JPS622037B2 - - Google Patents

Info

Publication number
JPS622037B2
JPS622037B2 JP54121532A JP12153279A JPS622037B2 JP S622037 B2 JPS622037 B2 JP S622037B2 JP 54121532 A JP54121532 A JP 54121532A JP 12153279 A JP12153279 A JP 12153279A JP S622037 B2 JPS622037 B2 JP S622037B2
Authority
JP
Japan
Prior art keywords
general formula
compound
reaction
formula
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54121532A
Other languages
Japanese (ja)
Other versions
JPS5644781A (en
Inventor
Tatsuya Shono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Pharmaceutical Co Ltd
Original Assignee
Otsuka Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co Ltd filed Critical Otsuka Pharmaceutical Co Ltd
Priority to JP12153279A priority Critical patent/JPS5644781A/en
Publication of JPS5644781A publication Critical patent/JPS5644781A/en
Publication of JPS622037B2 publication Critical patent/JPS622037B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other In-Based Heterocyclic Compounds (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は環状アミン類の新規な製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing cyclic amines.

更に詳しくは本発明は一般式 〔式中R1は水素原子又は低級アルキル基を、R2
低級アルコキシ基を、Zは陰イオン基を、nは
1〜2の整数をそれぞれ示す。〕で表わされる化
合物を電解還元することを特徴とする一般式 〔式中R1、R2及びnは前記に同じ。〕で表わされ
る環状アミン類及びその塩の製造法に係る。
More specifically, the present invention relates to the general formula [In the formula, R 1 represents a hydrogen atom or a lower alkyl group, R 2 represents a lower alkoxy group, Z represents an anion group, and n represents an integer of 1 to 2. ] A general formula characterized by electrolytic reduction of a compound represented by [In the formula, R 1 , R 2 and n are the same as above. ] The present invention relates to a method for producing cyclic amines and salts thereof.

本明細書に於て、低級アルキル基としてはメチ
ル、エチル、プロピル、イソプロピル、ブチル、
tert―ブチル基等を例示でき、また低級アルコキ
シ基としてはメトキシ、エトキシ、プロポキシ、
イソプロポキシ、ブトキシ、tert―ブトキシ基等
を例示できる。上記一般式〔1〕に於て、Zで
示される陰イオン基としては任意の陰イオン基を
示すものであるが、特に好ましい具体例としては
例えば塩素イオン、臭素イオン、沃素イオン等の
ハロゲンイオン、メタンスルホネート等の低級ア
ルカンスルホネート、ベンゼンスルホネート、p
―トルエンスルホネート等のアリールスルホネー
ト基等を挙げることができる。
In this specification, lower alkyl groups include methyl, ethyl, propyl, isopropyl, butyl,
Examples include tert-butyl group, and lower alkoxy groups include methoxy, ethoxy, propoxy,
Examples include isopropoxy, butoxy, and tert-butoxy groups. In the above general formula [1], the anion group represented by Z can be any anion group, but particularly preferred examples include halogen ions such as chloride ions, bromide ions, and iodide ions. , lower alkanesulfonates such as methanesulfonate, benzenesulfonate, p
-Arylsulfonate groups such as toluenesulfonate and the like can be mentioned.

上記電解還元反応に於て、出発原料として用い
られる一般式〔1〕の化合物は新規化合物であ
り、これらは例えば下記反応行程式―1に示す方
法により製造される。
In the above electrolytic reduction reaction, the compound of general formula [1] used as a starting material is a new compound, and these can be produced, for example, by the method shown in the following reaction scheme-1.

〔上式に於てR1、R2、n及びZは前記に同
じ。〕 即ち一般式〔1〕の化合物は、テイラー
(Taylor)の方法〔J.Chem.Soc.、第1153頁
(1951年)参照〕に従い、公知の一般式〔3〕の
化合物に蟻酸又は蟻酸アミド、次いでオキシ塩化
リンを反応させ、次に生成する一般式〔4〕の化
合物に例えばテトラヒドロラフラン中にて過剰の
一般式〔5〕の化合物を室温で反応させることに
より容易に製造される。上記電解還元反応は通常
適当な溶媒中にて直流電流を通ずることにより行
なわれる。溶媒としては例えば水、メタノール、
エタノールなどのアルコール類、ジメチルホルム
アミド、ジメチルスルホキシド、ヘキサメチルホ
スホルアミド等の非プロトン性極性溶媒、アセト
ニトリルの如きニトリル類が使用できる。該反応
は常温において進行するが勿論常温以下の低温に
おいてもあるいは加熱下においても反応可能であ
り、例えば−10℃〜100℃好ましくは0℃〜常温
で有利に実施し得る。通常、電極還元を行うに当
つて溶媒系に直流電流を通ずるために適当な電解
質すなわち支持電解質を加えることが必要であ
る。上記方法の場合には出発原料の溶液が既に電
導性を有するために、特に電解質を加える必要は
無いが、しかし通常支持電解質として用いられる
スルホン酸、過塩素酸、カルボン酸等のアルカリ
金属塩、または第4級アンモニウム塩を共存させ
ることにより更に有利に反応の進行する場合もあ
る。また上記方法に於て、鉛等の少量の金属を添
加することにより目的物の収率を向上し得ると共
に副生成物の生成を少なくすることができるとい
う特徴を有する。
[In the above formula, R 1 , R 2 , n and Z are the same as above. ] That is, the compound of general formula [1] is obtained by adding formic acid or formic acid amide to the known compound of general formula [3] according to the Taylor method [see J.Chem.Soc., p. 1153 (1951)]. It is easily produced by reacting phosphorus oxychloride, and then reacting the resulting compound of general formula [4] with an excess of the compound of general formula [5] in, for example, tetrahydrofuran at room temperature. The above electrolytic reduction reaction is usually carried out in a suitable solvent by passing a direct current through it. Examples of solvents include water, methanol,
Alcohols such as ethanol, aprotic polar solvents such as dimethylformamide, dimethylsulfoxide, hexamethylphosphoramide, and nitriles such as acetonitrile can be used. Although the reaction proceeds at room temperature, it is of course possible to carry out the reaction at a low temperature below room temperature or under heating, for example, it can be carried out advantageously at -10°C to 100°C, preferably 0°C to room temperature. Typically, it is necessary to add a suitable or supporting electrolyte to pass a direct current through the solvent system in carrying out electrode reduction. In the case of the above method, since the starting material solution already has conductivity, there is no need to add an electrolyte. Alternatively, the reaction may proceed more favorably by coexisting a quaternary ammonium salt. Furthermore, the above method is characterized in that by adding a small amount of metal such as lead, the yield of the target product can be improved and the production of by-products can be reduced.

電極材質としては通常用いられるすべての材質
を用いることが可能であるが、白金、水銀、鉛ま
たは炭素等が特に有効である。また隔膜を用いる
ことも任意であるが、隔膜を用いた場合には陰極
室において反応を行うことは当然のことである。
All commonly used materials can be used as the electrode material, but platinum, mercury, lead, carbon, etc. are particularly effective. It is also optional to use a diaphragm, but when a diaphragm is used, it is a matter of course that the reaction is carried out in the cathode chamber.

電流および端子間電圧の値は用いる装置によつ
て、また反応の規模によつて最適の値が変化する
ものであつて、上記方法を実施する場合に用いる
装置または反応の規模は全く任意である。従つて
電流値および端子間電圧値も適宜に決定できる。
しかし陰極の電極電位を制御することが有利な結
果を与える場合は多い。この場合の陰極電位とし
ては出発原料である一般式〔1〕の化合物(イン
モニウム塩)の還元電位を測定して、その付近の
電位とするのが適当である。
The optimal values of the current and terminal voltage vary depending on the equipment used and the scale of the reaction, and the equipment or scale of the reaction used when carrying out the above method is completely arbitrary. . Therefore, the current value and the voltage value between the terminals can also be appropriately determined.
However, controlling the electrode potential of the cathode often provides advantageous results. In this case, the cathode potential is suitably determined by measuring the reduction potential of the compound of general formula [1] (immonium salt), which is the starting material, and setting it at a potential in the vicinity thereof.

上記の方法では出発原料から複雑な異性体を副
生することなく目的とする一般式〔2〕の化合物
が得られるので反応後の精製は非常に容易であつ
て、反応終了後、抽出などの操作で目的物を極め
て純度良く且つ高収率で得ることができる。また
必要な場合にはカラムクロマトグラフ法によつて
容易に目的物を精製することができる。
In the above method, the target compound of general formula [2] can be obtained from the starting materials without producing complex isomers as by-products, so purification after the reaction is very easy. Through this operation, the desired product can be obtained with extremely high purity and high yield. Furthermore, if necessary, the target product can be easily purified by column chromatography.

斯くして得られる一般式〔2〕の化合物は通常
の医薬品に許容され得る酸と容易に塩を形成させ
ることができ、斯かる塩も本発明化合物に包含さ
れる。用いられる酸としては例えば塩酸、臭化水
素酸、硫酸、酢酸、蓚酸、マレイン酸、メチルア
イオダイド、メチルクロライド、エチルアイオダ
イド等のアルキルハライド等を挙げることができ
る。
The compound of general formula [2] thus obtained can easily form a salt with a commonly used pharmaceutically acceptable acid, and such salts are also included in the compounds of the present invention. Examples of acids that can be used include alkyl halides such as hydrochloric acid, hydrobromic acid, sulfuric acid, acetic acid, oxalic acid, maleic acid, methyl iodide, methyl chloride, and ethyl iodide.

斯くして製造される一般式〔2〕の化合物及び
その塩は公知の化合物及び新規化合物を包含する
ものである。該化合物は平滑筋弛緩作用を有して
おり、気管支拡張剤、鎮咳剤、脳循環改善剤、早
産防止剤等の医薬品として有用である。
The compound of general formula [2] and its salts thus produced include known compounds and novel compounds. The compound has a smooth muscle relaxing effect and is useful as a bronchodilator, an antitussive, a cerebral circulation improver, an agent for preventing premature birth, and other pharmaceuticals.

本発明化合物を製造するための上記方法は、原
料の入手が容易であること、非常に簡単に且つ安
全な操作で目的物が得られること、反応工程が短
かく且つ好収率で目的物が得られること、分離し
難い副生成体の生成が極めて少ないこと、特殊な
又は環境保全上問題を有するような化学薬品を使
用しないこと等の特徴を有するものである。
The above method for producing the compound of the present invention has the following advantages: the raw materials are easily available, the target product can be obtained by very simple and safe operations, the reaction steps are short and the target product can be obtained in good yield. It has the characteristics that it can be easily obtained, that it produces very few by-products that are difficult to separate, and that it does not use any special or environmentally friendly chemicals.

以下に本発明化合物の製造例を挙げる。 Examples of manufacturing the compounds of the present invention are listed below.

製造例 1 3,4―ジヒドロ―6,7―ジメトキシイソキ
ノリン10ミリモルをジメチルホルムアミド80mlに
溶解し、少量の鉛の存在下−1.8Vで定電位電解
還元を行なう。電流値が10mA以下になつたとこ
ろでメタンスルホン酸15ミリモルを加えさらに電
解を続ける。通電量は2.2F/モルである。尚上
記電解還元では、素焼板を隔膜とし、陽極室には
溶媒及び支持電解質としてトルエンスルホン酸テ
トラエチルアンモニウム塩が入り、また陰極室に
は上記反応試薬、鉛及び溶媒が入り、電極として
白金電極を用いたものを使用した。製造例2につ
いても同様である。
Production Example 1 10 mmol of 3,4-dihydro-6,7-dimethoxyisoquinoline was dissolved in 80 ml of dimethylformamide and electrostatic reduction was carried out at -1.8 V in the presence of a small amount of lead. When the current value becomes 10 mA or less, 15 mmol of methanesulfonic acid is added and electrolysis is continued. The amount of current applied was 2.2F/mol. In the above electrolytic reduction, a clay plate is used as a diaphragm, toluenesulfonic acid tetraethylammonium salt is placed in the anode chamber as a solvent and supporting electrolyte, and the above reaction reagent, lead and solvent are placed in the cathode chamber, and a platinum electrode is used as an electrode. I used what I used. The same applies to Production Example 2.

ジメチルホルムアミドを減圧留去後残余を塩化
メチレンに溶解し、炭酸水素ナトリウム水溶液で
1回洗浄する。塩化メチレン層を硫酸マグネシウ
ムで乾燥後アルミニウムカラムクロマトグラフイ
ーで単離してシロツプ状の1,1′―ビス(3,4
―ジヒドロ―6,7―ジメトキシイソキノリン)
を得る。
After distilling off dimethylformamide under reduced pressure, the residue was dissolved in methylene chloride and washed once with an aqueous sodium bicarbonate solution. After drying the methylene chloride layer with magnesium sulfate, it was isolated using aluminum column chromatography to obtain syrupy 1,1'-bis(3,4
-dihydro-6,7-dimethoxyisoquinoline)
get.

収率45% NMRスペクトル(CDCl3) δ=2.5〜3.2(ppm)(m、10H、イソキノリン骨
格の3,3′4,4′,2,2′位のプロトン) =3.63及び3.83(s、12H、OCH3×4) =4.07(s、2H、1,1′位プロント) =6.34及び6.80(s、4H、5,5′,8,8′位の
プロント) 製造例 2 3,4―ジヒドロ―6,7―ジメトキシイソキ
ノリンのメチオダイド塩10ミリモルをジメチルホ
ルムアミド80mlに溶解し、以下製造例2と同様に
してシロツプ状の1,1′―ビス(2―メチル―
3,4―ジヒドロ―6,7―ジメトキシイソキノ
リン)を得る。収率58% NMRスペクトル(CDCl3) δ=2.1〜3.2(ppm)(m、16H) =3.34、3.43、3.44及び3.55(s、12H) =5.93、6.05、6.26及び6.83(s、4H)
Yield 45% NMR spectrum (CDCl 3 ) δ = 2.5-3.2 (ppm) (m, 10H, protons at the 3, 3' 4, 4', 2, 2' positions of the isoquinoline skeleton) = 3.63 and 3.83 (s, 12H, OCH 3 × 4) = 4.07 (s, 2H, 1, 1′ pronto) = 6.34 and 6.80 (s, 4H, 5, 5′, 8, 8′ pronto) Production example 2 3, 4- 10 mmol of the methiodide salt of dihydro-6,7-dimethoxyisoquinoline was dissolved in 80 ml of dimethylformamide, and the following procedure was repeated in the same manner as in Production Example 2 to prepare syrup-like 1,1'-bis(2-methyl-
3,4-dihydro-6,7-dimethoxyisoquinoline) is obtained. Yield 58% NMR spectrum ( CDCl3 ) δ = 2.1-3.2 (ppm) (m, 16H) = 3.34, 3.43, 3.44 and 3.55 (s, 12H) = 5.93, 6.05, 6.26 and 6.83 (s, 4H)

Claims (1)

【特許請求の範囲】 1 一般式 〔式中R1は水素原子又は低級アルキル基を、R2
低級アルコキシ基を、Zは陰イオン基を、nは
1〜2の整数をそれぞれ示す。〕で表わされる化
合物を電解還元することを特徴とする一般式 〔式中R1、R2及びnは前記に同じ。〕で表わされ
る環状アミン類及びその塩の製造法。
[Claims] 1. General formula [In the formula, R 1 represents a hydrogen atom or a lower alkyl group, R 2 represents a lower alkoxy group, Z represents an anion group, and n represents an integer of 1 to 2. ] A general formula characterized by electrolytic reduction of a compound represented by [In the formula, R 1 , R 2 and n are the same as above. ] A method for producing cyclic amines and their salts.
JP12153279A 1979-09-20 1979-09-20 Preparation of cyclic amine Granted JPS5644781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12153279A JPS5644781A (en) 1979-09-20 1979-09-20 Preparation of cyclic amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12153279A JPS5644781A (en) 1979-09-20 1979-09-20 Preparation of cyclic amine

Publications (2)

Publication Number Publication Date
JPS5644781A JPS5644781A (en) 1981-04-24
JPS622037B2 true JPS622037B2 (en) 1987-01-17

Family

ID=14813559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12153279A Granted JPS5644781A (en) 1979-09-20 1979-09-20 Preparation of cyclic amine

Country Status (1)

Country Link
JP (1) JPS5644781A (en)

Also Published As

Publication number Publication date
JPS5644781A (en) 1981-04-24

Similar Documents

Publication Publication Date Title
JP6843120B2 (en) (4S) -4- (4-Cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthalene-3-carboxamide preparation method and electrochemical method Recovery of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthalidine-3-carboxamide
JP2005501841A5 (en)
Guirado et al. Cathodic reductions of aroyl chlorides
US4465862A (en) Cyclopentendione and cyclopentenone
Wagenknecht et al. Electrolytic reductive coupling. XII. 1 Reactions with styrene of the intermediates produced by electrolytic reductive cleavage of certain cyanoalkylphosphonium compounds
CN114105984B (en) Method for preparing indolizine type corrosion inhibitor
JP3946260B2 (en) Production of phthalide
JPS622037B2 (en)
US4290862A (en) Method for the preparation of narwedine-type enones
JPH0144711B2 (en)
US3952010A (en) Catalytic dehydrogenation process for the preparation of 3,5-disubstituted pyrazoles
JPS60110887A (en) Manufacture of alpha-alkylated acetic acid derivative
EP0099017A2 (en) Phenyl-acetic-acid derivatives, their preparation and pharmaceutical compostions containing them
CN113789527B (en) Electrochemical synthesis method of aromatic amine
CA1331016C (en) Preparation of benzene derivatives and novel benzene derivatives
JPS61264186A (en) Electric synthesis of alcohol and epoxy compound
JPS6154876B2 (en)
JPS62185891A (en) Production of pyrazole
JPH02179890A (en) Preparation of dihydroxydione
RU2142450C1 (en) Asymmetrically substituted diaminodicardoxylic acid derivatives and method of preparation thereof
NL8000490A (en) PROCESS FOR THE PREPARATION OF N- (4'-PYRIDYL) -3.3- DIPHENYLPROPYLAMINE.
JP4670181B2 (en) Method for producing silacyclopentadiene derivative
CA1074305A (en) Amino-substituted tetracyclic compounds
CN117210833A (en) Method for preparing 3-benzylamino-2-butenenitrile
JPH032390A (en) Production of 5,8-dimethoxy-1,4-naphthoquinone derivative