JPS62202967A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS62202967A
JPS62202967A JP4302586A JP4302586A JPS62202967A JP S62202967 A JPS62202967 A JP S62202967A JP 4302586 A JP4302586 A JP 4302586A JP 4302586 A JP4302586 A JP 4302586A JP S62202967 A JPS62202967 A JP S62202967A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
expansion valve
valve
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4302586A
Other languages
Japanese (ja)
Inventor
松田 謙治
石岡 秀哲
博之 梅村
克之 青木
等 飯島
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4302586A priority Critical patent/JPS62202967A/en
Publication of JPS62202967A publication Critical patent/JPS62202967A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、空気調和機に関し、特にその暖房運転時の
除霜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air conditioner, and particularly to defrosting during heating operation of the air conditioner.

〔従来技術〕[Prior art]

第9図及び第10図は、例えば実公昭57−49093
号公報の第8図及び第9図に示された従来のヒートポン
プ式空気調和機の冷媒回路図及び除霜時の電気制御回路
図である。
Figures 9 and 10 are for example Utility Model Publication No. 57-49093
FIG. 9 is a refrigerant circuit diagram and an electric control circuit diagram during defrosting of a conventional heat pump type air conditioner shown in FIGS. 8 and 9 of the publication.

図中、1は圧縮機、2は駆動コイル2Aにより動作する
四方弁、3は室内熱交換器、4は減圧装置、5は室外熱
交換器であって、これらは冷媒配管6により環状に連結
されて冷媒を通す冷媒回路7が構成されている。8は室
内熱交換器3に送風してこれを室内へ送る室内ファン、
9は室外熱交換器5に送風してこれを室外へ送る室外フ
ァン、10は室外熱交換器5の入口配管に設けられて、
この部分の温度が所定温度以下になると出力を発生ずる
除霜条件検出器、tiは除霜条件検出器10が出力を発
生すると接点11aから接点11bに切り換えられる切
換開閉装置であって、接点11aは四方弁2の駆動コイ
ル2Aと暖房スイッチ13の一方の接点を介して電源1
5に接続され、接点11bC:!:リレー12及び暖房
スイッチ13の他方の接点を介して電源15に接続され
ている。また、電= 1 sの両端間にはリレー12の
常閉接点12a、室内ファン8及び室内ファン8の複数
(図では3個)の速度端子に(接続された送風速度スイ
ッチ14からなる直列回路が接続されている。
In the figure, 1 is a compressor, 2 is a four-way valve operated by a drive coil 2A, 3 is an indoor heat exchanger, 4 is a pressure reducing device, and 5 is an outdoor heat exchanger, which are connected in a ring through a refrigerant pipe 6. A refrigerant circuit 7 through which refrigerant is passed is configured. 8 is an indoor fan that blows air into the indoor heat exchanger 3 and sends it indoors;
9 is an outdoor fan that blows air into the outdoor heat exchanger 5 and sends it outside; 10 is provided at the inlet pipe of the outdoor heat exchanger 5;
A defrosting condition detector generates an output when the temperature of this part falls below a predetermined temperature, and ti is a switching device that switches from contact 11a to contact 11b when the defrosting condition detector 10 generates an output, and contact 11a is connected to the power source 1 through the drive coil 2A of the four-way valve 2 and one contact point of the heating switch 13.
5, contact 11bC:! : Connected to the power supply 15 via the relay 12 and the other contact of the heating switch 13. In addition, between both ends of the voltage = 1 s, there is a series circuit consisting of the normally closed contact 12a of the relay 12, the indoor fan 8, and the air speed switch 14 connected to the speed terminals of the indoor fan 8 and a plurality of (three in the figure) speed terminals of the indoor fan 8. is connected.

従来の空気調和機は上記のように構成され、通常時は開
閉装置11の接点11aが閉成している。
A conventional air conditioner is configured as described above, and the contact 11a of the switching device 11 is normally closed.

