JPS6220319B2 - - Google Patents

Info

Publication number
JPS6220319B2
JPS6220319B2 JP1202179A JP1202179A JPS6220319B2 JP S6220319 B2 JPS6220319 B2 JP S6220319B2 JP 1202179 A JP1202179 A JP 1202179A JP 1202179 A JP1202179 A JP 1202179A JP S6220319 B2 JPS6220319 B2 JP S6220319B2
Authority
JP
Japan
Prior art keywords
silica
slaked lime
green liquor
stage
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1202179A
Other languages
Japanese (ja)
Other versions
JPS55103387A (en
Inventor
Masao Ono
Naoyuki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1202179A priority Critical patent/JPS55103387A/en
Publication of JPS55103387A publication Critical patent/JPS55103387A/en
Publication of JPS6220319B2 publication Critical patent/JPS6220319B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はクラフト法やソーダ法などのアルカリ
パルプ蒸解薬液回収工程において蒸解廃液を濃
縮、燃焼して得られる緑液からシリカを除去する
方法に係るもので、特に消石灰を添加してシリカ
を沈でんとして析出させ、それを過しシリカを
除去する方法に関するものである。 木材に較べて竹、葦、バガスなどはシリカ含有
量が多く、クラフト法や、ソーダ法などのアルカ
リパルプ化工程においてシリカは蒸解廃液(以
下、黒液という。)側に溶解する。 このシリカは次の蒸解薬液の回収工程において
種々のトラブル発生の原因となる。通常のクラフ
トパルプ薬品回収工程としては蒸解廃液を濃縮す
る工程、濃縮廃液を燃焼する工程、燃焼して得ら
れる緑液を苛性化して蒸解薬液を得る苛性化工程
などからなる。 この回収工程においてシリカ含有量が多いと濃
縮工程でスケーリング、閉塞トラブル、燃焼工程
で燃焼不良、苛性化工程で炭酸カルシウムの焼成
不良や苛性化率低下等のトラブル発生の要因とな
る。 緑液の主成分はNa2S,Na2CO3,NaOHでその
他の成分としてNa2SO4,Na2S2O3,Na2SO3など
が含まれるが、蒸解廃液中のシリカは殆んどが緑
液中に入る。苛性化工程では緑液に消石灰を添加
して苛性化反応を行わせ、Na−2CO3をNaOHに
変換する。 このとき生成するCaCO3の沈澱は別分離し
た後、焼成、スレーキングして苛性化工程の消石
灰として利用される。緑液中にシリカが含まれる
とこの苛性化工程においてシリカは炭酸カルシウ
ムと同時に沈でんする。炭酸カルシウムに多量の
シリカが含まれると次の焼成工程において焼成不
良の原因となる。又、シリカを含んだまゝで回収
工程にリサイクルすると前述のようなトラブルの
原因となるため、シリカを含む炭酸カルシウムは
廃棄せざるを得ない。 これは薬品コストの増大、廃棄物処理費の増大
につながる。 以上述べたようにシリカを多量に含む原料をパ
ルプ化する場合には薬品回収工程で種々の問題を
生じるので適当な方法でシリカを除去する必要が
ある。従来、このシリカ除去法としては黒液から
の脱シリカ、緑液からの脱シリカの方法が提示さ
れている。特に緑液からの脱シリカ法としては二
段苛性化法が提案されている。この従来方法は緑
液中のシリカ量(モル数)に対して、1.5〜2.0モ
ル倍の消石灰を添加して炭酸カルシウムとシリカ
を沈でんとして生成させ、その沈でんを過分離
した後の液を通常の方法で苛性化処理して蒸解
液(通常白液と称する)を再生する方法である。 葦、竹、バガスなどを原料とするクラフト法や
ソーダ法などのアルカリパルプ化においては緑液
中にシリカがSiO2として通常0.2〜0.3mol/程
度含まれている。この2段苛性化法は緑液に含ま
れるシリカに対して消石灰を1.5〜2.0モル倍添加
してシリカを炭酸カルシウムと共に沈でん析出さ
せ、過分離した後の液を従来同様苛性化処理
して蒸解液を再生するものである。本発明者らは
このシリカ除去法につき鋭意検討した結果、消石
灰の添加量を少くして高いシリカ除去率をうる方
法を見出した。 本発明の方法はシリカ除去に対し緑液を最終苛
性化処理する前段階として消石灰を二段以上に分
けて添加するもので、この方法によつて消石灰添
加量が低減でき石灰損失率を大巾に減少すること
ができる。 即ち、本発明は、クラフト法や、ソーダ法など
のアルカリパルプ蒸解廃液を濃縮・燃焼して得ら
れる緑液に消石灰を添加して炭酸カルシウムとシ
リカの沈でんを析出させて緑液からシリカを除去
する方法において、消石灰の添加を2段以上に分
割し、各段の消石灰添加量を各段緑液中含有シリ
カに対してモル比で0.5〜1.5倍とし、シリカの沈
でんを析出せしめその沈でんを過分離すること
を特徴とするパルプ蒸解薬液からのシリカ除去法
である。 尚、前記の本発明の方法を2段で行う場合は、
第1段として緑液中のシリカ含有量に対して消石
灰添加量がCa(OH)2/SiO2(モル比)0.5〜1.5
倍の割合になるよう緑液に消石灰を添加して、シ
リカを沈でん析出させ、その沈でんを別分離し
た後の液を再度第2段としてその液に含まれ
るシリカに対して消石灰をCa(OH)2/SiO2(モ
ル比)1.0〜1.5倍の割合で再添加することが好ま
しい。 また、前記の本発明方法においては、全体の消
石灰添加量が最初の緑液中に含まれるシリカに対
しモル比で1.5倍以下となるように処理すること
が好ましい。 緑液に消石灰を添加するとシリカの沈澱析出と
同時に下記の如くNa−2CO3の苛性化反応が起こ
る。 Ca(OH)2+Na2CO3→2NaOH+CaCO3 この苛性化率は消石灰の添加量が多い程高くな
るが、種々検討した結果、緑液中のシリカ含有量
に対する消石灰添加量がモル比で約1.5倍以上に
なるとNa2CO3の苛性化率が急に増大する。 例えば0.28mol/のシリカを含む緑液の場合
にシリカに対して消石灰添加量をモル比で、1.0
倍から2.0倍に増大すると苛性化反応率は約5%
前後から約15%〜20%に増大する。 従つてシリカの除去工程でNa2CO3の苛性化率
を低くししかもシリカ除去率を高めるためには本
発明に示す如く消石灰の添加を多段に分割し、し
かも各段の消石灰添加量をシリカに対しモル比で
1.5以下で処理する方が、後述の実施例に示すと
おり全体として脱シリカに必要な消石灰の添加量
が少なくなるため極めて経済的であり、且つシリ
カ含有マツトの廃棄量も少なく、その処理が容易
となり従来法に比らべて極わめて有利である。 但し消石灰加量がシリカに対しモル比で0.5倍
以下ではシリカ除去率が極端に低下する傾向にあ
る。 従つて、各段の処理に於いて消石灰添加量とし
ては含有シリカに対しモル比で0.5倍以上〜1.5倍
以下が望ましい。 次に本発明の実施態様の1例として2段方式の
場合につき第1図によつて説明する。蒸解廃液を
濃縮、燃焼して得られるシリカを含む緑液1を1
段撹拌槽3に送り、同時に消石灰2を供給して、
1段撹拌槽にて30分〜60分間撹拌下にて反応させ
る。次に生成した炭酸カルシウムとSiO2の沈澱
を含む1段処理緑液4を過機5に供給する。
過機は遠心分離器、真空過機などを使用する。
過分離によりシリカ含有マツド6と第1段液
7に分離する。 次にこの第1段液7を第2段撹拌槽8に送
り、消石灰を添加して30分〜60分間撹拌下にて反
応させる。生成した炭酸カルシウムとSiO2を含
む第2段処理緑液10を過機11に供給し、シ
