JPS62202950A - Indoor fan control device for air conditioner - Google Patents

Indoor fan control device for air conditioner

Info

Publication number
JPS62202950A
JPS62202950A JP61046795A JP4679586A JPS62202950A JP S62202950 A JPS62202950 A JP S62202950A JP 61046795 A JP61046795 A JP 61046795A JP 4679586 A JP4679586 A JP 4679586A JP S62202950 A JPS62202950 A JP S62202950A
Authority
JP
Japan
Prior art keywords
temperature
indoor
indoor fan
coil
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61046795A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Okuzawa
奥沢 良幸
Mikihiko Kuroda
幹彦 黒田
Hiroya Satou
佐藤 啓哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP61046795A priority Critical patent/JPS62202950A/en
Publication of JPS62202950A publication Critical patent/JPS62202950A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain heating while defrosting capacity is stably provided, by a method wherein, while the temperature of an indoor coil is high, an indoor fan is automatically run. CONSTITUTION:Simultaneously with the starting of defrosting, an indoor fan 13 is run at a weak air step through energization of the low speed tap of a motor 13M. Thereafter, check for temperature (t) of an indoor coil 11 at a given short period, and weak air operation is maintained while temperature is not lowered to a set value t2 slightly lower than a give value t1, and meanwhile, when the temperature is reduced to lower than the set value t2, the indoor fan 13 is stopped. Further, check of temperature is effected, and while (t) is lower than t1, the indoor fan 13 is left stopped, and when (t) is higher than or equal to t1, the indoor fan 13 is run at a weak air step. When, with the indoor fan 13 run, the temperature of the indoor coil is decreased, the indoor coil 13 is brought into a stop. Therefore, heat exchange capacity at the indoor coil 11 is decreased, and an amount of gas flowing to an outdoor coil 7 is increased by an amount equivalent to the decrease in the heat exchange capacity to improve defrosting capacity.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は暖房運転に併行してホットガスバイパスによる
除霜運転を行わせるヒートポンプ空調機において室内フ
ァンの風量制御を行わせる制御装置に関する。 (従来の技術) 暖房運転を続行しながらホットガスバイパスによる除霜
運転を可能としたヒートポンプ空調iは従来から公知で
あり、実開昭60−30969号公報等によりその内容
が開示されているように、除霜中に室内ファンを最低速
度で運転して能力は低下するものの、除霜中も暖房を縫
絞せしめたり、またはタイマーによって室内ファンを間
欠運転させ同様に暖房運転を断続的であるが続行するよ
うにしていた。 (発明が解決しようとする問題点) ところが従来の上述する室内ファン制御方式でに、室温
が低いとき、着雪が多ぐて除霜時間が長びくときなどで
は室内ファンの強制運転によって冷風が吹き出すために
コールドドラフトを感じる不都合があった。 さらに、除霜の安定性の見地からでは、以下に述べる如
き問題点もあった。 すなわち、外気温度が低いとき、着霜量が多いときなど
では除霜能力を多く必要とし・従って室外コイル側への
ホットガスバイパスftel!l多くしたいが、従来の
両方式は何れも室内ファンが外的条件には関係なく強制
的に運転するために室内コイルでの凝Wi量が増えて、
その分だけ室外バイパス量が減少することになって融は
残りが生じるなどの不都合があった。 このように従来の空調機が暖房、除霜の各運転において
問題を有していた点に対処して本発明は成されたもので
あって、特に除霜運転中においてコールドドラフト感を
もたらさない程度に室内フィルの温度が高い間は、自動
的に室内ファンを送風運転せしめることによって、除霜
能力を安定的に発揮させながら暖房の維持もはからせよ
うとした点を発明の目的とする。 c問題点を解決するための手段】 本発明はホットガスを室内コイルtil+及び減圧機構
にバイパスさせて蒸発器として作用する室外コイル(7
)に流通させる除霜運転を行わせるヒートポンプ空調機
において、第1図にブロック示してなる如く、室内フィ
ル(111の温度を検出する温度検出手段Illと、除
霜運転中に温度検出手段(1)が検出した温度が所定値
〔t、〕以上のときに運転信号を・前記所定値(1,)
に比し若干低い設定値(t2〕以下のときに停止信号を
大々発信する発停制御手段12)と、前記発停制御手段
(2)が発信する運転信号によって室内ファンQ3を駆
動させ、停止信号によって室内ファン(13)を停止さ
せるファン駆動装置(3)とにより室内ファン制御装置
を構成したものである。 (作用〕 本発明は室内コイルtillがコールドトラフhtsじ
させない温度を保っている間は除霜運転中でも室内ファ
ンQ3J−送風運転させるようにしているので室内の温
度低下を抑え得る。 また、外気が低温のときや、着霜量が多いときに、これ
に対応して室内フィル(111の温度も当然低下した状
態にあるので室内ファン03を停止させることによって
室内コイル曲での凝縮作用は少〈なり、ソ(7)分室外
フィルへのホットガスバイパス毒を増加させることが可
能で安定した除霜能力を発揮し得る。 (実施例) 以下、本発明の実施例を添付図面によって説明する。 第2図は本発明の実施例に係るヒートポンプ空調機の装
置回路図であって、圧縮機151、四路切換弁(61、
案外コイル(7)、冷房用減圧器
