JPS62202624A - High speed data reception circuit system - Google Patents

High speed data reception circuit system

Info

Publication number
JPS62202624A
JPS62202624A JP60231239A JP23123985A JPS62202624A JP S62202624 A JPS62202624 A JP S62202624A JP 60231239 A JP60231239 A JP 60231239A JP 23123985 A JP23123985 A JP 23123985A JP S62202624 A JPS62202624 A JP S62202624A
Authority
JP
Japan
Prior art keywords
data
clock
phase
register
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60231239A
Other languages
Japanese (ja)
Inventor
Toshio Takekoshi
竹越 敏夫
Takayuki Hori
隆行 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Computer Electronics Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Computer Electronics Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Computer Electronics Co Ltd, Hitachi Ltd filed Critical Hitachi Computer Electronics Co Ltd
Priority to JP60231239A priority Critical patent/JPS62202624A/en
Publication of JPS62202624A publication Critical patent/JPS62202624A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/027Speed or phase control by the received code signals, the signals containing no special synchronisation information extracting the synchronising or clock signal from the received signal spectrum, e.g. by using a resonant or bandpass circuit

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PURPOSE:To attain high speed data transfer by forming several kinds of clocks whose phases are deviated from the oscillator source and selecting and using an optimum clock suitable for data fetch depending on the phase relation with a synchronizing signal. CONSTITUTION:An oscillator 1 generates a clock having the same frequency as the data transfer frequency to be sent. A phase adjusting circuit 2 consists of a delay circuit, deviates the phase of the oscillator output and forms two kinds or over of clocks at minimum whose phases are deviated. A flip-flop 3 uses the clock to latch a synchronizing signal SYNC. When any signal is latched, an input is given to an OR gate 4 and a signal S4 is outputted. A register 5 stores which of flip-flops 3a, 3b...3h latches the SYNC at first. Since the relation of the phases between the clock and the SYNC is known by outputs S51, S52...S58 of the register 5, the clock most suited to data fetch is selected by a selector 6 to fetch the data by using the output of the register 5.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、データの転送回路に係り1特に高速データ転
送に好適なデータの受信回路に関するO 〔発明の背景〕 RS 232 Cシリアルインターフェースは調歩同期
(アンシンクロナス)で転送されている。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a data transfer circuit, and particularly relates to a data reception circuit suitable for high-speed data transfer. [Background of the Invention] The RS 232 C serial interface is an asynchronous (Asynchronous) transfer.

一般にはインテル社の8251AというICを用い、転
送りロックの×16ないし×16倍のクロックモカウン
トすることによりデータの取込を実施している。この方
式ではデータ転送が50MH2位になると、必要なデー
タ取込用クロックは800MHz (X 16 )あル
イ+:t 5.2 GHz (X (54) トなり、
TTL論理では達成できない。
Generally, an IC called 8251A from Intel Corporation is used, and data is taken in by counting the clock count at x16 or x16 times the transfer lock. In this method, when data transfer reaches 50 MHz, the required data acquisition clock becomes 800 MHz (X 16 ) and 5.2 GHz (X (54)).
This cannot be achieved with TTL logic.

なおこの分野の技術として・特開昭60−6985号公
報に記載された技術などがある0〔発明の目的〕 本発明の目的は、高速シリアル転送データを受信する時
に1データの転送りロックが受信不能な場合、転送りロ
ックと一定の位相関係を持つ同期信号を利用して受信側
のデータ取込用クロックな選択し、このクロックを用い
てデータを受信することにある。
As a technique in this field, there is a technique described in Japanese Unexamined Patent Publication No. 60-6985.0 [Object of the Invention] An object of the present invention is to prevent locking of one data transfer when receiving high-speed serial transfer data. If reception is not possible, a synchronization signal having a certain phase relationship with the transfer lock is used to select a clock for data acquisition on the receiving side, and this clock is used to receive data.