リカ含有マツド12と脱シリカした液13に分
離する。シリカを除去した後の液13は従来の
苛性化工程にて処理する。 〔実施例 1〕 SiO20.28mol/,Na2CO31.39mol/,
NaOH0.84mol/を含む溶液1000mlに0.28molの
消石灰粉末を添加し、撹拌槽に入れ、温度93℃で
30分間反応させた後、直ちに過器(8μのシリ
ポアフイルター付)に通して過し生成した沈澱
を別した、その液中のシリカを分析した結果
0.07mol/であつた。この液を再度撹拌槽に
入れ、消石灰を0.07mol添加して93℃で30分間反
応させて前記同様過した後、液中のシリカ及
び炭酸ソーダを分析した結果、それぞれ
0.018mol/,1.30mol/であつた最初のシリ
カに対する全体の消石灰添加量はモル比で1.25
倍、シリカ除去率は93.6%であつた。また
Na2CO3の苛性化率は1段、2段合計で6.5%であ
つた。 〔比較例〕 これに対し前記0.28mol/のSiO2
Na2CO31.39mol/,NaOH0.84mol/を含む
溶液1000mlに0.56molの消石灰粉末を添加して93
℃で30分間反応させ生成した沈でんを分離した
液をシリカ及び炭酸ソーダを分析した結果シリカ
濃度は0.042mol/炭酸ソーダ濃度は1.14mol/
であつた。このときのシリカに対する消石灰添
加量はモル比で2.0倍、シリカ除去率は85%であ
つた。 またNa2CO3の苛性化率18%であつた。 〔実施例 2〕 SiO20.28mol/,Na2CO31.4mol/,
NaOH0.84mol/を含む溶液1000mlに消石灰を
下記のように変化させて撹拌槽に入れ、温度93℃
で30分間反応させた。反応後のシリカ除去率、苛
性化率の1例を次に示す。
The present invention relates to a method for removing silica from green liquor obtained by concentrating and burning cooking waste in an alkaline pulp cooking chemical recovery process such as the Kraft method or soda method. This relates to a method for removing silica by precipitating it and passing it through. Bamboo, reed, bagasse, etc. have a higher silica content than wood, and silica is dissolved in the cooking waste liquor (hereinafter referred to as black liquor) in the alkaline pulping process such as the kraft method and the soda method. This silica causes various troubles in the subsequent cooking chemical recovery process. The usual kraft pulp chemical recovery process includes a process of concentrating the cooking waste liquid, a process of burning the concentrated waste liquid, and a causticizing process of causticizing the green liquor obtained by combustion to obtain a cooking chemical liquid. If the silica content is high in this recovery process, it will cause troubles such as scaling and clogging problems in the concentration process, poor combustion in the combustion process, and poor calcination of calcium carbonate and a decrease in causticization rate in the causticizing process. The main components of green liquor are Na 2 S, Na 2 CO 3 and NaOH, and other components include Na2SO 4 , Na2S 2 O 3 and Na 2 SO 3 , but most of the silica in the cooking waste is green. Go into the liquid. In the causticizing process, slaked lime is added to the green liquor to cause a causticizing reaction and convert Na- 2CO3 into NaOH. The CaCO 3 precipitate produced at this time is separated, then calcined and slaked to be used as slaked lime in the causticizing process. If silica is contained in the green liquor, the silica will precipitate together with calcium carbonate during this causticizing process. If calcium carbonate contains a large amount of silica, it will cause firing failure in the next firing process. Furthermore, if calcium carbonate containing silica is recycled to the recovery process, it will cause the above-mentioned troubles, so calcium carbonate containing silica has no choice but to be discarded. This leads to increased drug costs and waste disposal costs. As mentioned above, when pulping a raw material containing a large amount of silica, various problems arise in the chemical recovery process, so it is necessary to remove the silica by an appropriate method. Conventionally, methods of removing silica from black liquor and removing silica from green liquor have been proposed as methods for removing silica. In particular, a two-stage causticization method has been proposed as a method for removing silica from green liquor. This conventional method involves adding 1.5 to 2.0 moles of slaked lime to the amount (moles) of silica in the green