そして、暖房運転時に暖房スイッチ13を閉成すると、
駆動コイル2Aが付勢され、四方弁2は暖房サイクル側
に設定される。これにより、圧縮機lから吐出された高
温高圧ガスが矢印のように流れ、四方弁2を通って室内
熱交換器3に供給されることにより、室内ファ8によっ
て強制通風されるので、室内に温風が吹き出される。一
方、上記強制通風により冷却されたガス冷媒は、凝縮液
となって減圧装置4で断熱膨張して低圧冷媒となる。
Then, when the heating switch 13 is closed during heating operation,
The drive coil 2A is energized and the four-way valve 2 is set to the heating cycle side. As a result, the high-temperature, high-pressure gas discharged from the compressor 1 flows as shown by the arrow, and is supplied to the indoor heat exchanger 3 through the four-way valve 2, and is forcedly ventilated by the indoor fan 8. Hot air is blown out. On the other hand, the gas refrigerant cooled by the forced draft becomes a condensed liquid and adiabatically expands in the pressure reducing device 4 to become a low-pressure refrigerant.

そして、室外熱交換器5で室外ファン9の強制通風によ
り加熱されて蒸発し、低圧ガスとなって四方弁2を介し
て圧縮機lに吸入される。
Then, it is heated in the outdoor heat exchanger 5 by the forced ventilation of the outdoor fan 9 and evaporates, becoming a low-pressure gas and being sucked into the compressor l via the four-way valve 2.

ここで、外気温が低下すると、室外熱交換器5から冷媒
回路7への吸上げ熱量が減少し、蒸発温度が低下して零
点温度以下になると、室外熱交換器5に着霜が始まる。
Here, when the outside temperature decreases, the amount of heat sucked up from the outdoor heat exchanger 5 to the refrigerant circuit 7 decreases, and when the evaporation temperature decreases to below the zero point temperature, frost formation begins on the outdoor heat exchanger 5.

これにより熱を吸い上げる能力が減少し、室外熱交換器
5の入力配管温度は更に低下し、所定温度以下になると
除霜条件検出器10が出力を発生する。この出力により
、切換開閉装置11の接点11aが開放するので、駆動
コイル2Aは消勢されて四方弁2が切り換えられ、冷媒
の流れる方向が矢印と反対方向となって冷媒回路7は冷
房運転となる。また、接点11aの開放と同時に接点1
1bが閉成し、これに伴なってリレー12が付勢されて
接点12aが開放するので、室内ファン8の送風が停止
する。これにより、居住者への冷気送風は防止される。
As a result, the ability to absorb heat decreases, and the input pipe temperature of the outdoor heat exchanger 5 further decreases, and when the temperature falls below a predetermined temperature, the defrosting condition detector 10 generates an output. This output opens the contact 11a of the switching device 11, so the drive coil 2A is deenergized and the four-way valve 2 is switched, the refrigerant flow direction is opposite to the arrow, and the refrigerant circuit 7 is in cooling operation. Become. Also, at the same time as the contact 11a is opened, the contact 1
1b is closed, and accordingly, the relay 12 is energized and the contact 12a is opened, so that the indoor fan 8 stops blowing air. This prevents cold air from being blown to the occupants.

このようにして、四方弁2が切り換えられて冷房運転に
なることにより、圧縮機lから吐出された高温高圧冷媒
ガスは、四方弁2を通過した後に室外熱交換器5に入り
、そこに付着した霜を冷媒の有する熱で融解する。これ
が除霜運転である。
In this way, the four-way valve 2 is switched to enter the cooling operation, and the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 enters the outdoor heat exchanger 5 after passing through the four-way valve 2, and is deposited there. The frost is melted by the heat of the refrigerant. This is the defrosting operation.

