JPS62203683A - High frequency electric seam welding method using laser beam as well - Google Patents

High frequency electric seam welding method using laser beam as well

Info

Publication number
JPS62203683A
JPS62203683A JP61045678A JP4567886A JPS62203683A JP S62203683 A JPS62203683 A JP S62203683A JP 61045678 A JP61045678 A JP 61045678A JP 4567886 A JP4567886 A JP 4567886A JP S62203683 A JPS62203683 A JP S62203683A
Authority
JP
Japan
Prior art keywords
welding
laser beam
high frequency
frequency electric
frequency current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61045678A
Other languages
Japanese (ja)
Inventor
Hirotsugu Haga
芳賀 博世
Nobuo Mizuhashi
伸雄 水橋
Hideo Takato
高藤 英雄
Katsuhiro Minamida
勝宏 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61045678A priority Critical patent/JPS62203683A/en
Publication of JPS62203683A publication Critical patent/JPS62203683A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of a welding defect by passing the high frequency current used together with a laser beam intermittently or high- loweringly at the specified time intervals. CONSTITUTION:The intermittently electrifying high frequency welding equipment 10 to heat the edge part 2 of a metal pipe 1 and laser beam projection device 5 are arranged. The whole welding range is uniformly heated by the Joule heat by the high frequency electric power fed via probes 4, 4 from the equipment 10 and the laser beam LB projected via an optical system 6 and beam guide 7 from the laser device 5. In this case, the high frequency current is passed intermittently periodically at the intervals of 0.1sec from 0.1msec. In this way, the plate thickness center part is heated over wide range and the press-fitting can be performed in the state of no discharging of the molten metal due to the electromagnetic force. Consequently the welding defect of a penetrator, etc., can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高周波電縫溶接法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a high frequency electric resistance welding method.

〔従来の技術〕[Conventional technology]

高周波電縫溶接は溶接管の製造分野において、一般に電
縫管と呼ばれる管の、溶接速度の速い、即ち生産性の高
い溶接法として用いられている。
In the field of manufacturing welded pipes, high-frequency electric resistance welding is generally used as a welding method for pipes called electric resistance welded pipes, which has a high welding speed, that is, has high productivity.

電縫管の製造方法、例えば従来の高周波?!!縫溶接法
による溶接造管工程の1例を第5図により説明する。ま
ず図には示していない成形ロール群によって管状に成形
された帯板1のエツジ部2は、スクイズロール3によっ
て突合わせられ衝合部を頂点するクサビ形状を呈する。
How to manufacture ERW pipes, for example conventional high frequency? ! ! An example of a welded pipe manufacturing process using the seam welding method will be explained with reference to FIG. First, the edge portion 2 of the strip 1 formed into a tubular shape by a group of forming rolls not shown in the drawings is abutted by a squeeze roll 3 and has a wedge shape with the abutting portion at the apex.

スクイズロール3の上流に配設された接触子4,4には
、高周波電圧が印加され、1つの接触子4から他の接触
子4への高周波電流回路がクサビ形状をなすエツジ部2
に沿って形成される。この高周波電流によってエツジ部
2が加熱されクサビ形状の頂点すなわち溶接点が溶接温
度に達しスクイズロール3により加圧溶接される。
A high frequency voltage is applied to the contacts 4, 4 disposed upstream of the squeeze roll 3, and a high frequency current circuit from one contact 4 to the other contact 4 forms a wedge-shaped edge portion 2.
formed along the The edge portion 2 is heated by this high frequency current, and the apex of the wedge shape, that is, the welding point reaches the welding temperature and is welded under pressure by the squeeze roll 3.

一般に電縫溶接造管に用いる高周波電力としては、10
〜500にHzの周波数帯が用いられ、高周波特有の「
表皮効果」と「近接効果」の2つの現象の相乗効果によ
り周波数が高くなるほど電気的)さ接効果は大きくなる
。これが電縫18接造管に広く高周波電力が用いられる
理由である。
Generally, the high frequency power used for ERW welding pipe production is 10
The frequency band of ~500 Hz is used, and the
Due to the synergistic effect of the two phenomena of "skin effect" and "proximity effect", the higher the frequency, the larger the electrical (electrical) proximity effect becomes. This is the reason why high frequency power is widely used in the construction of ERW 18 welded pipes.

ところが、この高周波特有の現象は第6図に示す如きエ
ツジ部の肉厚方向の溶融不均一をもたらす。即ちエツジ
部のコーナ部21の高周波電流密度が肉厚中央部22の
高周波電流より高くなり肉厚方向で溶融不均一となる。
However, this phenomenon peculiar to high frequencies causes non-uniform melting in the thickness direction of the edge portion as shown in FIG. That is, the high frequency current density in the corner portion 21 of the edge portion is higher than the high frequency current density in the thick central portion 22, resulting in non-uniform melting in the thickness direction.

このエツジ部の肉厚方向の溶融不均一は肉厚が厚くなる
ほど(例えば電縫造管においては6mm以上)助長され
る傾向にある。この肉厚方向の溶融不均一が助長される
と溶接点に至っても溶接温度に達しない低入熱部分が生
じ冷接の原因となる。
This non-uniform melting in the wall thickness direction of the edge portion tends to become more pronounced as the wall thickness increases (eg, 6 mm or more in electric resistance welded pipes). If this non-uniform melting in the wall thickness direction is promoted, there will be a low heat input area where the welding temperature does not reach the welding point even when the welding point is reached, causing cold welding.

この冷接の発生を防止するために接触子4への印加電圧
をあげ溶接電力を大きくすると、コーナ部21が過溶融
状態になリペネ1−レータなどの溶接欠陥が発生する場
合がある。
If the voltage applied to the contactor 4 is increased to increase the welding power in order to prevent the occurrence of cold welding, the corner portion 21 may become overmelted and weld defects such as repenerators may occur.

ベネトレータの発生を抑制するために、高周波電縫溶接
においては、スクイズロール3によって溶接部に強いア
ブセット力を加え、酸化物を溶融金属と共に帯板表面へ
排除するようにしている。ところが強いアプセットは溶
接部近傍のメタルフローを立上らせ溶接部靭性を劣化さ
せる原因となる。
In order to suppress the occurrence of venetrators, in high-frequency electric resistance welding, a strong offset force is applied to the welded part by a squeeze roll 3, so that oxides are expelled to the surface of the strip together with the molten metal. However, a strong upset causes metal flow near the weld to rise and deteriorate the toughness of the weld.

本発明者等は種々の研究を重ねた結果、特願昭60−2
444号で開示した如く、エツジ部2の板厚中心部にレ
ーザーを照射してエツジ部2を均一に溶融させれば強い
アプセットは不必要になることを見出した。
As a result of various researches, the inventors of the present invention filed a patent application in 1986-2.
As disclosed in No. 444, it has been found that strong upsetting becomes unnecessary if the edge portion 2 is uniformly melted by irradiating a laser to the center of the plate thickness of the edge portion 2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

レーザーを複合することにより均一溶融・低アプセッ1
−溶接が可能になるのであるが、突合せ面を加熱するエ
ネルギーの大部分は高周波電流による抵抗加熱によって
おり、加熱・溶融・圧接過程の溶接現象は基本的に電縫
溶接と変わるものではない。
Uniform melting and low upset by combining lasers1
-Although welding is possible, most of the energy used to heat the butt surfaces is resistance heating using high-frequency current, and the welding phenomena during the heating, melting, and pressure welding processes are basically the same as electric resistance welding.

従ってレーザーを複合した高周波型Ia溶接においても
従来の高周波電縫溶接と同様溶接部に占める面積にして
0.05〜0.5%程度の溶接欠陥の発生は避けられな
かった。
Therefore, even in high frequency type Ia welding using a combined laser, the occurrence of welding defects of about 0.05 to 0.5% in terms of the area occupied by the welded part is unavoidable, as in conventional high frequency electric resistance welding.

本発明はレーザー複合高周波電縫溶接における冷接やバ
ネ1〜レータなどの溶接欠陥の発生を防止することを目
的としている。
An object of the present invention is to prevent the occurrence of welding defects such as cold welding and springs 1 to 12 in laser compound high-frequency electric resistance welding.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要旨とするところは、相向い合う突合せ端面が
漸近し溶接点を頂点とするクサビ形状をなす被溶接物へ
高周波電流を供給ししかも該クサビ形状の開放側から溶
接点へレーザービームを投射して、発生するジュール熱
とレーザービームのエネルギーでクサビ形状の頂点を溶
接温度まで加熱するレーザービーム併用高周波電縫溶接
法において: 高周波電流を0.1m5ecから0 、1 secの間
隔で周期的に断続もしくは高低して通電することを特徴
とするレーザービーム併用高周波電縫溶接方法、にある
The gist of the present invention is to supply a high-frequency current to a wedge-shaped workpiece whose abutting end faces asymptotically approach each other and have a welding point as its apex, and to supply a laser beam to the welding point from the open side of the wedge-shaped object. In the laser beam combined high frequency electric resistance welding method, in which the apex of the wedge shape is heated to the welding temperature by the generated Joule heat and laser beam energy: High frequency current is applied periodically from 0.1 m5ec to 0.1 sec at intervals of 1 sec. This is a high-frequency electric resistance welding method using a laser beam, which is characterized by applying current intermittently or at high and low pitches.

〔作用〕[Effect]

溶接入熱をはじめとする溶接条件と溶接特性の関係に関
して、本発明者は種々検討した結果下記のJ:つな知見
を得た。
As a result of various studies regarding the relationship between welding conditions including welding heat input and welding characteristics, the inventors have obtained the following findings.

相対するエツジ部2には互いに逆向きに流れる高周波電
流によって強いffi磁圧力が誘起されている。、:の
ためエツジ部2が溶融すると、第6図に示すように溶融
金lA23は直ちに帯板表面に排出される。この場合エ
ツジ部2は幾何学的衝合が期待されるV収束点Vで会合
できず、■収束点Vから排出した溶融金属に見合った長
さだけ間隙Gを発達させる(第7図)。この間隙Gは帯
板lの移動と共に伸長するが、溶接電流11間隙に沿っ
て流れるから間隙が長くなるに従い電流路インピーダン
スが増大し溶接電流と溶融量の低下をもたらす。
Strong ffi magnetic pressure is induced in the opposing edge portions 2 by high frequency currents flowing in opposite directions. , : When the edge portion 2 melts, the molten metal 1A23 is immediately discharged onto the surface of the strip, as shown in FIG. In this case, the edge portions 2 cannot meet at the V convergence point V where geometrical collision is expected, and a gap G is developed with a length commensurate with the molten metal discharged from the convergence point V (FIG. 7). This gap G expands as the strip l moves, but since the welding current 11 flows along the gap, as the gap becomes longer, the current path impedance increases, resulting in a decrease in welding current and melting amount.

エツジ部の溶融に伴うこのような現象は高周波電縫溶接
現象の著しい特徴、すなわち溶接点Wの周期的移動に代
表される周期性の原因となっている。
Such a phenomenon accompanying the melting of the edge portion is a cause of a remarkable feature of the high frequency electric resistance welding phenomenon, that is, the periodicity represented by the periodic movement of the welding point W.

ところでこの周期が0.1秒を越えると、溶接の周期的
進行の過程で、排出した溶融金a23のエツジ部間隙G
への還流が生ずることがあり、その時酸化物を巻込むと
高周波電縫溶接特有のペネトレータと呼ばれる溶接欠陥
を発生する。他方、エツジ部2が溶融しないと冷接と呼
ばれる重大な溶接欠陥が発生する。
By the way, if this cycle exceeds 0.1 seconds, the edge gap G of the discharged molten metal a23 will increase during the periodic progress of welding.
Reflux may occur, and if oxides are involved at that time, welding defects called penetrators, which are unique to high-frequency electric resistance welding, will occur. On the other hand, if the edge portion 2 is not melted, a serious welding defect called cold welding will occur.

上述の溶接欠陥発生機(lηは溶接熱源としてレーザー
を併用しても全く同様である。そしてこの欠点は、高周
波電流によって誘起された?l!磁力によってi’if
融金属23がエツジ部2から帯板表面へ排出さ扛ること
に起因している。
The above-mentioned welding defect generator (lη) is exactly the same even when a laser is used as a welding heat source.And this defect is caused by the magnetic force induced by the high frequency current.
This is due to the fact that the molten metal 23 is discharged from the edge portion 2 onto the surface of the strip.

そこで高周波電流を一定周期で遮断又は低減すれば、高
周波電流はエツジ部2の予熱とコーナ一部21の溶融に
のみ寄与し、レーザーによって形成さJしたエツジ部2
の板厚中心部22における大部分の溶融金属を排出せず
にそのまま溶接に寄与させることが可能になる。この通
電方法によれば。
Therefore, if the high-frequency current is cut off or reduced at regular intervals, the high-frequency current will only contribute to preheating the edge part 2 and melting the corner part 21, and the edge part 2 formed by the laser will
Most of the molten metal in the central part 22 of the plate thickness can be directly contributed to welding without being discharged. According to this energization method.