liquor to produce calcium carbonate and silica as a precipitate, and then over-separating the precipitate, which then produces a liquid that is usually This method regenerates the cooking liquor (usually referred to as white liquor) by causticizing it. In alkaline pulping methods such as the kraft method and the soda method using reeds, bamboo, bagasse, etc. as raw materials, silica is usually contained in the green liquor in the form of SiO 2 of about 0.2 to 0.3 mol/. This two-stage causticizing method involves adding 1.5 to 2.0 moles of slaked lime to the silica contained in the green liquor to precipitate the silica together with calcium carbonate, and after excessive separation, the liquid is causticized and cooked as before. It regenerates the liquid. The inventors of the present invention conducted intensive studies on this silica removal method, and as a result, they discovered a method for achieving a high silica removal rate by reducing the amount of slaked lime added. The method of the present invention involves adding slaked lime in two or more stages as a step before final causticizing the green liquor for silica removal.This method can reduce the amount of slaked lime added and greatly reduce the lime loss rate. can be reduced to That is, the present invention removes silica from the green liquor by adding slaked lime to the green liquor obtained by concentrating and burning waste water from alkaline pulp cooking such as the Kraft method or the soda method to precipitate calcium carbonate and silica. In the method of This is a method for removing silica from pulp cooking chemicals, which is characterized by excessive separation. In addition, when carrying out the method of the present invention in two stages,
As the first stage, the amount of slaked lime added to the silica content in the green liquor is 0.5 to 1.5 (molar ratio) of Ca(OH) 2 /SiO 2
Add slaked lime to the green liquor to double the ratio to precipitate silica, separate the precipitate separately, and use the liquid again as the second stage to add slaked lime to the silica contained in the liquid. ) 2 /SiO 2 (molar ratio) is preferably re-added at a ratio of 1.0 to 1.5 times. Furthermore, in the method of the present invention described above, it is preferable to carry out the treatment so that the total amount of slaked lime added is 1.5 times or less in molar ratio to the silica contained in the initial green liquor. When slaked lime is added to green liquor, silica is precipitated and at the same time a causticizing reaction of Na- 2CO3 occurs as described below. Ca(OH) 2 + Na 2 CO 3 →2NaOH + CaCO 3This causticization rate increases as the amount of slaked lime added increases, but as a result of various studies, the molar ratio of the amount of slaked lime added to the silica content in the green liquor is approximately 1.5. When the amount is more than doubled, the causticization rate of Na 2 CO 3 suddenly increases. For example, in the case of green liquor containing 0.28 mol of silica, the molar ratio of slaked lime to silica is 1.0
When increasing from 2.0 times to 2.0 times, the causticization reaction rate is approximately 5%.
It increases to about 15% to 20% from before and after. Therefore, in order to reduce the causticization rate of Na 2 CO 3 and increase the silica removal rate in the silica removal process, the addition of slaked lime is divided into multiple stages as shown in the present invention, and the amount of slaked lime added at each stage is adjusted to in molar ratio to