除霜終了に伴い、室外熱交換器5の入力配管温度が上昇
すると、除霜条件検出器lOは復帰し、切換開閉装置1
1の接点11bが開放するとともに接点ttaが閉成す
る。これにより、リレー12は再び消勢されて接点12
aは閉成し、室内ファン8は送風を開始する。また、駆
動コイル2Aは再び付勢されて四方弁2が切り換えられ
ることにより暖房運転に戻るようになる。
When the input pipe temperature of the outdoor heat exchanger 5 rises with the end of defrosting, the defrosting condition detector IO returns to normal and the switching switchgear 1
The first contact 11b opens and the contact tta closes. As a result, the relay 12 is deenergized again and the contact 12
a is closed, and the indoor fan 8 starts blowing air. Further, the drive coil 2A is energized again and the four-way valve 2 is switched, thereby returning to heating operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の空気調和機は以上のように構成されているので、
除霜運転の間及び暖房運転復帰後のしばらくの間は暖房
が行なわれず、室内温度が低下して居住者に不快感を与
えるという問題点がある。
Conventional air conditioners are configured as described above.
There is a problem that heating is not performed during the defrosting operation and for a while after the heating operation is resumed, and the indoor temperature decreases, causing discomfort to the occupants.

また暖房運転から除霜運転へ切り換えることにより、冷
媒の急激な移動が生じて騒音あるいは圧縮機への液戻り
などが発生して、信頼性が低くなる問題点があった。
Furthermore, switching from heating operation to defrosting operation causes rapid movement of refrigerant, which causes noise and liquid return to the compressor, resulting in lower reliability.

この発明は上記問題点を解決するためになされたもので
、除霜運転中も室内温度を低下させないようにして居住
者に不快感を与えないようにし、さらに機器の信頼性を
高めた空気調和機を提供することを目的とする。
This invention was made to solve the above-mentioned problems, and is an air conditioner that prevents the indoor temperature from decreasing even during defrosting operation so as not to cause discomfort to the occupants, and also improves the reliability of the equipment. The purpose is to provide a machine.

また、この発明の他の目的は、上記目的に加えてさらに
装置を簡易にした空気調和機を提供することを目的とす
る。
Another object of the present invention is to provide an air conditioner with a simpler device in addition to the above object.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る空気調和機は、圧縮機の吐出側と暖房運
転時の室外熱交換器の入口側との間に電磁弁を接続する
とともに、室外熱交換器に除霜条件検出器を設け、除霜
条件検出器が除霜条件を検出すると前記電磁弁を開(電
磁弁開閉手段と、冷媒系路に設けられている電気式膨張
弁の弁を一定時閉じてその後開く膨張弁制御手段を設け
たものである。
The air conditioner according to the present invention includes a solenoid valve connected between the discharge side of the compressor and the inlet side of the outdoor heat exchanger during heating operation, and a defrosting condition detector provided on the outdoor heat exchanger. When the defrosting condition detector detects the defrosting condition, the solenoid valve is opened (a solenoid valve opening/closing means and an expansion valve control means which closes the valve of an electric expansion valve provided in the refrigerant system for a certain period of time and then opens the valve) It was established.

〔作用〕[Effect]

この発明における空気調和機は、除霜条件が成立すると
、電気式膨張弁を閉じて暖房運転を行う冷媒回路を止め
、その後電磁弁を開いて高温の冷媒ガスを室外熱交換器
に流入させることにより、一定時間経過後に電気式膨張
弁を開いて冷媒を調節して除霜運転を行うことになる。
In the air conditioner according to the present invention, when defrosting conditions are established, the electric expansion valve is closed to stop the refrigerant circuit that performs heating operation, and then the solenoid valve is opened to allow high temperature refrigerant gas to flow into the outdoor heat exchanger. Therefore, after a certain period of time has elapsed, the electric expansion valve is opened to adjust the refrigerant and perform defrosting operation.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図において、1〜3,5〜7,10〜15は第9図及び
第10図で示した従来装置と同様のちのである。17は
第8図に示した減圧装置4の位置に挿入され、入力信号
により弁体(図示しない)を全閉から全開までまたは全
開から全閉まで制御する電気式膨張弁、18は圧縮機l
の吐出側と室外熱交換器5の暖房運転時の入口側の間に
接続された電磁弁である。ただし、第9図の室内ファン
8及び室外ファン9は図示を省略しである。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, numbers 1 to 3, 5 to 7, and 10 to 15 are the same as those in the conventional apparatus shown in FIGS. 9 and 10. 17 is an electric expansion valve inserted in the position of the pressure reducing device 4 shown in FIG. 8, and controls a valve body (not shown) from fully closed to fully open or from fully open to fully closed by an input signal; 18 is a compressor
This is a solenoid valve connected between the discharge side of the outdoor heat exchanger 5 and the inlet side of the outdoor heat exchanger 5 during heating operation. However, the indoor fan 8 and outdoor fan 9 in FIG. 9 are omitted from illustration.

