JPS6220386A - Pulse laser device - Google Patents

Pulse laser device

Info

Publication number
JPS6220386A
JPS6220386A JP60159342A JP15934285A JPS6220386A JP S6220386 A JPS6220386 A JP S6220386A JP 60159342 A JP60159342 A JP 60159342A JP 15934285 A JP15934285 A JP 15934285A JP S6220386 A JPS6220386 A JP S6220386A
Authority
JP
Japan
Prior art keywords
laser
oscillator
slave oscillator
light
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60159342A
Other languages
Japanese (ja)
Other versions
JPH0374519B2 (en
Inventor
Kenichi Ueda
憲一 植田
Hajime Nishioka
西岡 一
Tatsumi Goto
後藤 達美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60159342A priority Critical patent/JPS6220386A/en
Publication of JPS6220386A publication Critical patent/JPS6220386A/en
Publication of JPH0374519B2 publication Critical patent/JPH0374519B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • H01S3/10092Coherent seed, e.g. injection locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08081Unstable resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0818Unstable resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2256KrF, i.e. krypton fluoride is comprised for lasing around 248 nm

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To make waveform characteristics excellent and to generate laser light highly efficiently, by providing a slave oscillator and an injecting laer oscillator in a resonator, injecting the generated laser ligth in the slave oscillator, and performing injection lock oscillation. CONSTITUTION:A slave oscillator has an exciting part 11 comprising an electron-beam excited KrF laser. A semitransparent mirror 12 and a front mirror 13 are arranged on both sides of the exciting part 11. A Faraday rotor 14 is provided between the front mirror 13 and the exciting part 11. The Faraday rotor 14 has a feature that a polarizing rotary angle is added even when output light is imputted in the reverse direction. Therefore, pulses are generated only by the rotation of the polarizing surface by the Faraday rotor 14. There s not loss in the laser output. The linearly polarized laser light, whose pulse width is shorter than the reciprocating time of the light in the resonator of the slave oscillator, is generated. The laser ligth is injected in the slave oscillator, and the injection lock oscillation is performed. The waveform characteristics becomes excellent and the pulse laser light can be generated highly efficiently in this simple structure.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、パルスレーザ光を発生するパルスレーザ装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a pulsed laser device that generates pulsed laser light.

(発明の技術的背景とその問題点) 近年、パルスレーザ光を用いて非線形光学の研究やレー
ザレーダ、レーザ測距、高速度ホ[]グラフィ、精密レ
ーザ加■等への応用研究が多く行なわれるようになって
いるが、この様な研究に使用されるパルスレーザ装置と
しては、従来より例えばQスイッチを使用したり内部光
変調を行なうことによりパルスレーザ光を発生するもの
が知られている。
(Technical background of the invention and its problems) In recent years, much research has been carried out using pulsed laser light on nonlinear optics and its application to laser radar, laser distance measurement, high-speed photography, precision laser machining, etc. However, conventionally known pulsed laser devices used in such research include those that generate pulsed laser light by using, for example, a Q-switch or internal optical modulation. .

ところが、Qスイッチを使用するものは、ポッケルスセ
ル等のスイッチ素子を駆動するために高電圧を必要とし
、これにより装置の大形化を18いたり、また再現性あ
る光パルス波形が得られ難いという欠点があった。一方
向部光変調を行なうものは、パルス間で競合が生じ易く
安定な発振を得難く、また変i1損失があるために効率
の良いパルス発生を行なうことができなかった。
However, devices that use Q-switches require high voltage to drive switching elements such as Pockels cells, which increases the size of the device and makes it difficult to obtain reproducible optical pulse waveforms. There were drawbacks. Those that perform unidirectional optical modulation are difficult to obtain stable oscillation due to competition between pulses, and cannot generate efficient pulses due to variable i1 loss.

