank 5 is attached to the rotating body 7.
is inclined from the center of the end face facing the tank bottom 5a toward the outer periphery of the other end face facing the end plate 6, and as the rotating body 7 rotates, liquid is sucked from the tank bottom 5a via the bearing 9. The liquid is discharged into a part near the center of the space 40 formed between the end plate 6 and the rotating body 7, and the plurality of through holes 19 are rotated to return the liquid to the impeller chamber 14 via the bearing 8. They are equally transparent around the axis of the body 7, and the end plate 6 is opened closer to the outer periphery than the opening position of the through hole 19, so that the liquid pressurized in the impeller chamber 14 can be passed through the space 40. A magnetic pump characterized in that a plurality of through holes 18 are formed to guide the fluid to a portion near the outer periphery of the magnet and further feed the fluid into the fluid passage 11. 2 Rotating body 7 supported pivotally on the tank bottom 5a of the partition tank 5
2. The magnet pump according to claim 1, wherein a recess 20 is provided in the end face of the support shaft, and one end opening of the through hole 19 is exposed into the recess 20.
JP7389378A 1978-06-19 1978-06-19 Magnet pump Granted JPS551427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7389378A JPS551427A (en) 1978-06-19 1978-06-19 Magnet pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7389378A JPS551427A (en) 1978-06-19 1978-06-19 Magnet pump

Publications (2)

Publication Number Publication Date
JPS551427A JPS551427A (en) 1980-01-08
JPS6220400B2 true JPS6220400B2 (en) 1987-05-07

Family

ID=13531328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7389378A Granted JPS551427A (en) 1978-06-19 1978-06-19 Magnet pump

Country Status (1)

Country Link
JP (1) JPS551427A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217685A (en) * 1983-05-25 1984-12-07 株式会社イナックス Manufacture of floor tile
JPS6110086A (en) * 1984-06-25 1986-01-17 大石 泰広 Stone material such as tomb stone, construction material, dressing material or like
JPS6110085A (en) * 1984-06-25 1986-01-17 大石 泰広 Stone material such as tomb stone, construction material, dressing material or like
JPS6182934U (en) * 1984-11-06 1986-06-02
JPS61146777A (en) * 1984-12-18 1986-07-04 大石 泰広 Stone material surface treatment by impregnation
JPH0550099U (en) * 1991-12-04 1993-07-02 日本サーボ株式会社 Canned motor pump

Also Published As

Publication number Publication date
JPS551427A (en) 1980-01-08

Similar Documents

Publication Publication Date Title
US5201642A (en) Magnetic drive pump
US3288073A (en) Canned pump having reduced hydraulic thrust
US7891958B2 (en) Impeller pump with reflux passages and apparatus using same
US5163812A (en) Rotary pump with a permanent magnetic drive
CA1146877A (en) Flow machine
US4073596A (en) Lubricant cooling for high-speed pitot pump
CN111486110A (en) Centrifugal compressor and heat pump system
JP2024505260A (en) Turbo compressor including bearing cooling channels
JPS6220400B2 (en)
JPS626119B2 (en)
JPS614897A (en) Method of lubricating and cooling rotatory bearing for axialfan and axial fan for executing said method
CN209990681U (en) Pitot tube pump bearing lubricating system
JPH02196191A (en) Electric motor driven pump
CN108979779B (en) Engine lubricating oil circulation system
KR102432443B1 (en) Pump with leak-proof structure of bearing lubricant
JP2546943B2 (en) Integrated centrifugal pump and motor
CN111486107B (en) Centrifugal compressor and heat pump system
US3007065A (en) Fluid cooled motor
JP2000209815A (en) High rotating speed dynamoelectric machine
US2309670A (en) Motor housing
CN205401162U (en) Aquatic motor pump
JPH0113837Y2 (en)
CN111486109A (en) Centrifugal compressor and heat pump system
CN211288111U (en) Water pump with internal circulation water cooling
CN111371221A (en) Motor rotor, compressor, refrigerant circulation system and refrigeration equipment