第2図は空気調和機の全体構成図であって、この実施例
は第2図から明らかなように、除霜条件検出器10の出
力を入力とする膨張弁制御手段22により、電気式膨張
弁17の弁開度を制御し、又電磁弁開閉手段21により
電磁弁18を開閉する構成となっている。
FIG. 2 is an overall configuration diagram of an air conditioner, and as is clear from FIG. The valve opening degree of the valve 17 is controlled, and the solenoid valve 18 is opened and closed by the solenoid valve opening/closing means 21.

第3図及び第4図は第2図の実施例の電気接続を示す電
気回路図及び除霜制御装置のブロック回路図である。
3 and 4 are electrical circuit diagrams showing the electrical connections of the embodiment of FIG. 2 and a block circuit diagram of the defrosting control device.

図中、23は除霜制御装置であって、マイクロコンピュ
ータ(以下マイコンという)によって構成され、CPU
23A、メモリ23B、入力回路23C及び出力回路2
3Dを有している。入力回路23Cの入力端子11には
除霜条件検出器IOが接続されている。出力回路23D
の出力端子01にはM1磁弁18に接続された接点24
の駆動装置(図示しない)が接続され、出力端子02,
03には電気式膨張弁17が接続されている。
In the figure, 23 is a defrosting control device, which is composed of a microcomputer (hereinafter referred to as microcomputer), and has a CPU
23A, memory 23B, input circuit 23C and output circuit 2
It has 3D. A defrosting condition detector IO is connected to the input terminal 11 of the input circuit 23C. Output circuit 23D
The contact 24 connected to the M1 magnetic valve 18 is connected to the output terminal 01 of the
A driving device (not shown) is connected to the output terminal 02,
03 is connected to an electric expansion valve 17.

次に、上記構成による空気調和機の動作を第5図および
第6図(a)〜(c)を用いて説明する。第5図は除霜
制御装置23のメモリ23Bに記憶された動作プログラ
ムを示すフローチャート、第6図(a)〜(c)はその
動作を示すタイムチャートである。
Next, the operation of the air conditioner having the above configuration will be explained using FIG. 5 and FIGS. 6(a) to 6(c). FIG. 5 is a flowchart showing the operation program stored in the memory 23B of the defrosting control device 23, and FIGS. 6(a) to (c) are time charts showing the operation.