〔発明の目的〕[Purpose of the invention]

本発明は、スイッチを用いることなくかつ損失変調を行
なわずに光パルス列を発生し得るようにし、これにより
簡単な構成でかつ波形の特性が良く、高効率でパルスレ
ーザ光を発生し1qるパルスレーザ装置を提供すること
を目的とする。
The present invention makes it possible to generate an optical pulse train without using a switch and without performing loss modulation, thereby generating pulsed laser light with a simple configuration, good waveform characteristics, and high efficiency, and generating 1q pulses. The purpose is to provide a laser device.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、共振器内にファ
ラデ回転子が挿入され7jスレ一ブ発振器を設け、かつ
注入用レーザ発振器を設けて、この注入用レーザ発振器
から上記スレーブ発振器の光往復時間よりもパルス幅が
短くかつ直線偏光されたレーザ光を発生し、このレーザ
光を上記スレーブ発振器に注入して注入ロック発振を行
なわせるようにしたものである。
In order to achieve the above object, the present invention includes a 7J slave oscillator in which a Faraday rotator is inserted in a resonator, and an injection laser oscillator, and the light of the slave oscillator is transmitted from the injection laser oscillator. A linearly polarized laser beam with a pulse width shorter than the round trip time is generated, and this laser beam is injected into the slave oscillator to perform injection-locked oscillation.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例におけるパルス1ノーザ装置
の概略構成図で、図中10はスレーブ発振器を示してい
る。このスレーブ発振器は、電子ビーム励起KrFレー
ザからなる励起部11を有し、この励起部11の両端側
にそれぞれ半透鏡12および前方鏡13を配置するとど
もに、この前方鏡13と励起部11との間にファラデ回
転子14を介挿したものである。尚、15.16はアパ
ーチャである。上記励起部11はスイッチ部20を備え
ており、このスイッチ部20にトリガレーザ梵振器17
から反射鏡18.19を介してトリガレーザ光が供給さ
れることにより一定のタイミングで発振動作する。尚、
21は上記i−リガレーザ発振器17に対しタイミング
信号を発生する制御回路である。
FIG. 1 is a schematic diagram of a pulse 1 noser device according to an embodiment of the present invention, and numeral 10 in the figure indicates a slave oscillator. This slave oscillator has an excitation section 11 made of an electron beam pumped KrF laser, and a semi-transparent mirror 12 and a front mirror 13 are disposed at both ends of the excitation section 11, respectively. A Faraday rotator 14 is inserted between the two. Note that 15 and 16 are apertures. The excitation section 11 is equipped with a switch section 20, and a trigger laser oscillator 17 is connected to this switch section 20.
Trigger laser light is supplied from the mirrors 18 and 19 through reflecting mirrors 18 and 19, thereby causing oscillation at a constant timing. still,
A control circuit 21 generates a timing signal for the i-Riga laser oscillator 17.

一方ファラデ回転子14は、光の進行方向に平行な磁界
が印加された物質中で伝播する光の偏光面が、■を物質
のベルデ定数、Hを光の進行方向に印加される磁界強度
、1を物質長とすると、θ−VHL の関係で表わされる角度だけ回転するといういわゆるフ
ァラデ効果を利用したもので、出力光を逆方向に入射し
た場合にも偏光回転角が加算されるという特徴を有する
。例えば、ファラデ回転子の回転角が45°に設定され
た場合には、第2図に示す如く直線偏光した注入レーザ
光を共振器に入射すると、この注入レーザ光はファラデ
回転子14を通過した時に45°偏光面が回転され、さ
らに前方鏡13で反射されて逆方向から入射した時に偏
光面がさらに45°回転し、結果的に注入光に対し90
°回転したものとなる。
On the other hand, in the Faraday rotator 14, the plane of polarization of light propagating in a material to which a magnetic field parallel to the direction of travel of the light is applied is determined by the following formula: (1) is the Verdet constant of the material, H is the strength of the magnetic field applied in the direction of travel of the light, This method utilizes the so-called Faraday effect, in which the material length is rotated by an angle expressed by the relationship θ-VHL, and has the characteristic that the polarization rotation angle is added even when the output light is incident in the opposite direction. have For example, when the rotation angle of the Faraday rotator is set to 45 degrees, when a linearly polarized injection laser beam is input into the resonator as shown in FIG. 2, this injection laser beam passes through the Faraday rotator 14. When the plane of polarization is rotated by 45 degrees, the plane of polarization is further rotated by 45 degrees when it is reflected by the front mirror 13 and enters from the opposite direction, resulting in a 90 degree angle to the injected light.
It will be rotated.