As shown in the examples below, processing at 1.5 or less is extremely economical because the amount of slaked lime required for desilication is reduced overall, and the amount of silica-containing matte discarded is also small, making it easy to dispose of. This is extremely advantageous compared to the conventional method. However, if the molar ratio of slaked lime to silica is less than 0.5 times, the silica removal rate tends to be extremely reduced. Therefore, in each stage of treatment, the amount of slaked lime added is desirably 0.5 times or more and 1.5 times or less based on the molar ratio of the silica contained. Next, as an example of an embodiment of the present invention, a two-stage system will be described with reference to FIG. 1 part green liquor containing silica obtained by concentrating and burning cooking waste liquid
Send it to the stage stirring tank 3, and simultaneously supply slaked lime 2,
The reaction is carried out under stirring in a one-stage stirring tank for 30 to 60 minutes. Next, the first-stage treated green liquor 4 containing the produced calcium carbonate and SiO 2 precipitate is supplied to the filter 5 .
A centrifugal separator, a vacuum filtration machine, etc. are used for filtration.
It is separated into a silica-containing mud 6 and a first stage liquid 7 by over-separation. Next, this first-stage liquid 7 is sent to a second-stage stirring tank 8, slaked lime is added thereto, and the mixture is allowed to react under stirring for 30 to 60 minutes. The second-stage treated green liquor 10 containing produced calcium carbonate and SiO 2 is supplied to a filter 11 and separated into a silica-containing mud 12 and a desilicated liquor 13. After the silica has been removed, the liquid 13 is subjected to a conventional causticizing process. [Example 1] SiO 2 0.28mol/, Na 2 CO 3 1.39mol/,
Add 0.28 mol of slaked lime powder to 1000 ml of a solution containing 0.84 mol of NaOH, put it in a stirring tank, and heat it at a temperature of 93℃.
After reacting for 30 minutes, it was immediately passed through a filter (equipped with an 8μ silipore filter) to separate the generated precipitate, and the silica in the solution was analyzed.
It was 0.07 mol/. This liquid was put into the stirring tank again, 0.07 mol of slaked lime was added, and the reaction was carried out at 93°C for 30 minutes. After filtering as above, the silica and soda carbonate in the liquid were analyzed.
The total amount of slaked lime added to the initial silica was 0.018 mol/, 1.30 mol/, and the molar ratio was 1.25.
The silica removal rate was 93.6%. Also
The causticization rate of Na 2 CO 3 was 6.5% in total in the first and second stages. [Comparative example] On the other hand, the above 0.28 mol/SiO 2 ,
93 by adding 0.56 mol of slaked lime powder to 1000 ml of a solution containing 1.39 mol of Na 2 CO 3 and 0.84 mol of NaOH.
Analysis of silica and sodium carbonate in the solution obtained by separating the precipitate produced by reacting at ℃ for 30 minutes revealed that the silica concentration was 0.042 mol/the sodium carbonate concentration was 1.14 mol/
It was hot. At this time, the amount of slaked lime added to silica was 2.0 times the molar ratio, and the silica removal rate was 85%. Moreover, the causticization rate of Na 2 CO 3 was 18%. [Example 2] SiO 2 0.28mol/, Na 2 CO 3 1.4mol/,
Add slaked lime to 1000 ml of a solution containing 0.84 mol of NaOH as shown below and place it in a stirring tank at a temperature of 93°C.
was allowed to react for 30 minutes. An example of the silica removal rate and causticization rate after the reaction is shown below.