(Industrial Application Field) The present invention relates to a control device that controls the air volume of an indoor fan in a heat pump air conditioner that performs a defrosting operation using a hot gas bypass in parallel with a heating operation. (Prior art) Heat pump air conditioner i, which enables defrosting operation by hot gas bypass while continuing heating operation, has been known for a long time, and its contents are disclosed in Utility Model Application Publication No. 60-30969, etc. During defrosting, the indoor fan may be operated at the lowest speed to reduce the capacity, but the heating may be turned off during defrosting, or the indoor fan may be operated intermittently using a timer to cause intermittent heating operation. was trying to continue. (Problem to be Solved by the Invention) However, with the conventional indoor fan control method described above, when the room temperature is low or when there is a lot of snow and the defrosting time is long, the indoor fan is forced to operate and blows cold air. There was the inconvenience of feeling a cold draft. Furthermore, from the standpoint of defrosting stability, there were also problems as described below. That is, when the outside temperature is low or when there is a large amount of frost, a large amount of defrosting capacity is required, and therefore hot gas bypass ftel! to the outdoor coil side is required. I would like to increase the amount of power, but with both conventional types, the indoor fan is forced to operate regardless of external conditions, so the amount of condensation in the indoor coil increases.
There was a problem that the amount of outdoor bypass was reduced by that amount, and there was a residual amount of melt. In this way, the present invention has been made to address the problems that conventional air conditioners have in heating and defrosting operations, and in particular does not cause a cold draft feeling during defrosting operations. The purpose of the invention is to maintain heating while stably demonstrating defrosting ability by automatically operating the indoor fan while the temperature of the indoor air filter is moderately high. . Means for Solving Problems c] The present invention provides an outdoor coil (7) that bypasses hot gas to the indoor coil til+ and the pressure reduction mechanism and acts as an evaporator.
) In a heat pump air conditioner that performs a defrosting operation, as shown in the block diagram in FIG. ) outputs an operation signal when the detected temperature is above the predetermined value [t,].
The indoor fan Q3 is driven by a start/stop control means (12) which sends out a stop signal in large numbers when the set value (t2) is slightly lower than the set value (t2) or less, and an operation signal sent by the start/stop control means (2); An indoor fan control device is constituted by a fan drive device (3) that stops the indoor fan (13) in response to a stop signal. (Function) In the present invention, the indoor fan Q3J is operated to blow air even during defrosting operation while the indoor coil till maintains a temperature that does not cause cold trough hts, so it is possible to suppress a drop in indoor temperature. When the temperature is low or there is a large amount of frost, the temperature of the indoor filter (111) naturally decreases accordingly, so by stopping the indoor fan 03, the condensation effect on the indoor coil bending is reduced. As a result, it is possible to increase the hot gas bypass poison to the external fill of the (7) compartment, and to exhibit stable defrosting ability. (Example) Examples of the present invention will be described below with reference to the accompanying drawings. FIG. 2 is a device circuit diagram of a heat pump air conditioner according to an embodiment of the present invention, in which a compressor 151, a four-way switching valve (61,
Unexpected coil (7), cooling pressure reducer