高周波電流が遮断又は低減している期間電磁力が消火も
しくは著しく微弱となって溶融全屈の排出が実質上停止
し、エツジ部2の残っている溶融金属により溶融圧接が
なされる。
While the high-frequency current is cut off or reduced, the electromagnetic force is extinguished or becomes extremely weak, and the discharge of the molten metal is substantially stopped, and the molten metal remaining in the edge portion 2 performs molten pressure welding.

高周波電流の断続通電周期は、0.1m5ec以上かつ
0.1sec以下が望ましい。0.111sec未満で
は、高周波電流の周波数を10 K I−1zを越える
ものとしたのと変りなく、電磁力により溶融金属の排出
を阻止できない。断続通電周期が0.1secを越える
と、通電遮断期間もしくは電流低減期間が長くなるため
未溶融部の圧接をもたらし断続的な冷接を発生させる。
The intermittent energization cycle of the high frequency current is preferably 0.1 m5 ec or more and 0.1 sec or less. If it is less than 0.111 sec, it is the same as if the frequency of the high-frequency current exceeds 10 K I-1z, and the discharge of the molten metal cannot be prevented by electromagnetic force. When the intermittent energization period exceeds 0.1 sec, the energization cutoff period or the current reduction period becomes longer, resulting in pressure welding of the unmelted portion and generation of intermittent cold welding.

この場合たとえ通電遮断期間もしくは電流低減期間を短
くしても溶接が0.1秒周期で進行するのと変りなくな
り、こんどはバネ1ヘレータが多発するようになる。
In this case, even if the current cutoff period or current reduction period is shortened, welding will continue to proceed at a cycle of 0.1 seconds, and spring 1 helators will occur frequently.

なお本発明の範囲での断続通電−周期における通電遮断
期間の長さは特に限定するものではないが、−周期の1
0%から70%までの範囲であれば溶接欠陥発生防止効
果が特に顕著である。
Note that within the scope of the present invention, the length of the energization cut-off period in the intermittent energization period is not particularly limited;
If it is in the range of 0% to 70%, the effect of preventing the occurrence of welding defects is particularly remarkable.

第1図に、第2図に示す断続通電高周波溶接装置10と
レーザービーム照射装置5を併用する本発明の一実施態
様を示す。これにおいては、金属体lのエッチ部2(ク
サビ形状をなす溶接対向面)は断続通電高周波溶接装置
10から接触子4,4を介して供給される高周波電力に
よって発生するジュール熱、および、レーザー照射装置
5から、光学系6.ビームガイド7を介して照射される
レーザービームLBによって全肉範囲に渡って溶接温度
に均一に加熱される。
FIG. 1 shows an embodiment of the present invention in which the intermittent current high-frequency welding device 10 shown in FIG. 2 and the laser beam irradiation device 5 are used together. In this case, the etched portion 2 (wedge-shaped welding facing surface) of the metal body l receives Joule heat generated by high-frequency power supplied from an intermittent current high-frequency welding device 10 via contacts 4, 4, and a laser beam. From the irradiation device 5, the optical system 6. The laser beam LB irradiated via the beam guide 7 uniformly heats the entire thickness to the welding temperature.

高周波電流はO,1m5ec〜0.1secの間隔で周
期的に断続するが、レーザービーlx L Bは連続し
て、突合せ端面の板厚中心部を含む板厚の30%〜80
%の範囲に照射される。この内容を説明すると、レーザ
ービームLBは角度θのクサビ形状の頂点に向ってクサ
ビ形状の開放側から投射される。レーザービームLI′
3は溶接点に集光するビームであれば良く、また、必ず
しも溶接点へ線収束しない広がりを持ったビームであっ
てもレーザービームLBは対向面の一方に当ってそこで
反射されて他方に向い他方で反射されてまた該一方に当
るという具合に反射を繰り返して最後に溶接点に集光す
る。すなわち、レーザービームLBが直接に溶接点に照
射されなくとも反射収束により溶接点に至る。
The high-frequency current is periodically intermittent at intervals of 0.1 m5 ec to 0.1 sec, but the laser beam lxLB is continuously applied to 30% to 80% of the plate thickness including the center of the plate thickness of the butt end face.
% range. To explain this content, the laser beam LB is projected from the open side of the wedge shape toward the apex of the wedge shape at an angle θ. Laser beam LI'
3 is sufficient as long as it is a beam that converges on the welding point, and even if it is a beam that has a spread that does not necessarily converge to the welding point, the laser beam LB hits one of the opposing surfaces and is reflected there and directed to the other side. The light is reflected from the other side and hits the other side again, repeating the reflection and finally focusing on the welding point. That is, even if the laser beam LB does not directly irradiate the welding point, it reaches the welding point by reflection and convergence.

この実施態様では、高周波電流による加熱の中止中の、
電磁力の作用が勤らかない状態でも溶接点のコーナ一部
を外した板厚方向中央部が広範囲に加熱され、電磁力に
よる溶融金属の排出がない状態で溶融部の圧接をもたら
し、ペネ1−レータをもたらすような、突合せ面間への
溶融金属の還流が十分に防止される。
In this embodiment, during cessation of heating by high frequency current,
Even when the electromagnetic force is not working, the central part in the thickness direction of the plate with some of the corners of the welding point removed is heated over a wide range, and the molten part is pressure-welded without ejecting the molten metal due to the electromagnetic force. - reflux of molten metal between the abutting surfaces, which would lead to lamination, is largely prevented.

第2図に1本発明の実施のために、高周波電流を0.I
n+sacから0.1secの間隔で周期的に断続通電
する高周波溶接装置lOの構成回路の一例を示す。
FIG. 2 shows that in order to carry out the present invention, the high frequency current is set to 0. I
An example of a configuration circuit of a high-frequency welding device IO that periodically conducts electricity intermittently at intervals of 0.1 sec from n+sac is shown.

この例においては、直流電源から発振管13の陽極まで
の間にスイッチング素子14を介挿して、発振管13に
与える陽tiA電圧E P +陽極電流Ipをオン、オ
フ、又は高、低に制御している。スイッチング素子は例
えば、サイリスクインバータ、 l−ランリスクインバ
ータ等を利用すれば良い。断続通電周期並びに、オン期
間とオフ期間の比は外部から設定することができる。
In this example, a switching element 14 is inserted between the DC power supply and the anode of the oscillation tube 13 to control the positive tiA voltage E P +anode current Ip applied to the oscillation tube 13 on and off, or to high or low. are doing. As the switching element, for example, a silis inverter, an l-run risk inverter, etc. may be used. The intermittent energization period and the ratio of the on period to the off period can be set externally.

第3図は1本発明の実施に用いる断続通電高周波溶接装
置10のもう1つの例を示す。この装置おいては特にス
イッチングメ・3子を使用せず、グリッド発振を利用し
ている。高周波発振器のグリッド回路はグリソドリータ
抵抗15.グリッドコンデンサ+(3(容量Cc )等
から構成されている。通常、抵抗15の抵抗値Reは必
要なグリッドバイアスを与えて連続発振を確保するよう
に定められている。RQを例えば通常の2倍にすると、
間欠発l辰を生じ、その周期は2πR,C,で与えられ
る。従ってRQC5を適当に選ぶことにより0.1m5
ecから0,1secの間隔の断続通電を得ることが可
能である。
FIG. 3 shows another example of an intermittent energization high frequency welding device 10 used for carrying out the present invention. In this device, grid oscillation is utilized without using any switching elements or triplets. The grid circuit of the high frequency oscillator is a grid circuit with a 15. It consists of a grid capacitor + (3 (capacitance Cc)), etc. The resistance value Re of the resistor 15 is usually determined to provide the necessary grid bias and ensure continuous oscillation. If you double it,
This produces intermittent firing, the period of which is given by 2πR,C. Therefore, by appropriately selecting RQC5, 0.1m5
It is possible to obtain intermittent energization at intervals of 0.1 sec from ec.

なお、このようにグリッド発振と同様に、グリッドにス
イッチング素子を接続して、この素子のオン、オフを所
定の周期で制御して発振、停止を行なうようにしてもよ
い。
Note that, similarly to the grid oscillation, a switching element may be connected to the grid, and the on/off of this element may be controlled at a predetermined cycle to perform oscillation and stop.

第2図あるいま第3図の装置で得ら九る高周波電流の波
形の一例を第4図に模式的に示した。
FIG. 4 schematically shows an example of the waveform of the high frequency current obtained by the apparatus shown in FIGS. 2 and 3.

〔実施例〕〔Example〕

第1図に示す態様のレーザー併用高周波電縫溶接装置を
用いて、板厚101の軟鋼を速度30m/inで溶接し
、断続通電周期と適正入熱域の関係を調査した結果を第
8図に示す。同図の調査において断続通電の通電期間と
停止期の比はl、すなわち通電期間は断続通電周期の1
/2である。第8図から明らかなように断続通電周期が
0.1m5ecから0.14IOCの間で溶接欠陥の発
生率は連続通電の場合と比較して顕著な減少を示す、同
様な効果は溶接する全屈、板厚、溶接速度が異なる場合
にも確かめられた。
Figure 8 shows the results of investigating the relationship between the intermittent energization period and the appropriate heat input range by welding a plate of 101 mm thick mild steel at a speed of 30 m/in using the laser-combined high-frequency electric resistance welding device shown in Figure 1. Shown below. In the investigation of the same figure, the ratio of the energization period and the stop period of intermittent energization is l, that is, the energization period is 1 of the intermittent energization period.
/2. As is clear from Fig. 8, when the intermittent energization cycle is between 0.1 m5ec and 0.14 IOC, the incidence of welding defects is significantly reduced compared to the case of continuous energization. This was also confirmed when the plate thickness and welding speed were different.

また、上述の例では周期的に通電t、遮断する場合を示
したが、陽極電圧EPを周期的にl/10以下に低減し
ても第8図と同様な効果が得られることを本発明゛と等
は実験により確認している。
In addition, although the above example shows a case where the current is periodically turned on and off, the present invention shows that even if the anode voltage EP is periodically reduced to 1/10 or less, the same effect as shown in FIG. 8 can be obtained.゛, etc. have been confirmed through experiments.

〔発明の効果〕〔Effect of the invention〕

以上に説明した通り、本発明によればレーザ−ビーム0
1用高周波電縫溶接の溶接欠陥の発生を防止し、極めて
高品質の溶接部を得ることが可能である。
As explained above, according to the present invention, the laser beam
It is possible to prevent the occurrence of welding defects in high-frequency electric resistance welding for No. 1, and to obtain extremely high-quality welded parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を一態様で実施するレーザービーム併用
高周波電縫溶接装置の斜視図である。 第2図は第1図における断続通電高周波溶接装置il!
!IOの構成概要を示す回路図である。 第3図は第1図における断続通電高周波溶接装置10と
して用いる別の構成概要を示す回路図である。 第4図は本発明における高周波電流波形の模式第5図は
従来の高周波電縫溶接による電縫管の!2造方法を示す
斜視図である。 第6図はエツジ面の溶融金属の(;シ板表面への電磁力
による排除を示す模式図である9 第7図はエツジ部の溶融によるV収束点Vと溶接点Wの
分離を示す模式平面図である。 第8図は本発明により溶接欠陥の発生が著しく低減する
ことを示すグラフである。 1 、 、IF仮         2:エッジ部3;
スクイズロール    4;接触子5:レーザービーム
照射装置 6:光学系        7:ビームガイドlO:断
続通電高周波溶接装置 ll:高周波溶接電源   12:直流電源13:発振
管 14ニスイツチング素子 15:グリッドブリーフ抵抗 16:グリッドコンデンサ 21:コーナ一部     22:板厚中心部23:溶
融金属 EP:発振管陽極電圧   IP=発振管陽極電流RQ
ニゲリッド抵抗値 Cqニゲリッドコンデンサ容量 P;電磁力        v;■収束点  。
FIG. 1 is a perspective view of a laser beam combined high frequency electric resistance welding apparatus that embodies one embodiment of the present invention. Figure 2 shows the intermittent current high-frequency welding equipment shown in Figure 1!
! FIG. 2 is a circuit diagram showing an outline of the configuration of IO. FIG. 3 is a circuit diagram schematically showing another configuration used as the intermittent energization high-frequency welding apparatus 10 in FIG. 1. FIG. 4 shows a schematic diagram of the high-frequency current waveform in the present invention. FIG. 2 is a perspective view showing a two-piece construction method. Fig. 6 is a schematic diagram showing the removal of molten metal on the edge surface by electromagnetic force to the plate surface.9 Fig. 7 is a schematic diagram showing the separation of the V convergence point V and the welding point W due to melting of the edge part. FIG. 8 is a graph showing that the occurrence of welding defects is significantly reduced by the present invention. 1, , IF Temporary 2: Edge portion 3;
Squeeze roll 4; Contact 5: Laser beam irradiation device 6: Optical system 7: Beam guide 1O: Intermittent energization high frequency welding device 11: High frequency welding power source 12: DC power source 13: Oscillator tube 14 Niswitching element 15: Grid brief resistor 16: Grid capacitor 21: Part of corner 22: Center of plate thickness 23: Molten metal EP: Oscillator tube anode voltage IP = Oscillation tube anode current RQ
Nigerid resistance value Cq Nigerid capacitor capacitance P; Electromagnetic force v; ■Convergence point.

Claims (1)

【特許請求の範囲】  相向かい合う突合せ端面が漸近し溶接点を頂点とする
クサビ形状をなす被溶接物へ高周波電流を供給ししかも
該クサビ形状の開放側から溶接点へレーザービームを投
射して、発生するジュール熱とレーザービームのエネル
ギーでクサビ形状の頂点を溶接温度まで加熱するレーザ
ービーム併用高周波電縫溶接法において: 高周波電流を0.1msecから0.1secの間隔で
周期的に断続もしくは高低して通電することを特徴とす
るレーザービーム併用高周波電縫溶接方法。
[Claims] Supplying a high-frequency current to a workpiece in the shape of a wedge whose abutting end faces that face each other asymptotically with the welding point as the apex, and projecting a laser beam from the open side of the wedge shape to the welding point, In the laser beam combined high frequency electric resistance welding method in which the apex of the wedge shape is heated to the welding temperature using the generated Joule heat and laser beam energy: The high frequency current is periodically intermittent or increased at intervals of 0.1 msec to 0.1 sec. A high-frequency electric resistance welding method using a laser beam, characterized in that electricity is applied using a laser beam.
JP61045678A 1986-03-03 1986-03-03 High frequency electric seam welding method using laser beam as well Pending JPS62203683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61045678A JPS62203683A (en) 1986-03-03 1986-03-03 High frequency electric seam welding method using laser beam as well

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61045678A JPS62203683A (en) 1986-03-03 1986-03-03 High frequency electric seam welding method using laser beam as well

Publications (1)

Publication Number Publication Date
JPS62203683A true JPS62203683A (en) 1987-09-08

Family

ID=12726048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61045678A Pending JPS62203683A (en) 1986-03-03 1986-03-03 High frequency electric seam welding method using laser beam as well

Country Status (1)

Country Link
JP (1) JPS62203683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288978A (en) * 1991-03-15 1992-10-14 Nippon Steel Corp Welding method for thick electric resistance welded tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288978A (en) * 1991-03-15 1992-10-14 Nippon Steel Corp Welding method for thick electric resistance welded tube

Similar Documents

Publication Publication Date Title
KR102102024B1 (en) Method and system to use ac welding waveform and enhanced consumable to improve welding of galvanized workpiece
US9718147B2 (en) Method and system to start and use combination filler wire feed and high intensity energy source for root pass welding of the inner diameter of clad pipe
KR20190014073A (en) Resistance spot welding method
CN110087811A (en) Method, cleaning device and the processing gas using the clean cleaning workpiece of cathode after thermal bonding processing
JPS62203683A (en) High frequency electric seam welding method using laser beam as well
JP6969649B2 (en) Resistance spot welding method and welding member manufacturing method
JP2535600B2 (en) Pipe welding method using a combined heat source
JPS6015068A (en) Arc welding method
US4376882A (en) Method of resistance flash butt welding
JPH0371947B2 (en)
JPS62203684A (en) High frequency electric seam welding method
JPH0753317B2 (en) Heat input control method for high frequency electric resistance welding combined with laser beam
JP2005040806A (en) Laser beam irradiation arc welding method for galvanized steel sheet
JPS63220977A (en) Manufacture of welded steel pipe
US3944775A (en) Welding process
JPH10263858A (en) Lap welding method for galvanized steel sheet using laser beam
JP2870433B2 (en) Manufacturing method of welded pipe
JP2924675B2 (en) Manufacturing method of welded section steel
JPH071170A (en) Manufacture of welded tube by composite heat source
JPH0558840B2 (en)
JP2743699B2 (en) Laser welding method
JPS5942196A (en) Welding method with high energy density
JPS62118975A (en) Arc welding method
JP2023135275A (en) Laser/arc hybrid welding device
JPS6117388A (en) Multi-layer laser welding method