まず、第5図に示す手順31で暖房運転を行い、手順3
2で除霜条件検出器10の出力を監視して除霜条件に達
するのを待つ。条件が成立すると手順33に進み、除霜
制御装置23の出力端子02から出力を発し、電気式膨
張弁17を閉じる方向へ駆動して全閉又はほぼ全閉状態
にする。その後、手順34で時間ΔS、経過すれば、手
順35に移行して電磁弁18を除霜制御装置23の出力
端子01から発して全閉又はほぼ全開にさせる。この時
、圧縮機1で発生される高温の冷媒ガスは、電磁弁18
を通って室外熱交換器5に入り、そこに付着した霜をと
かす。この時、電気式膨張弁17は閉成しているので、
室内熱交換器3にたまっていた冷媒は流れず、圧縮機1
への液戻りも生じない。そして、手順36において一定
時間ΔS、を経過すると、除霜制御装置23の出力端子
01から出力を発し、電気膨張弁17を開(方向へ駆動
して全開又はほぼ全開状態にする。この時点で、暖房運
転時室内熱交換機3に蓄えられていた高温の冷媒は室外
熱交換器5に流入して除霜時間を短縮する。又、電磁弁
18が既に開いているため、圧縮機lの吐出圧も下がっ
ていることから急激な冷媒の移動も行われず、圧縮機l
への液戻りを防止することができる。
First, perform heating operation in step 31 shown in FIG.
2, the output of the defrosting condition detector 10 is monitored and waiting until the defrosting condition is reached. When the conditions are satisfied, the process proceeds to step 33, in which an output is generated from the output terminal 02 of the defrosting control device 23, and the electric expansion valve 17 is driven in the closing direction to be fully closed or almost fully closed. After that, in step 34, when the time ΔS has elapsed, the process moves to step 35, and the electromagnetic valve 18 is caused to be fully closed or almost fully opened by issuing a signal from the output terminal 01 of the defrosting control device 23. At this time, the high temperature refrigerant gas generated by the compressor 1 is transferred to the solenoid valve 18.
It passes through the outdoor heat exchanger 5 and melts the frost attached thereto. At this time, the electric expansion valve 17 is closed, so
The refrigerant that had accumulated in the indoor heat exchanger 3 does not flow and the compressor 1
No liquid returns to the tank. Then, in step 36, when a certain period of time ΔS has elapsed, an output is generated from the output terminal 01 of the defrosting control device 23, and the electric expansion valve 17 is opened (driven in the direction to be fully open or almost fully open. At this point, During the heating operation, the high-temperature refrigerant stored in the indoor heat exchanger 3 flows into the outdoor heat exchanger 5 to shorten the defrosting time.Also, since the solenoid valve 18 is already open, the discharge of the compressor 1 is reduced. Since the pressure has also decreased, there is no sudden movement of refrigerant, and the compressor l
It is possible to prevent liquid from returning to the tank.

次に、手順38では除霜条件が解除されると、手順39
に進んで電磁弁18を閉じた後に手順40に移行するこ
とにより元の暖房運転に戻る。そして、第5図のフロー
チャートで説明した除霜条件に対する電磁弁18および
電気式膨張弁17の動作をタイムチャートで示すと第6
図に示すようになる。
Next, in step 38, when the defrosting condition is canceled, step 39
After proceeding to Step 40 and closing the solenoid valve 18, the process returns to step 40, thereby returning to the original heating operation. The operation of the solenoid valve 18 and the electric expansion valve 17 for the defrosting conditions explained in the flowchart of FIG. 5 is shown in a time chart.
The result will be as shown in the figure.

第7図はこの発明の他の実施綿を示すフローチャートで
、第8図(a)〜(c)はそのタイムチャートである。
FIG. 7 is a flowchart showing another embodiment of the present invention, and FIGS. 8(a) to 8(c) are time charts thereof.

既述の実施例では、除霜運転開始時電気式膨張弁17を
全閉又はほぼ全閉にした後に電磁弁18を開成したが、
この実施例では電磁弁18を開成した後に電気式膨張弁
17を全開又はほぼ全閉する制御をするものであり、圧
縮機1への液戻り量が比較的少ない空気調和機では、既
述の実施例と同様の効果が得られる。
In the embodiments described above, the electromagnetic valve 18 is opened after the electric expansion valve 17 is fully closed or almost fully closed at the start of the defrosting operation.
In this embodiment, after opening the solenoid valve 18, the electric expansion valve 17 is controlled to be fully opened or almost fully closed. Effects similar to those of the embodiment can be obtained.

すなわち、第7図の手順41で電磁弁18を開成した後
に手順42によって、電気式膨張弁17を全閉又はほぼ
全閉状態にする。その後、手順43で時間ΔS3経過し
た後に、手順37で電気式膨張弁17を全開又はほぼ全
開にする。
That is, after the electromagnetic valve 18 is opened in step 41 of FIG. 7, the electric expansion valve 17 is brought into a fully closed or almost fully closed state in step 42. Thereafter, after the time ΔS3 has elapsed in step 43, the electric expansion valve 17 is fully opened or almost fully opened in step 37.