【表】 上表に示されるように、シリカに対する消石灰
の添加量はモル比0.5未満ではシリカ除去率が極
端に低くなる。又モル比1.5から2.0に増大しても
シリカ除去率はあまり高くならず、むしろ苛性化
率が高くなつて望ましくない。 次に、本発明方法の効果をあげる。 少ない消石灰添加量でシリカ除去率が高い。
(シリカ除去率90%以上) 消石灰添加量が少ないため生成するシリカマ
ツドの量が少ない。 シリカ含有マツドの廃棄物量が少ない。
[Table] As shown in the table above, when the molar ratio of slaked lime to silica is less than 0.5, the silica removal rate becomes extremely low. Further, even if the molar ratio is increased from 1.5 to 2.0, the silica removal rate does not increase so much, but rather the causticization rate increases, which is not desirable. Next, the effects of the method of the present invention will be described. Silica removal rate is high with a small amount of slaked lime added.
(Silica removal rate of 90% or more) Because the amount of slaked lime added is small, the amount of silica mud produced is small. The amount of waste generated from silica-containing matud is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施態様の流れ図であ
る。 1……緑液、2……消石灰、3……第1段撹拌
槽、4……第1段処理緑液、5……過機、6…
…シリカ含有マツド、7……第1段液、8……
第2段撹拌槽、9……消石灰、10……第2段処
理緑液、11……過機、12……シリカ含有マ
ツド、13……第2段液(脱シリカ緑液)。
FIG. 1 is a flow diagram of one embodiment of the present invention. 1... green liquor, 2... slaked lime, 3... first stage stirring tank, 4... first stage treated green liquor, 5... filtration machine, 6...
...Silica-containing mud, 7...First stage liquid, 8...
2nd stage stirring tank, 9...Slaked lime, 10...2nd stage treated green liquor, 11...filter, 12...silica-containing mud, 13...2nd stage liquid (desilica-free green liquor).