また本実施例のレーザ装置は、注入レーザ光発生用のマ
スク発振器22を備えている。このマスク発振器22は
、短パルス発振放電形KrFレーザを使用したもので、
前記制御回路21で指示されるタイミングに従って、パ
ルス幅が前記スレーブ発振器10の共振器の光往復時間
よりも短い注入レーザ光を発生する。そしてこの注入レ
ーザ光を、反射鏡23.24を経たのち二つのi線部光
成分に分離する偏光分離器25により直線偏光して前記
スレーブ発振器10に注入する。
The laser device of this embodiment also includes a mask oscillator 22 for generating injection laser light. This mask oscillator 22 uses a short pulse oscillation discharge type KrF laser.
In accordance with the timing instructed by the control circuit 21, an injection laser beam whose pulse width is shorter than the optical round trip time of the resonator of the slave oscillator 10 is generated. The injected laser beam passes through reflecting mirrors 23 and 24, and then is linearly polarized by a polarization separator 25 that separates it into two i-line light components, and is injected into the slave oscillator 10.

このような構成であるから、例えばスレーブ発振器10
の共振器の光往復峙間が1’2risであるとし、この
状態でマスタ発振器22からパルス幅を4nsに設定し
た注入レーザ光を発生しスレーブ発振器10に注入する
と、この注入レーザ光は励起部11のレーザ媒質中で増
幅されたのち、ファラデ回転子14を通過してここで一
定の偏光面の回転θが与えられる。そしてこの偏光面の
回転が与えられたレーザ光は、反射鏡13で反射されて
逆方向からファラデ回転子14に入射されたときにざら
にθの偏光面の回転が与えられ、これにより前記注入光
に対し偏光面が2θ回転された状態で励起部11のレー
ザ媒質で増幅されたのち半透鏡12を介して出力される
。一方、この半透鏡12で反射されたレーザ光は、上記
1パルス目のレーザ光と同じ過程を経てさらに20だけ
偏光面が回転され、半透鏡12から2パルス目のし〜ザ
光として出力される。このとき、これらの出力レーザ光
の出力レベルは、ファラデ回転子14により減衰等の影
響を全く受けないため略等しくなる。
With such a configuration, for example, the slave oscillator 10
Assume that the optical reciprocating distance of the resonator is 1'2 ris, and in this state, when the master oscillator 22 generates an injection laser beam with a pulse width of 4 ns and injects it into the slave oscillator 10, this injection laser beam enters the excitation section. After being amplified in a laser medium 11, the light passes through a Faraday rotator 14, where it is given a constant rotation θ of the plane of polarization. When the laser beam given the rotation of the polarization plane is reflected by the reflecting mirror 13 and enters the Faraday rotator 14 from the opposite direction, the laser beam is given a rotation of the polarization plane of approximately θ, thereby causing the injection The polarization plane of the light is rotated by 2θ, and after being amplified by the laser medium of the excitation unit 11, the light is outputted via the semi-transparent mirror 12. On the other hand, the laser beam reflected by the semi-transparent mirror 12 undergoes the same process as the first pulse laser beam, and the plane of polarization is further rotated by 20, and is output from the semi-transparent mirror 12 as the second pulse laser beam. Ru. At this time, the output levels of these output laser beams are substantially equal because they are not affected by attenuation or the like by the Faraday rotator 14 at all.

以下同様に注入レーザ光は、スレーブ発振器10の共振
器内を1往復する毎にファラデ回転子14で2θずつ偏
光面が回転されてそれぞれ半透鏡12から出力される。
Similarly, the plane of polarization of the injected laser beam is rotated by 2θ by the Faraday rotator 14 each time it makes one round trip within the resonator of the slave oscillator 10, and is output from the semi-transparent mirror 12.