この実施例では、既述の実施例より動作プログラムが簡
易化され、除霜制御装置23の内部のメモリ23Bの容
量も少な(することができる。
In this embodiment, the operating program is simplified compared to the previously described embodiments, and the capacity of the memory 23B inside the defrosting control device 23 can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば電気式膨張弁を制御す
る膨張弁制御手段と、電磁弁を開閉する電磁弁開閉手段
を有する除霜制御装置を設けた構成となっているために
、快適性を損なうことなく、除霜運転時間を短かくでき
、さらに空気調和機の信頼性を向上させる効果がある。
As described above, according to the present invention, since the defrosting control device is provided with the expansion valve control means for controlling the electric expansion valve and the solenoid valve opening/closing means for opening and closing the solenoid valve, it is possible to enjoy comfortable This has the effect of shortening the defrosting operation time without sacrificing performance, and further improving the reliability of the air conditioner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図はこの発明による空気調和機の一実施例
を示す図であって、第1図は冷媒回路図、第2図は全体
構成図、第3図は電気回路図、第4図は第3図の除霜制
御装置のブロック回路図、第5図は第4図の動作を示す
フローチャート、第6図(a)〜(c)は第5図の動作
を示すタイムチャート、第7図はこの発明の他の実施例
の動作を示すフローチャート、第8図(a)〜(c)は
第7図の動作を示すタイムチャート、第9図及び第10
図は従来の空気調和機を示す冷媒回路図及び電気回路図
である。 図中、1は圧縮機、2は四方弁、3は室内熱交換器、5
は室外熱交、換器、6は冷媒配管、7は冷媒回路、10
は除霜条件検出器、17は電気式膨張弁、18は電磁弁
、21は電磁弁開閉手段、22は膨張弁制御手段、23
は除霜制御装置である。 なお、図中同一符号は同一部分を示す。
1 to 6 are diagrams showing one embodiment of an air conditioner according to the present invention, in which FIG. 1 is a refrigerant circuit diagram, FIG. 2 is an overall configuration diagram, FIG. 3 is an electric circuit diagram, and FIG. 4 is a block circuit diagram of the defrosting control device of FIG. 3, FIG. 5 is a flowchart showing the operation of FIG. 4, and FIGS. 6(a) to (c) are time charts showing the operation of FIG. 5. FIG. 7 is a flowchart showing the operation of another embodiment of the present invention, FIGS. 8(a) to (c) are time charts showing the operation of FIG. 7, and FIGS.
The figure is a refrigerant circuit diagram and an electric circuit diagram showing a conventional air conditioner. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 5
is an outdoor heat exchanger, an exchanger, 6 is a refrigerant pipe, 7 is a refrigerant circuit, 10
17 is an electric expansion valve; 18 is a solenoid valve; 21 is a solenoid valve opening/closing means; 22 is an expansion valve control means; 23
is a defrost control device. Note that the same reference numerals in the figures indicate the same parts.