【811暖房用膨張弁
+91、該膨張弁i91に並列に接続した逆止弁110
1、室内フィル(111及びアキュムレータLL2)ヲ
備えていて、それ等a器相互を冷媒配管により可逆循環
的に接続することにより、公知のヒートポンプ空調機を
構成している。 なお、LI2)は室内ファン、031は室外ファンを夫
々示している。 上記空調機において、圧縮a[51と四路切換弁+61
とを接続する吐出管と、室外フィル17)と冷房用減圧
器(81とを接続する液管との間に、バイパス管a51
を亘らせて接続せしめ、このバイパス管αωに電磁弁1
101及び抵抗管(17)を直列関係に介設せしめてい
る。 上記バイパス管06)は暖房運転の際に、室外コイ。 ル(7)での除霜が必要となってぐると、電磁弁u0を
通電によ)開放させて吐出ガスを流通させるよう作動せ
しめられるが、このときのバイパス流量に抵抗管(17
)と電磁弁LL61の口径とによってきまり、暖房運転
時において吐出ガスの全量が四路切換弁(61を経、室
内コイル(l!1に流れているのに対して、除霜運転の
場合は吐出ガスが室内コイル(111側とバイパス管+
151とに所定割合で分配して流れることとなり、従っ
て、蒸発器として作用する室外フィル17)に対して、
吐出ガス(ホットガス)が正サイクルとなって流通する
ことにより室内側では暖房運転を持続しながら除霜運転
が行われることになる。 上記の構成を有する空調機の圧縮Ia+51、前記両フ
y ン0:1,141 及CF NFm弁11(At4
、マイクロコンピュータにヨッて制御されるが、このマ
イクロコンピュータ191は第3図に示されるように、
基本的に0puc中央H算処理装置〕割、RAMe2)
1.ROM第、インプットボート困及びアウトプットボ
ートe241から構成される装置 ROMt2ZにはOP U f201を制御するプログ
ラムが書き込まれていて、CPUI201はこのプログ
ラムに従ってインプットボートの)から必要とされる外
部データを取込んだり、あるいは又RA M 12)1
との間でデータの授受を行ったりしながら演算処理し、
必要に応じて処理したデータをアウトプットボー) f
241に出力する。 前記0PU(20+の演算処理に関して除霜運転中の室
内ファン運転制御に係るものを以下説明すると、インプ
ットボートtuにに室内フィル1111の温度を検出す
るサーミスタ(4A)を要素とする温度検出手段(1)
の電気信号が性交換器を介してインプットされると共に
1室外フイルの温度を検出するサーミスタa81の電気
信号が性交換器を介してインプットされる。 −H、除霜開始指令6号及び除霜終了指令信号がアウト
プットボー) 241から肱変換器を介して電磁弁06
1のソレノイド(16s)に出力されると共に室内ファ
ン(131を発停するための運転信号、停止信号がアウ
トプットボー) e241からW変換器を介して室内フ
ァン(131のモータ(13M)に出力されるようにな
っている。 なお、前記サーミスタ(4)と電流−電圧変換囲路【4
B】とによって温度検出手段II+が形成される。 暖房運転中に室外コイル17)に所定四の霜が生長して
ぐると、前記サーミスタo81が、これを温度の低下と
して検知し除霜開始指令信号を0PU(2))から発せ
しめるようになるので、電磁弁[161ta、開弁して
ホットガスが室外コイル(7)に流入し除霜を開始(イ
]する(第4図参照)。 しかしてROMt22)に書込まれているプログラムの
室内ファン制御〔除霜時〕の内容をフローチづ一トで示
すと第4図の通りであり、以下このフローチャート及び
第5図のタイムチャートにもとづいて室内ファン制御を
説明する。 除霜開始(イ)と同時に、室内ファン(13を該モータ
(13A )の低速タップへの通電によって弱風で運転
させる(司。 その後、1分毎など所定の短い周期で室内フィル(I1
1の温度(1)のチェックplta1に行って、所定値
(t、〕に比し若干低い設定値(I2)まで温度が低下
しない間は運転信号を発して、前述の弱風運転を維持す
る−H、前記設定値(t1)以上に低下したときには、
停止信号を発して、前記モータ(13M)への通電を断
ち室内ファンa3ヲ停止させる(ホ)。 さらに、温度チェック(へ)を行って1 (1,の間に
室内ファンL131を停止したままにし、t≧七1  
となると室内ファンll31を弱風で運転させる【口1
゜この場合のチェックレNa (−J、 [−Jが発停
制御手段+2)の作動に該当し、作動(ロ)、Cホがフ
ァン駆動装置【31の作動に該当する。 このように室内コイル(111の温度が前記所定値(t
2)の前後で比較的高いときには室内ファン(131を
駆動することによって温風を吹出させることが可能であ
り、そして室内コイルIllに流れるガス量が同じであ
れば室内ファンα3を駆動することによってフィル温度
は下がってぐる。 一万1室内フィル温度が下がってぐると室内ファン(1
31が停止するので室内コイル+111での熱交換能力
は低下し、その分、室外コイル【7)に流れるガス量が
増して除霜能力を高め得る。 (発明の効果) 本発明は以上説明したところから明らかなように、室温
が低いとき、着霜量が多くて除霜時間が長びくときに、
室内コイル(111の温度が低い間は室内ファン(13
)を停止するようにしているので、冷風が出てコールド
ドラフトを感じさせる心配に解消される。 −H、外気温度が低いとき、着霜量が多いときは、除霜
能力を多く必要とし、室外コイル(7)へのホットガス
バイパスffiをより多く確保したいが、かかる時点で
は概ね室内ファンa31を停止させる個に作動すること
から、室内コイルでの凝縮作用は発揮されなくなって、
その分室外側へのホットガスバイパス量が増えるので除
霜が促進されて融は残りとlる問題は解消される。 このように、室内個での冷風を抑えて快適性を保たせる
と共に除霜の安定性を果すという一石二鳥の効果を奏す
る。
[811 heating expansion valve +91, check valve 110 connected in parallel to the expansion valve i91
1. It is equipped with an indoor filter (111 and an accumulator LL2), and these units are connected to each other in a reversible circulation manner through refrigerant piping to constitute a known heat pump air conditioner. Note that LI2) indicates an indoor fan, and 031 indicates an outdoor fan. In the above air conditioner, compression a [51 and four-way switching valve +61
A bypass pipe a51 is installed between the discharge pipe connecting the outdoor filter 17) and the liquid pipe connecting the cooling pressure reducer (81).
Solenoid valve 1 is connected to this bypass pipe αω.
101 and a resistance tube (17) are interposed in series. The bypass pipe 06) is used outdoors during heating operation. When it becomes necessary to defrost the pipe (7), the solenoid valve u0 is opened (by energizing) to allow the discharged gas to flow.
) and the diameter of the solenoid valve LL61.During heating operation, the entire amount of discharged gas flows through the four-way switching valve (61) and into the indoor coil (l!1), while in defrosting operation The discharged gas is connected to the indoor coil (111 side and bypass pipe +
151 and flows in a predetermined proportion to the outdoor filter 17), which therefore acts as an evaporator.
By circulating the discharged gas (hot gas) in a positive cycle, the defrosting operation is performed indoors while continuing the heating operation. Compression Ia+51 of the air conditioner having the above configuration, both fins 0:1,141 and CF NFm valve 11 (At4
, is controlled by a microcomputer 191, as shown in FIG.
Basically 0 puc central H calculation processing unit], RAMe2)
1. A program for controlling the OPU f201 is written in the device ROMt2Z consisting of the input boat and the output boat e241, and the CPU 201 reads required external data from the input boat according to this program. RAM 12)1
performs calculation processing while exchanging data with
Output the processed data as necessary) f
241. Regarding the arithmetic processing of the 0PU (20+), what is related to the indoor fan operation control during the defrosting operation will be explained below.The temperature detection means (4A) whose element is a thermistor (4A) that detects the temperature of the indoor filter 1111 on the input boat tu. 1)
The electrical signal of the thermistor A81 which detects the temperature of the outdoor film is inputted via the sex exchanger. -H, defrost start command No. 6 and defrost end command signal are output from 241 to solenoid valve 06 via the elbow converter.
It is output to the solenoid (16s) of 1 and the indoor fan (the output signal is the operation signal and stop signal to start and stop 131). It is output from e241 to the motor (13M) of 131 via the W converter. Note that the thermistor (4) and the current-voltage conversion circuit [4]
B] forms the temperature detection means II+. When a predetermined amount of frost grows on the outdoor coil 17) during heating operation, the thermistor O81 detects this as a drop in temperature and causes the defrosting start command signal to be issued from 0PU(2)). Therefore, the solenoid valve [161ta] is opened and hot gas flows into the outdoor coil (7) to start defrosting (see Figure 4). The contents of the fan control (during defrosting) are shown in flowcharts as shown in FIG. 4, and the indoor fan control will be explained below based on this flowchart and the time chart of FIG. 5. At the same time as the start of defrosting (A), the indoor fan (13) is operated with a weak wind by energizing the low speed tap of the motor (13A). After that, the indoor fan (I1) is operated at a predetermined short cycle such as every minute.
Go to PLTA1 to check the temperature (1) of step 1, and until the temperature does not drop to the set value (I2), which is slightly lower than the predetermined value (t, ), issue an operation signal and maintain the above-mentioned weak wind operation. -H, when it decreases to above the set value (t1),
A stop signal is issued to cut off the power to the motor (13M) and stop the indoor fan a3 (e). Furthermore, perform a temperature check (to) and leave the indoor fan L131 stopped during 1 (1,
In that case, operate the indoor fan ll31 with a weak wind [Exit 1
゜In this case, the check level Na (-J, [-J is the start/stop control means +2) corresponds to the operation, and the operation (b) and C E correspond to the operation of the fan drive device [31]. In this way, the temperature of the indoor coil (111) is set to the predetermined value (t
When the temperature is relatively high before and after 2), it is possible to blow out warm air by driving the indoor fan (131), and if the amount of gas flowing to the indoor coil Ill is the same, by driving the indoor fan α3. The fill temperature goes down.If the indoor fill temperature goes down and goes down, the indoor fan (1
31 is stopped, the heat exchange capacity of the indoor coil +111 decreases, and the amount of gas flowing to the outdoor coil [7] increases accordingly, thereby increasing the defrosting capacity. (Effects of the Invention) As is clear from the above explanation, when the room temperature is low, when the amount of frost is large and the defrosting time is long,
While the indoor coil (111) temperature is low, the indoor fan (13
), this eliminates the worry of cold air blowing out and causing a cold draft. -H, When the outside temperature is low or there is a large amount of frost, a large amount of defrosting capacity is required and it is desired to secure more hot gas bypass ffi to the outdoor coil (7), but at this point, the indoor fan a31 Since the condensation effect in the indoor coil is no longer exerted,
Since the amount of hot gas bypassed to the outside of the room increases accordingly, defrosting is promoted and the problem of residual melting is solved. In this way, it achieves the effect of killing two birds with one stone by suppressing the cold air blowing indoors, maintaining comfort, and stabilizing defrosting.

【図面の簡単な説明】[Brief explanation of drawings]

W、1図は本発明の構成を示すブロック図、第2図は本
発明の実施例に係る空調機の装置回路図、第3図に同じ
く制御回路図、@4図は室内ファン制御を示すフローチ
ャート、第5図は同じくタイムチャートである。 (1)・・・温度検出手段、(2)・・・発停制御手段
。 131・・・ファン駆動装置、(7)・・・室外フィル
。 131・・・室内ファン。 第1図 第4図 第5図
W, Figure 1 is a block diagram showing the configuration of the present invention, Figure 2 is a device circuit diagram of an air conditioner according to an embodiment of the present invention, Figure 3 is a control circuit diagram as well, and Figure @4 shows indoor fan control. The flowchart in FIG. 5 is also a time chart. (1)...Temperature detection means, (2)...Start/stop control means. 131...Fan drive device, (7)...Outdoor filter. 131...Indoor fan. Figure 1 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、ホットガスを室内コイル(11)及び減圧機構にバ
イパスさせて蒸発器として作用する室外コイル(7)に
流通させる除霜運転を行わせるヒートポンプ空調機にお
いて、室内コイル(11)の温度を検出する温度検出手
段(1)と、除霜運転中に前記温度検出手段(1)が検
出した温度が所定値(t_1)以上のときに運転信号を
、前記所定値(t_1)に比し若干低い設定値(t_2
)以下のときに停止信号を夫々発信する発停制御手段(
2)と、前記発停制御手段(2)が発信する運転信号に
よつて室内ファン(13)を駆動させ、停止信号によつ
て室内ファン(13)を停止させるファン駆動装置(3
)とからなることを特徴とする空調機の室内ファン制御
装置。
1. Detecting the temperature of the indoor coil (11) in a heat pump air conditioner that performs a defrosting operation in which hot gas bypasses the indoor coil (11) and the pressure reduction mechanism and flows to the outdoor coil (7) that acts as an evaporator. and a temperature detection means (1) for detecting a temperature, and when the temperature detected by the temperature detection means (1) during defrosting operation is equal to or higher than a predetermined value (t_1), an operation signal is generated that is slightly lower than the predetermined value (t_1). Setting value (t_2
) Start/stop control means (
2), and a fan drive device (3) that drives the indoor fan (13) according to the operation signal transmitted by the start/stop control means (2) and stops the indoor fan (13) according to the stop signal.
) An indoor fan control device for an air conditioner, comprising:
JP61046795A 1986-03-03 1986-03-03 Indoor fan control device for air conditioner Pending JPS62202950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61046795A JPS62202950A (en) 1986-03-03 1986-03-03 Indoor fan control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61046795A JPS62202950A (en) 1986-03-03 1986-03-03 Indoor fan control device for air conditioner

Publications (1)

Publication Number Publication Date
JPS62202950A true JPS62202950A (en) 1987-09-07

Family

ID=12757267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61046795A Pending JPS62202950A (en) 1986-03-03 1986-03-03 Indoor fan control device for air conditioner

Country Status (1)

Country Link
JP (1) JPS62202950A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241258A (en) * 1990-02-15 1991-10-28 Daikin Ind Ltd Air-conditioner
JP2012016315A (en) * 2010-07-08 2012-01-26 Kansai Electric Power Co Inc:The Air-conditioning system for cultivation greenhouse
CN105135620A (en) * 2015-09-11 2015-12-09 广东美的暖通设备有限公司 Air conditioner outdoor unit defrosting method
CN106766008A (en) * 2017-02-23 2017-05-31 广东美的暖通设备有限公司 The control method of blower fan gear, device and air-conditioner
CN112665162A (en) * 2019-10-15 2021-04-16 广东美的制冷设备有限公司 Fixed-frequency air conditioner and control method and device of indoor fan of fixed-frequency air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241258A (en) * 1990-02-15 1991-10-28 Daikin Ind Ltd Air-conditioner
JP2012016315A (en) * 2010-07-08 2012-01-26 Kansai Electric Power Co Inc:The Air-conditioning system for cultivation greenhouse
CN105135620A (en) * 2015-09-11 2015-12-09 广东美的暖通设备有限公司 Air conditioner outdoor unit defrosting method
CN105135620B (en) * 2015-09-11 2017-11-10 广东美的暖通设备有限公司 Air-conditioner outdoor unit Defrost method
CN106766008A (en) * 2017-02-23 2017-05-31 广东美的暖通设备有限公司 The control method of blower fan gear, device and air-conditioner
CN112665162A (en) * 2019-10-15 2021-04-16 广东美的制冷设备有限公司 Fixed-frequency air conditioner and control method and device of indoor fan of fixed-frequency air conditioner
CN112665162B (en) * 2019-10-15 2022-07-12 广东美的制冷设备有限公司 Fixed-frequency air conditioner and control method and device of indoor fan of fixed-frequency air conditioner

Similar Documents

Publication Publication Date Title
JPH0529830B2 (en)
JPS62202950A (en) Indoor fan control device for air conditioner
US11940192B2 (en) Air conditioning device
WO2018003094A1 (en) Air conditioner
JP2650920B2 (en) Defrosting method for air conditioner
JPS59107130A (en) Device for operating freezer
JPH09138024A (en) Air conditioner
JPS6217572A (en) Defroster for air-cooled heat pump type refrigerator
JPH1038422A (en) Air conditioner
JPH0285629A (en) Heat pump type air conditioner
JPH0426833Y2 (en)
JPH0442665Y2 (en)
JPH0426834Y2 (en)
JPH08285393A (en) Air conditioner for multi-room
JPH0282045A (en) Control device for air conditioner
JPH0261447A (en) Air conditioner
JP3337264B2 (en) Air conditioner defroster
JPH06100359B2 (en) Heat storage control method
JPH07217965A (en) Air conditioning equipment
JPS59208340A (en) Method of defrosting air conditioner
JPH078973Y2 (en) Air conditioner
JPH0331638A (en) Operation controller for air conditioning apparatus
JPS63247544A (en) Heat pump type air conditioner
JPH06201199A (en) Controlling method for room air-conditioner
JPS63153378A (en) Refrigerator