第3図は、ファラデ回“転子14の回転角θを45°、
励起部11の発振時間幅を100nsとしに場合の出力
Eノーザ光の波形の一例を示すものである。尚この出力
波形は、出力1.、、/−ザ光のうち(1光而の角叶か
注入[、ノーザ)にと同じt)のおよび180°同転し
たちのを偏光分離器’、) 5)’−(″゛分離抽出l
ヮで示しkものである3、また(二の場合、注入1〕−
ザ尤(、一対l)偏光面が90°および270”同転じ
たノー)のを分離抽出しても」、く、(二の峙の波形は
第4図に示す」、うになる、(Tれら第3図および第4
図の波形は、いすねも注入1ノーリ°尤/)−スレー1
発振器10の共振器内を2往復りる(1−要4る時間(
24ns)に相当するパルス間隔を有するf)ので、q
いに相補的イ(関係をなJl。
FIG. 3 shows Faraday rotation, with the rotation angle θ of the trochanter 14 being 45°,
An example of the waveform of the output E noser light is shown when the oscillation time width of the excitation unit 11 is 100 ns. Note that this output waveform is output 1. ,,/- out of the light (the same as t) and 180° co-rotated with the polarization separator',) 5)'-('''' Separation extraction l
3, which is denoted by ヮ, and (in the case of 2, injection 1) -
Even if we separate and extract the polarization planes of 90° and 270", the waveforms of the two opposites are shown in Figure 4. Figures 3 and 4
The waveform in the figure is Isunemo Injection 1 Nori°尤/) - Slay 1
Two round trips inside the resonator of the oscillator 10 (1-4 times required)
f) with a pulse interval corresponding to 24 ns), so q
Complementary i (relationship) Jl.

このように本実施例であれば、スレー7M振器10の共
振器内にファラデ回転子144挿入し、このスレーブ発
振器10にぞの共振器の光往復時間よりもパルス幅が短
い注入レーザ光をンスタ発振器22より注入し−(注入
ロック発振させるようにしたことにより、レーザ光がス
レ−1発振器10の共振器内を往復づ−る回数に比例し
た偏光面の回転を持−)た1ノーザバルスが得られるこ
とになる。
In this embodiment, the Faraday rotator 144 is inserted into the resonator of the Slave 7M resonator 10, and the injected laser beam with a pulse width shorter than the optical round trip time of the slave oscillator 10 is injected into the slave oscillator 10. One laser beam is injected from the laser beam oscillator 22 (due to injection-locked oscillation, the plane of polarization has a rotation proportional to the number of times that the laser beam reciprocates within the resonator of the laser beam oscillator 10). will be obtained.

このとき、共振器内に挿入されにノア ’:5デ四転子
1=1は直流的でdすF〕、スイツチン’j’ *)+
作を一切必要どしない1、またパルスはファラデ同転子
14(こよる(禍光面同転のみに」、り発生されるので
、損失変調のよ″)4I:1ノーザ出力の(i失を伴わ
ない。このため、非蓄積形レーザ゛であるKrFレーザ
で4)損失を生じること4fり効率のよいパルス発生を
11なうことができる。(Tのような装置は、例λげ1
0ns前1りの類パルス1ノーリ4を必曹どする慣性核
融合用のレーリ′装置どして極めて好適である。
At this time, the voltage inserted into the resonator is 1 = 1, which is a direct current.
1, and the pulses are generated by the Faraday cotrochanter 14 (only due to the co-rotation of the light plane, so it is similar to loss modulation) of the 4I:1 noser output. Therefore, a KrF laser, which is a non-storage type laser, can generate pulses efficiently without causing losses.
It is extremely suitable for use as a Rayleigh device for inertial nuclear fusion, which requires pulses of the same type as 1 or 4 before 0 ns.

尚、本発明は上記実施例(4−限定されるものではない
。例えば、スl〕〜−ノ発振器の共振器は、第5図に示
す−如く励起部11お」:びフj・うj゛回転f1鏡3
3を配設した不安定其振器から構成し、V配後方鏡32
で反制されたレーtr)ll;を偏光分離器34を杼で
出力するようにし−CもJ’: Qs 、、また前記実
施例では一ノブ7ラデ回転子14の回転角を45°に設
定した場合について説明したが、イれ以外の角度に設定
しでもよい、、この場合、回転角を例えば40’程度に
設定すると、出力パルス光を例λば第6図に示づ−よう
に変調することができる。1さらに、スレーブ発振器と
してはKrFレーザ以外に色素レーザや固体レーザ等を
適用してもよく、またマスタ発振器についてもスレ−1
発振器の枠類に応じて適当なレーザを選定すればよい。
It should be noted that the present invention is not limited to the above-mentioned embodiments (4). j゛Rotating f1 mirror 3
It consists of an unstable shaker with a V-arranged rear mirror 32.
The polarization separator 34 outputs the rate tr)ll; suppressed by -C as well as J': Qs, and in the above embodiment, the rotation angle of the one-knob 7 Radet rotator 14 is set to 45°. In this case, if the rotation angle is set to, for example, about 40', the output pulsed light will be set to λ, for example, as shown in Fig. 6. Can be modulated. 1 Furthermore, as the slave oscillator, a dye laser, solid-state laser, etc. may be used in addition to the KrF laser, and the master oscillator may also be a slave oscillator.
An appropriate laser may be selected depending on the frame of the oscillator.