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、四方弁、室内熱交換器、電気式膨張弁及
び室外熱交換器を冷媒配管により環状に連結して冷媒を
通すとともに前記四方弁が上記冷媒を上記室内熱交換器
の方へ流すことにより暖房運転を行う冷媒回路と、前記
圧縮機の吐出側と前記暖房運転時の前記室外熱交換器の
入口側との間に冷媒配管により接続された電磁弁と、前
記室外熱交換器の除霜条件を検出する除霜条件検出器と
、この除霜条件検出器が出力を発した時に前記電気式膨
張弁を閉じる膨張弁制御手段と、前記電気式膨張弁の閉
時点から一定時間経過後に上記電磁弁を開く電磁弁開閉
手段とを備え、前記膨張弁制御手段は前記電磁弁の開時
から一定時間経過後に前記電気式膨張弁を開くことを特
徴とする空気調和機。
(1) A compressor, a four-way valve, an indoor heat exchanger, an electric expansion valve, and an outdoor heat exchanger are connected in a ring through refrigerant piping to pass the refrigerant, and the four-way valve directs the refrigerant to the indoor heat exchanger. a refrigerant circuit that performs heating operation by flowing the air into the air, a solenoid valve connected by refrigerant piping between the discharge side of the compressor and the inlet side of the outdoor heat exchanger during the heating operation, and the outdoor heat exchanger. a defrosting condition detector for detecting a defrosting condition of the equipment; an expansion valve control means for closing the electric expansion valve when the defrosting condition detector outputs an output; An air conditioner comprising a solenoid valve opening/closing means that opens the solenoid valve after a lapse of time, and wherein the expansion valve control means opens the electric expansion valve after a predetermined time has elapsed from the opening of the solenoid valve.
(2)圧縮機、四方弁、室内熱交換器、電気式膨張弁及
び室外熱交換器を冷媒配管により環状に連結して冷媒を
通すとともに前記四方弁が前記冷媒を前記室内熱交換器
の方へ流すことにより暖房運転を行う冷媒回路と、前記
圧縮機の吐出側と前記暖房運転時の前記室外熱交換器の
入口側との間に冷媒配管により接続された電磁弁と、前
記室外熱交換器の除霜条件を検出する除霜条件検出器と
、この除霜条件検出器が出力を発した時に前記電磁弁を
開く電磁弁開閉手段と、前記除霜条件検出器が出力を発
すると前記電気式膨張弁を閉じて一定時間後に開く膨張
弁制御手段とを備えた空気調和機。
(2) A compressor, a four-way valve, an indoor heat exchanger, an electric expansion valve, and an outdoor heat exchanger are connected in an annular manner by refrigerant piping to pass the refrigerant, and the four-way valve directs the refrigerant to the indoor heat exchanger. a refrigerant circuit that performs heating operation by flowing the air into the air, a solenoid valve connected by refrigerant piping between the discharge side of the compressor and the inlet side of the outdoor heat exchanger during the heating operation, and the outdoor heat exchanger. a defrosting condition detector for detecting the defrosting condition of the equipment; a solenoid valve opening/closing means that opens the solenoid valve when the defrosting condition detector outputs an output; An air conditioner comprising an expansion valve control means that closes an electric expansion valve and opens it after a certain period of time.
JP4302586A 1986-02-28 1986-02-28 Air conditioner Pending JPS62202967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4302586A JPS62202967A (en) 1986-02-28 1986-02-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4302586A JPS62202967A (en) 1986-02-28 1986-02-28 Air conditioner

Publications (1)

Publication Number Publication Date
JPS62202967A true JPS62202967A (en) 1987-09-07

Family

ID=12652407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4302586A Pending JPS62202967A (en) 1986-02-28 1986-02-28 Air conditioner

Country Status (1)

Country Link
JP (1) JPS62202967A (en)

Similar Documents

Publication Publication Date Title
JPH0529830B2 (en)
JPH0527018B2 (en)
JP2002098451A (en) Heat pump type air conditioner
JPH04131668A (en) Defrosting operation controller for air-conditioning apparatus
JPS62202967A (en) Air conditioner
JPH0620039Y2 (en) Air conditioner
JPH0712437A (en) Defrosting method in heat pump type air conditioner
JPS62129659A (en) Air conditioner
JPH08285393A (en) Air conditioner for multi-room
JPS6029561A (en) Defroster for air conditioner
JPS6315023A (en) Air conditioner
JPH0429322Y2 (en)
JPS621636Y2 (en)
JPS6246151A (en) Air-conditioning machine
JPS5920581Y2 (en) Control circuit for heat pump air conditioner
KR100362608B1 (en) Air conditioner for heating and cooling and method for controlling defrosting of the same
JPS62158951A (en) Heat pump type air conditioner
JPS62200136A (en) Defroster for air conditioner
JP2792185B2 (en) Vehicle air conditioner
JPS6330929Y2 (en)
JPS5815796Y2 (en) Defrosting device for heat pump air conditioners
JPH0278845A (en) Freezing cycle device
JP2626158B2 (en) Operation control device for air conditioner
JPS5829801Y2 (en) Indoor fan motor control device for air conditioners
JPH0328678B2 (en)