Claims (1)

【特許請求の範囲】[Claims] 1 クラフト法や、ソーダ法などのアルカリパル
プ蒸解廃液を濃縮、燃焼して得られる緑液に消石
灰を添加して炭酸カルシウムとシリカの沈でんを
析出させて緑液からシリカを除去する方法におい
て消石灰の添加を2段以上に分割し、各段の消石
灰添加量を各段緑液中含有シリカに対してモル比
で、0.5〜1.5倍とし、シリカの沈でんを析出せし
め、その沈でんを過分離することを特徴とする
パルプ蒸解薬液からのシリカ除去法。
1. Slaked lime is added to the green liquor obtained by concentrating and burning alkaline pulp cooking waste such as the Kraft method and the soda method to precipitate calcium carbonate and silica to remove silica from the green liquor. Divide the addition into two or more stages, and set the amount of slaked lime added at each stage to be 0.5 to 1.5 times the molar ratio of the silica contained in the green liquor at each stage to precipitate silica precipitate and over-separate the precipitate. A method for removing silica from pulp cooking chemicals.
JP1202179A 1979-02-05 1979-02-05 Silica removal from pulp digesting liqur Granted JPS55103387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202179A JPS55103387A (en) 1979-02-05 1979-02-05 Silica removal from pulp digesting liqur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202179A JPS55103387A (en) 1979-02-05 1979-02-05 Silica removal from pulp digesting liqur

Publications (2)

Publication Number Publication Date
JPS55103387A JPS55103387A (en) 1980-08-07
JPS6220319B2 true JPS6220319B2 (en) 1987-05-06

Family

ID=11793936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202179A Granted JPS55103387A (en) 1979-02-05 1979-02-05 Silica removal from pulp digesting liqur

Country Status (1)

Country Link
JP (1) JPS55103387A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3208200A1 (en) * 1982-03-06 1983-09-08 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR THE CONTINUOUS REMOVAL OF SILICA FROM CELL FLUE
SE456254B (en) * 1987-02-12 1988-09-19 Korsnes Ab SET TO CLEAN GROUNDLUT IN SULPHATE MASFACTURER'S CHEMICALS RECOVERY
GB0325578D0 (en) * 2003-11-03 2003-12-03 Bioregional Minimills Uk Ltd Method for treating black liquor

Also Published As

Publication number Publication date
JPS55103387A (en) 1980-08-07

Similar Documents

Publication Publication Date Title
US3210235A (en) Pulping of cellulose materials in the presence of free sulfur in a kraft pulping system and cyclic liquor recovery therefor
US2772965A (en) Recovery of chemicals in wood pulp preparation
US4331507A (en) Desilication in alkaline pulp processes
CA2226127A1 (en) Method of separating impurities from lime and lime sludge and a method of causticizing green liquor containing impurities, such as silicon, in two stages
JPS6220319B2 (en)
EP1566480B1 (en) Process for producing kraft pulp
US4799994A (en) Process for cooking and bleaching pulp
GB2061901A (en) Method of decreasing the organic substance content of alum earth production cycle performed according to the bayer technology
US2496550A (en) Methods of recovering chemicals in
JPS6364559B2 (en)
US1879503A (en) Method of relieving alkaline solutions, particularly waste liquors from the soda or sulphate pulp manufacture, of silica
JPS6036329A (en) Treatment of liquid used for causticization cycle of craft process
JP6502961B2 (en) Method of treating used cleaning solution of lignin recovery process
JP2023537805A (en) How to treat the kraft process recovery cycle to reduce metal levels in the kraft process
US2913310A (en) Chemical recovery process
US5980717A (en) Recovery process in a pulp mill
EP0852272B1 (en) Recovery process in a pulp mill
CA1059271A (en) Removal of sodium chloride from pulp mill systems
WO1996025554A1 (en) Method to reduce silicon, phosphor and aluminium contents in green liquor
US2898994A (en) Method of making paper pulp
FI130092B (en) A method and a system for adjusting pH of green liquor dregs
US1549189A (en) Process of treating waste magnesium monosulphite cooking liquors
SU1109057A3 (en) Method of obtaining cellulose
US1821138A (en) Treatment of black liquor
SU46542A1 (en) Method for producing calcium hypochlorite