その他、スレーブ発振器の構成り)装置の応用畦間等(
JついCも、本発明の要旨を逸脱1)ない節回で種々変
形して実施できる。
In addition, slave oscillator configuration) equipment application furrows, etc.
J and C can also be implemented with various modifications without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、共振器内にノアラ
ブ回転子が挿入されたスレーブ発振器を設け、かつ注入
用レーザ発振器を設け−C,この注入用レーザ発振器か
らL配スレーブ発振器の共振器の光往複時間よりもパル
ス幅が短くかつ直線偏光されたレーザ光を発生し、この
レーザ光を上記スレーブ発振器に注入して注入「lツク
発振を行なわせるようにしたことによって、スイッチを
用いることなくかつ損失変調を行なわずに光パルス列−
〇− を発生することが7・き、こt’+、 L:より簡単な
構成゛Cかつ波形の特性が良く、高ダ1率でパルス1ノ
ーザ光を発生することができるパルスレーザ装置を提供
することかできる。
As detailed above, according to the present invention, a slave oscillator in which a Noah Arab rotor is inserted in a resonator is provided, and an injection laser oscillator is also provided, and the resonance of the L-distributed slave oscillator from this injection laser oscillator. A switch is used by generating linearly polarized laser light with a pulse width shorter than the light reciprocation time of the device, and injecting this laser light into the slave oscillator to cause injection oscillation. Optical pulse train without loss modulation
〇- It is possible to generate 7, this t'+, L: A pulse laser device with a simpler configuration, good waveform characteristics, and can generate pulse 1 noser light at a high da 1 rate. Can you provide?

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるパルスレーザ装置の
概略構成図、第2図はノアラブ回転子の動作説明に使用
する模式図、第3図および第4図は出力パルス光の波形
の一例を示す波形図、第5図は本発明の他の実施例に、
t’;i−するスレーブ発振器の概略構成図、第6図は
本発明の別の実施例により得られる出力パルス光の波形
図である。 10・・・スレーブ発振器、11・・・励起部、12・
・・半透鏡、13.33・・・前方鏡、14・・・ファ
ラデ回転子、15.16・・・アパーチャ、17・・・
トリガ1ノーザ発振器、1B、19,23.24・・・
反射鏡、20・・・スイッヂ部、21・・・制御回路、
22・・・マスタ発振器、25・・・偏光分離器、32
・・・後方鏡、34・・・偏光分離器。
Fig. 1 is a schematic configuration diagram of a pulsed laser device according to an embodiment of the present invention, Fig. 2 is a schematic diagram used to explain the operation of the Noah Arab rotator, and Figs. 3 and 4 are examples of the waveform of the output pulsed light. FIG. 5 is a waveform diagram showing another embodiment of the present invention.
FIG. 6 is a schematic diagram of a slave oscillator that performs t';i-. FIG. 6 is a waveform diagram of output pulsed light obtained by another embodiment of the present invention. 10...Slave oscillator, 11...Excitation section, 12.
... Semi-transparent mirror, 13.33... Forward mirror, 14... Faraday rotator, 15.16... Aperture, 17...
Trigger 1 nose oscillator, 1B, 19, 23, 24...
Reflector, 20... switch section, 21... control circuit,
22... Master oscillator, 25... Polarization separator, 32
... Rear mirror, 34... Polarization separator.

Claims (3)