〔発明の概要〕[Summary of the invention]

従来の歩調同期方式では、データ転送周波数よりも高い
周波数を使用して同期を取りていたが、データ転送速度
が上がると1高い周波数を使うこ・とが困難となってく
る。
In the conventional pace synchronization method, synchronization was achieved using a frequency higher than the data transfer frequency, but as the data transfer speed increases, it becomes difficult to use a frequency one higher.

この対応策として、発振器の源振より、数種類の位相の
ずれたクロックを作り□、このクロックと同期信号との
位相関係により、データ取込に最適なりロックを選択し
、これを使用することによりデータ転送周波数と同一周
波数のクロックのみでデータを受信することを可能とし
た。
As a countermeasure to this, several types of clocks with different phases are created from the source oscillation of the oscillator, and depending on the phase relationship between this clock and the synchronization signal, the lock that is optimal for data acquisition is selected and used. This makes it possible to receive data using only a clock with the same frequency as the data transfer frequency.

〔発明の実施例〕 以下島本発明の実施例について第1図〜第6図により説
明する。
[Embodiments of the Invention] Examples of the present invention will be described below with reference to FIGS. 1 to 6.

第1図は1同期信号5YNCを用いてデータ受信回路内
部の発振器よりのクロック出力を、転送されるデータの
取込みに最適な位相となるようにする回路である。
FIG. 1 shows a circuit that uses a 1 synchronization signal 5YNC to set the clock output from an oscillator inside the data receiving circuit to the optimum phase for receiving data to be transferred.

第2図は1第1図の各部の動作を示したタイミングチャ
ートである。
FIG. 2 is a timing chart showing the operation of each part in FIG. 1.

第1図の発振器1は、転送されるデータの転送周波数と
同一周波数のクロックを発生させる発振器である。
The oscillator 1 shown in FIG. 1 is an oscillator that generates a clock having the same frequency as the transfer frequency of data to be transferred.

位相調整回路2は、遅延回路で構成され、発振器出力の
位相をずらし、最低2種以上の位相が等分にずれたクロ
ックを作る。これにより、発振周波数を上げることなく
、見掛は土間波数を上げたものと同じような動作なさせ
ることができる0なお第1図はこのクロックを8種類作
った場合の例を示T0この場合の各クロックの位相関係
は第2図 821.822.・・・828  に示すよ
うになる0822はS21を1/8周期遅延させたもの
で、S23は822を同じく1/8周期遅延させたもの
で、以下824〜828も同様に1/8周期づつ遅延さ
せたものである。
The phase adjustment circuit 2 is composed of a delay circuit, and shifts the phase of the oscillator output to create at least two types of clocks whose phases are equally shifted. As a result, without increasing the oscillation frequency, it is possible to achieve the same operation as the one with the Doma wave number raised.0 Note that Figure 1 shows an example where 8 types of this clock are createdT0 In this case The phase relationship of each clock of 821.822. is shown in Figure 2. ...0822 as shown in 828 is S21 delayed by 1/8 period, S23 is 822 delayed by 1/8 period, and the following 824 to 828 are also delayed by 1/8 period. It was delayed.

なお1発生させるクロックの数を変更する場合は、クロ
ックの数をNとすると位相は1/N周期ずつ遅延させれ
ば良い。
Note that when changing the number of clocks to be generated, the phase may be delayed by 1/N periods, where the number of clocks is N.

7リツプフpツブ3はクロックにより同期信号5YNC
をラッチするもので、例として5YNCが第2図のよう
な波形になった場合を示すqこの場合1フリップフロッ
プ3dが最初に5YNCをラッチする@ 5YNCのタイミングによりアリツブ70ツブ3α、3
b、・・・3Aのどれが最初にラッチするかム不定であ
るが、どれか一つでもラッチした時点でオアゲート4に
入力が入り、s4が出方される。
7 Ripfp tube 3 receives synchronization signal 5YNC by clock
As an example, the waveform of 5YNC becomes as shown in Figure 2 is shown.Q In this case, 1 flip-flop 3d first latches 5YNC @Depending on the timing of 5YNC, Aritube 70 Tube 3α, 3
Although it is uncertain which one of b, .

この84が出力された時点でレジスタ5は851゜S3
2.・・・83Bの状態を記憶する。すなわち、レジス
タ5はフリップフロップ3α、3b、・・・5hのどれ
が最初に5YNCをラッチしたかを記憶していることに
なる。
When this 84 is output, register 5 is 851°S3
2. ...Stores the state of 83B. That is, the register 5 stores which of the flip-flops 3α, 3b, . . . , 5h latched 5YNC first.

そして、レジスタ5の出力ss1.852.・・・S5
8によりクロックと5YNCとの位相関係が分かるため
、このレジスタ5の出力により、データの取込みに最も
適したクロックをセレクタ6により選択し、データを取
込む。第2図の場合はS28が選ばれる。
Then, the output of register 5 ss1.852. ...S5
Since the phase relationship between the clock and 5YNC is known from 8, the selector 6 selects the most suitable clock for data capture based on the output of this register 5, and data is captured. In the case of FIG. 2, S28 is selected.

第1図および第2図は5YNCの立上りがDATAの変
位点に一致している場合の例である。
FIGS. 1 and 2 are examples in which the rising edge of 5YNC coincides with the displacement point of DATA.

この例では、クロックはデータのほぼ中央で立上がるた
め、安定した状態で取り込むことができる〇 なお、位相g[回路で作るクロックの数を増せば1デー
タはより正確なタイミングで取り込むことができる◎ また、内部の発振器の精度に応じて逐次周期をかけるこ
とが望ましい。なお、この時にレジスタ5の内容が変化
し、選択されるクロックが変化することがある。この場
合はデータを取込むクロックの周期が変化したり、余分
なパルスが出ることがあるので1同期をかけている間は
取込を中断する等の配慮が必要である。
In this example, the clock rises almost at the center of the data, so it can be captured in a stable state.In addition, the phase g ◎ Also, it is desirable to apply the period sequentially according to the accuracy of the internal oscillator. Note that at this time, the contents of the register 5 may change, and the selected clock may change. In this case, the period of the clock for taking in data may change or extra pulses may be generated, so consideration must be taken such as interrupting the taking while one synchronization is applied.

なお、5YNCの立上りがDATAの変位点以外の場所
にある場合の一例として、第3図および第4図にDAT
Aがクロックの172周期ずれた場合を示T0 この場合、第3図が第1図と比較して異なるのは、りp
ツク信号S2L 822.・・・82Bのセレクタ6へ
の接続である。
In addition, as an example where the rising edge of 5YNC is at a location other than the displacement point of DATA, FIGS.
In this case, the difference between FIG. 3 and FIG. 1 is that A is shifted by 172 clock cycles.
Tsuk signal S2L 822. . . 82B is connected to the selector 6.

なお、第6図の回路に5YNCが第2図と同じタイミン
グで入ってきた場合の例が第4図である0 この時セレクタ6では824が選ばれ86’に出力され
るので、第2図の86とは位相が1/2周期ずれた信号
が出力されることになり、この信号を使用することによ
って、位相が1/2周期ずれたDATA信号をデータ受
信回路7で受信することができる。この時のデータ受信
回路7の出力が87である。
Figure 4 shows an example where 5YNC enters the circuit in Figure 6 at the same timing as in Figure 2. At this time, selector 6 selects 824 and outputs it to 86'. A signal whose phase is shifted by 1/2 period from that of 86 is outputted, and by using this signal, the data receiving circuit 7 can receive the DATA signal whose phase is shifted by 1/2 period. . The output of the data receiving circuit 7 at this time is 87.

このようにして、5YNCとDATAの位相係によって
クロック信号のセレクタ6への接続を変更することによ
り、DATA受信に最も適した位相のクロック信号を得
ることができる。
In this way, by changing the connection of the clock signal to the selector 6 depending on the phase relationship between 5YNC and DATA, it is possible to obtain a clock signal with a phase most suitable for DATA reception.

第5図および第6図は、位相のずれたクロックを3種作
る場合の例である。
FIGS. 5 and 6 are examples of creating three types of clocks with different phases.

第5図の位相調整回路2は、クロックを1/6周期遅延
させ、レベルを反転させるもので、その出力波形は第6
図311.S12および813となる。  ゛ この信号を見ると1それぞれ1/3周期ずつずれた波形
となっている。また、位相調整回路2では1/3周期ず
つ遅延させても良い。
The phase adjustment circuit 2 in FIG. 5 delays the clock by 1/6 period and inverts the level, and its output waveform is
Figure 311. S12 and 813. ``Looking at this signal, it has a waveform that is shifted by 1/3 period. Further, the phase adjustment circuit 2 may delay by 1/3 period.

他は、第1図〜第4図と同様に動作し、DA’f Aを
中央に近い所で取り込むことができる。
Otherwise, the operation is the same as in FIGS. 1 to 4, and DA'f A can be taken in near the center.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、外部よりデータ転送用のクロックを受
けることなく、またデータ受信回路内部でデータ転送周
波数より高い周波数の発振器も持たずに、データ送出側
クロックと一定位相関係のクロックをデータ受信回路内
部に発生させることができるので、高速データ転送を行
なうことができる。
According to the present invention, data is received using a clock that has a constant phase relationship with the data sending clock without receiving an external clock for data transfer, and without having an oscillator with a frequency higher than the data transfer frequency inside the data receiving circuit. Since it can be generated inside the circuit, high-speed data transfer can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す高速データ転送回路の
データ受信部の回路図、第2図は第1図の各部の動作タ
イミングチャート、第3図は本発明の他の実施例を示す
データ受信部の回路図、第4図は第3図の各部の動作タ
イミングチャート、第5図はさらに他の実施例を示すデ
ータ受信部の回路図、第6図は第5図の各部の動作タイ
ミングチャートである。 1・・・発振器 2・・・位相調整回路 3・・・フリップフロップ 4・−・オアゲート 5・・・レジスタ 6・・・セレクタ 7・・・データ受信回路 、・−、耳 、゛
FIG. 1 is a circuit diagram of a data receiving section of a high-speed data transfer circuit showing one embodiment of the present invention, FIG. 2 is an operation timing chart of each part of FIG. 1, and FIG. 3 is a circuit diagram of another embodiment of the present invention. 4 is an operation timing chart of each part in FIG. 3, FIG. 5 is a circuit diagram of a data receiving part showing another embodiment, and FIG. 6 is a circuit diagram of each part in FIG. It is an operation timing chart. 1... Oscillator 2... Phase adjustment circuit 3... Flip-flop 4... OR gate 5... Register 6... Selector 7... Data receiving circuit,...

Claims (1)

【特許請求の範囲】[Claims] 高速シリアルデータ転送で、送出側よりf_0の周波数
でデータを連続転送し、f_0より小さいf_1(f_
1<<f_0)の周波数でデータとある一定の位相関係
を有する同期信号が転送される方式において、受信側に
送出側と同じf_0の周波数の発振器を持ち、この発振
器より一定間隔で位相をずらしたクロックを数種作り出
す位相調整回路を持ち、これら位相のずれたクロックを
用いて、送られてくる同期信号をラッチするクリップフ
ロップ群と、このフリップフロップ群の中でどれか1つ
のフリップフロップが同期信号をラッチした時点でフリ
ップフロップ群の各状態を記憶するレジスタと、この記
憶した状態により前記の数種のクロックの中より一つの
クロックを選択するセレクタと、このセレクトされたク
ロックに同期して、送られてくるデータを順次に受信す
る回路を設けたことを特徴とする高速転送データの受信
回路方式。
With high-speed serial data transfer, data is continuously transferred from the sending side at a frequency of f_0, and f_1 (f_
In a method in which a synchronization signal having a certain phase relationship with data is transferred at a frequency of 1<<f_0), the receiving side has an oscillator with the same frequency of f_0 as the sending side, and the phase is shifted from this oscillator at regular intervals. It has a phase adjustment circuit that generates several different clocks, and uses these out-of-phase clocks to latch the incoming synchronization signal. A register that stores each state of the flip-flop group at the time the synchronization signal is latched, a selector that selects one clock from among the several types of clocks mentioned above based on this stored state, and a register that synchronizes with the selected clock. 1. A high-speed transfer data receiving circuit system, characterized in that a circuit is provided to sequentially receive transmitted data.
JP60231239A 1985-10-18 1985-10-18 High speed data reception circuit system Pending JPS62202624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60231239A JPS62202624A (en) 1985-10-18 1985-10-18 High speed data reception circuit system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60231239A JPS62202624A (en) 1985-10-18 1985-10-18 High speed data reception circuit system

Publications (1)

Publication Number Publication Date
JPS62202624A true JPS62202624A (en) 1987-09-07

Family

ID=16920499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60231239A Pending JPS62202624A (en) 1985-10-18 1985-10-18 High speed data reception circuit system

Country Status (1)

Country Link
JP (1) JPS62202624A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117440A (en) * 1987-10-30 1989-05-10 Kenwood Corp Optimum clock forming device for data receiver
JPH01151098A (en) * 1987-12-09 1989-06-13 Agency Of Ind Science & Technol Sampling circuit
US5181972A (en) * 1989-05-15 1993-01-26 Kawasaki Steel Corporation Process for producing grain oriented silicon steel sheets having excellent magnetic properties
JPH0628288A (en) * 1991-02-22 1994-02-04 Internatl Business Mach Corp <Ibm> Apparatus for recovery of short waiting time data and synchronizing method of message data

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117440A (en) * 1987-10-30 1989-05-10 Kenwood Corp Optimum clock forming device for data receiver
JPH01151098A (en) * 1987-12-09 1989-06-13 Agency Of Ind Science & Technol Sampling circuit
US5181972A (en) * 1989-05-15 1993-01-26 Kawasaki Steel Corporation Process for producing grain oriented silicon steel sheets having excellent magnetic properties
JPH0628288A (en) * 1991-02-22 1994-02-04 Internatl Business Mach Corp <Ibm> Apparatus for recovery of short waiting time data and synchronizing method of message data

Similar Documents

Publication Publication Date Title
US5708801A (en) Apparatus and method for operating chips synchronously at speeds exceeding the bus speed
US4604582A (en) Digital phase correlator
US6359479B1 (en) Synchronizing data transfers between two distinct clock domains
JP3613819B2 (en) Digital delay line
US6275546B1 (en) Glitchless clock switch circuit
US6239627B1 (en) Clock multiplier using nonoverlapping clock pulses for waveform generation
US6275547B1 (en) Clock recovery circuit
US5638015A (en) Avoiding instability
US5128970A (en) Non-return to zero synchronizer
JPH08298503A (en) Nonintegral multiple clock converter and its method
US5331342A (en) Video clock generating circuit and horizontal synchronizing signal generating device in image forming apparatus using laser beam
US5103185A (en) Clock jitter suppressing circuit
JPH0292021A (en) Digital pll circuit
JPH0198313A (en) Synchronizing circuit
EP0319184B1 (en) Two stage synchronizer
KR100303781B1 (en) DL Clock Generator with Unlock Compensation Circuit for Solving Unlock Problems in Register-Controlled Digital DLs
JPS62202624A (en) High speed data reception circuit system
US4955040A (en) Method and apparatus for generating a correction signal in a digital clock recovery device
US6040723A (en) Interface circuit with high speed data transmission
JPH0771055B2 (en) High speed signal multiplexer
US7170963B2 (en) Clock recovery method by phase selection
US4818894A (en) Method and apparatus for obtaining high frequency resolution of a low frequency signal
JP3185768B2 (en) Frequency comparator and clock extraction circuit using the same
JPH01296734A (en) Phase synchronizing circuit for clock and data signal
KR100278271B1 (en) A clock frequency divider