【特許請求の範囲】[Claims] (1)共振器内にファラデ回転子が挿入されたスレーブ
発振器と、このスレーブ発振器に上記共振器の光往復時
間よりもパルス幅が短いレーザ光を直線偏光して注入し
前記スレーブ発振器に注入ロック発振を行なわせる注入
用レーザ発振器とを具備したことを特徴とするパルスレ
ーザ装置。
(1) A slave oscillator in which a Faraday rotator is inserted into the resonator, and a linearly polarized laser beam with a pulse width shorter than the optical round trip time of the resonator is injected into the slave oscillator and the injection is locked into the slave oscillator. A pulsed laser device comprising an injection laser oscillator for oscillating.
(2)スレーブ発振器は、共振器として不安定共振器を
使用したものである特許請求の範囲第(1)項記載のパ
ルスレーザ装置。
(2) The pulse laser device according to claim (1), wherein the slave oscillator uses an unstable resonator as a resonator.
(3)ファラデ回転子は、注入レーザ光が透過する毎に
その偏向面を45°回転させるべく磁界を印加したもの
である特許請求の範囲第(1)項記載のパルスレーザ装
置。
(3) The pulse laser device according to claim (1), wherein a magnetic field is applied to the Faraday rotator to rotate its deflection plane by 45° each time the injected laser beam passes through.
JP60159342A 1985-07-19 1985-07-19 Pulse laser device Granted JPS6220386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60159342A JPS6220386A (en) 1985-07-19 1985-07-19 Pulse laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60159342A JPS6220386A (en) 1985-07-19 1985-07-19 Pulse laser device

Publications (2)

Publication Number Publication Date
JPS6220386A true JPS6220386A (en) 1987-01-28
JPH0374519B2 JPH0374519B2 (en) 1991-11-27

Family

ID=15691740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60159342A Granted JPS6220386A (en) 1985-07-19 1985-07-19 Pulse laser device

Country Status (1)

Country Link
JP (1) JPS6220386A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346870U (en) * 1986-09-12 1988-03-30
US5018152A (en) * 1989-09-07 1991-05-21 Spectra-Physics, Inc. Apparatus for controlling pulse energy in a Q-switched laser system
JP2016066824A (en) * 2016-02-01 2016-04-28 ギガフォトン株式会社 Laser apparatus
JP2017079283A (en) * 2015-10-21 2017-04-27 国立大学法人豊橋技術科学大学 Q switch solid state laser device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346870U (en) * 1986-09-12 1988-03-30
US5018152A (en) * 1989-09-07 1991-05-21 Spectra-Physics, Inc. Apparatus for controlling pulse energy in a Q-switched laser system
JP2017079283A (en) * 2015-10-21 2017-04-27 国立大学法人豊橋技術科学大学 Q switch solid state laser device
WO2017069272A1 (en) * 2015-10-21 2017-04-27 国立大学法人豊橋技術科学大学 Q-switch solid-state laser device
JP2016066824A (en) * 2016-02-01 2016-04-28 ギガフォトン株式会社 Laser apparatus

Also Published As

Publication number Publication date
JPH0374519B2 (en) 1991-11-27

Similar Documents

Publication Publication Date Title
US4019156A (en) Active/passive mode-locked laser oscillator
US4375684A (en) Laser mode locking, Q-switching and dumping system
DeMaria et al. Ultrashort light pulses
US4314210A (en) Mode-locking and chirping system for lasers
US4982406A (en) Self-injection locking technique
JPH01147881A (en) Mode-locked laser
US5309453A (en) Single pulse injection locking
US4293827A (en) Multiwavelength dye laser
Bridges et al. SPONTANEOUS SELF‐PULSING AND CAVITY DUMPING IN A CO2 LASER WITH ELECTRO‐OPTIC Q‐SWITCHING
US4546477A (en) Pulse transmission or reflection mode laser
US3668536A (en) Light amplifier stages
JPS6220386A (en) Pulse laser device
US5321709A (en) Pulsed intracavity nonlinear optical frequency converter
US4326175A (en) Multi-color, multi-pulse laser system
Vallet et al. Phase-conjugation and self-oscillation with copropagating cross-polarized beams
US3373376A (en) Kerr cell laser modulator corrected for induced changes of index of refraction effects
Michon et al. Pulsed transmission mode operation in the case of a mode locking of the modes of a non Q-spoiled ruby laser
JPH0613981A (en) Optical timing extraction circuit
JPH0624277B2 (en) CPM ring dye laser device
DE3631909C2 (en) Laser with internal frequency doubling
JP2604479B2 (en) Mode-locked laser device
JP2001024264A (en) Wavelength converting laser device
Cruz et al. Picosecond pulse generation by intracavity nonlinear compression in self-injected Nd-YAG laser
US3521188A (en) Double q-switched laser with self-mode locked intracavity loss modulator
Beigman et al. Mechanism of generation excitation in a continuously operating argon ion laser(Ion excitation rates by electron impact from ground and excited states calculated by semiempirical wave functions, using argon ion laser)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees