JPS6220221B2 - - Google Patents

Info

Publication number
JPS6220221B2
JPS6220221B2 JP56164758A JP16475881A JPS6220221B2 JP S6220221 B2 JPS6220221 B2 JP S6220221B2 JP 56164758 A JP56164758 A JP 56164758A JP 16475881 A JP16475881 A JP 16475881A JP S6220221 B2 JPS6220221 B2 JP S6220221B2
Authority
JP
Japan
Prior art keywords
foaming
steam
particles
pressure
styrenic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56164758A
Other languages
Japanese (ja)
Other versions
JPS5865635A (en
Inventor
Hideaki Shibata
Shigeo Kurino
Mototake Katori
Hiroshi Myajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP56164758A priority Critical patent/JPS5865635A/en
Publication of JPS5865635A publication Critical patent/JPS5865635A/en
Publication of JPS6220221B2 publication Critical patent/JPS6220221B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】 本発明は低密度に発泡させられた(高発泡の)
予備発泡スチレン系樹脂粒子の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides low density foamed (highly foamed)
The present invention relates to a method for producing pre-expanded styrenic resin particles.

従来、広く行なわれている発泡性スチレン系樹
脂粒子の1次発泡(予備発泡)方法は、大気圧下
開放系下で当該粒子とスチームを接触させ、発泡
した粒子を連続的にあるいは間歇的に発泡槽の外
部へ排出するものがある。この方法では、スチレ
ン系樹脂粒子の発泡、膨張は当該粒子の大きさ、
組成にもよるが、最終的に良好な発泡成形体を得
るためには、あまり高発泡に予備発泡させること
ができない。
Conventionally, the widely used method for primary foaming (pre-foaming) of expandable styrenic resin particles involves contacting the particles with steam in an open system under atmospheric pressure, and then blowing the foamed particles continuously or intermittently. Some things are discharged to the outside of the foaming tank. In this method, the foaming and expansion of styrenic resin particles depends on the size of the particles.
Although it depends on the composition, in order to finally obtain a good foamed molded product, it is not possible to pre-foam to a high degree of foaming.

一方、大気圧開放系下ではなく、密閉系であつ
て予め、発泡槽内部の空気を真空ポンプ等で減圧
状態とし、しかるのち発泡性の粒子とスチームを
投入して1次発泡すると開放系で行なうより高い
発泡度が得易いということが知られている。(特
公昭43−18635号公報) しかし、この方法でも十分に高い発泡度(低密
度)を有する予備発泡粒子は得られなかつた。
On the other hand, if the system is not open to atmospheric pressure, but is closed, and the air inside the foaming tank is first reduced in pressure using a vacuum pump, etc., and then foaming particles and steam are introduced for primary foaming, an open system is created. It is known that it is easier to obtain a higher degree of foaming than by (Japanese Patent Publication No. 43-18635) However, even with this method, pre-expanded particles having a sufficiently high degree of expansion (low density) could not be obtained.

以上のごとく既存の技術で高い発泡度の予備発
泡粒子が得られないのであるが、本発明者らはこ
の原因について、鋭意研究解明を行なつた結果、
スチレン系樹脂粒子がスチームを接触する際、共
存する空気の影響であることをつきとめた。空気
(正確には、スチレン系樹脂の膜の透過速度がス
チームに較べ著しく小さいガス体)が発泡粒子の
周囲に存在することにより、発泡膨張が阻害され
るのである。空気の影響のみを排除するために
は、前記の、発泡槽内を減圧にする方法で、その
減圧度を高めればよいが装置上、操作上の不利益
が大きくなるうえ、さらに密閉系であるため、ス
チレン系樹脂粒子が発泡工程で自ら吐き出す発泡
剤の影響をまぬがれない。
As mentioned above, it is not possible to obtain pre-expanded particles with a high degree of expansion using existing techniques, but as a result of the inventors' extensive research to elucidate the cause of this,
It was found that this is due to the effect of air present when styrene resin particles come into contact with steam. The presence of air (more precisely, a gas whose permeation rate through a styrene resin membrane is significantly lower than that of steam) around the foam particles inhibits foam expansion. In order to eliminate only the influence of air, the above-mentioned method of reducing the pressure inside the foaming tank and increasing the degree of pressure reduction would be sufficient, but this would be disadvantageous in terms of equipment and operation, and furthermore, it would be a closed system. Therefore, the styrene resin particles cannot escape the influence of the blowing agent that they spit out themselves during the foaming process.

本発明者らは、この空気および粒子から逸出す
る発泡剤の発泡阻害作用を防いで、高い発泡度の
予備発泡粒子を効率よく得る方法について研究し
た結果、この発明に至つたのである。
The present inventors conducted research on a method for efficiently obtaining pre-expanded particles with a high degree of foaming by preventing the foaming inhibiting effect of the blowing agent escaping from the air and particles, and as a result, the present invention was achieved.

すなわち、本発明は常温、常圧で気体状の有機
化合物を50重量%以上含む有機発泡剤を含有して
ある発泡性スチレン系樹脂粒子を大気圧より大き
い圧力下で略スチームのみを接触させて加熱発泡
させることを特徴とする予備発泡スチレン系樹脂
粒子の製造法に関する。
That is, in the present invention, expandable styrenic resin particles containing an organic blowing agent containing 50% by weight or more of a gaseous organic compound at normal temperature and normal pressure are brought into contact with substantially only steam under a pressure greater than atmospheric pressure. The present invention relates to a method for producing pre-expanded styrenic resin particles characterized by heating and foaming them.

本発明において、発泡性スチレン系樹脂粒子と
は、スチレンを50重量%以上含有するスチレン系
樹脂の粒子に有機発泡剤が含浸させられた粒子で
ある。
In the present invention, expandable styrenic resin particles are particles of styrenic resin containing 50% by weight or more of styrene impregnated with an organic foaming agent.

該スチレン系樹脂としてはポリスチレン、スチ
レンと他のビニルモノマーとの共重合体であり、
ここで、他のビニルモノマーとしてはアクリロニ
トリル、ブタジエン、アクリル酸、アクリル酸エ
チル、アクリル酸ブチル等のアクリル酸エステ
ル、メタクリル酸メチル、メタクリル酸ブチル、
メタクリル酸セチル等のメタクリル酸エステル、
α−メチルスチレン、ビニルトルエン、クロロス
チレン等のスチレン誘導体、ジビニルベンゼン、
無水マレイン酸、マレイン酸、マレイン酸モノア
ルキルエステル等がある。また、上記スチレン系
樹脂としては、ポリスチレンと上記他のビニルモ
ノマーの単独重合体または共重合体とのブレンド
物、ポリスチレンまたはスチレン共重合体と他の
熱可塑性樹脂(例えば、ポリエチレン、ポリプロ
ピレン、ポリフエニレンオキサイド等)とのブレ
ンド物があり、さらに、上記スチレン系樹脂中に
タルク、炭酸カルシウム等の無機質微粉末が含ま
れていてもよい。
The styrene resin is polystyrene, a copolymer of styrene and other vinyl monomers,
Here, other vinyl monomers include acrylonitrile, butadiene, acrylic acid, acrylic acid esters such as ethyl acrylate, butyl acrylate, methyl methacrylate, butyl methacrylate,
methacrylic acid esters such as cetyl methacrylate;
Styrene derivatives such as α-methylstyrene, vinyltoluene, chlorostyrene, divinylbenzene,
Examples include maleic anhydride, maleic acid, and maleic acid monoalkyl ester. In addition, the styrene resin may be a blend of polystyrene and a homopolymer or copolymer of the other vinyl monomers, or a blend of polystyrene or a styrene copolymer with another thermoplastic resin (for example, polyethylene, polypropylene, polyphenylene, etc.). The styrene resin may also contain fine inorganic powder such as talc or calcium carbonate.

本発明のスチレン系樹脂がスチレンを50重量%
未満しか含まない場合は、該樹脂のスチーム透過
性と加熱処理、発泡終了後のセル隔壁の強さの間
の調和が難しく、低密度(高発泡)の発泡体が得
られない。
The styrenic resin of the present invention contains 50% by weight of styrene.
If the content is less than that, it is difficult to balance the steam permeability of the resin with the strength of the cell partition walls after heat treatment and foaming, and a low-density (highly foamed) foam cannot be obtained.

上記有機発泡剤としては常温、常圧で気体状の
有機化合物でありブタン、プロパン等の脂肪族炭
化水素、ジクロロジフルオロメタン等のハロゲン
化炭素水素があり、特に1気圧付近で沸点が約5
℃以下のものが好ましい。
The above-mentioned organic blowing agents are organic compounds that are gaseous at room temperature and pressure, and include aliphatic hydrocarbons such as butane and propane, and halogenated hydrocarbons such as dichlorodifluoromethane.
℃ or less is preferable.

本発明において有機発泡剤として他の有機化合
物、例えば常温、常圧で液状のものなども使用で
きるが、その使用量は発泡剤全量に対して50重量
%以下、好ましくは30重量%以下にされる。この
ような発泡剤が50重量%を越えると実用的な低密
度(高発泡)の予備発泡粒子を得ることができに
くい。発泡剤はスチレン系樹脂に対して、通常1
〜20重量%含有させられる。
In the present invention, other organic compounds can be used as the organic blowing agent, such as those that are liquid at normal temperature and pressure, but the amount used is 50% by weight or less, preferably 30% by weight or less based on the total amount of the blowing agent. Ru. If such a blowing agent exceeds 50% by weight, it is difficult to obtain pre-expanded particles with a practically low density (highly expanded). The blowing agent is usually 1% per styrene resin.
~20% by weight.

上記発泡剤スチレン系樹脂粒子は水性懸濁重合
を利用するなど従来知られた方法で製造できる。
水性懸濁重合を利用する場合、発泡剤は重合途
中、若しくは重合後または得られたスチレン系樹
脂粒子を改めて水中に懸濁させて、圧入すること
によりスチレン系樹脂粒子中に含浸させることが
できる。
The above-mentioned blowing agent styrenic resin particles can be produced by a conventionally known method such as using aqueous suspension polymerization.
When using aqueous suspension polymerization, the blowing agent can be impregnated into the styrenic resin particles during polymerization, after polymerization, or by suspending the obtained styrenic resin particles in water again and press-fitting the resulting styrenic resin particles. .

上記発泡性スチレン系樹脂粒子の加熱発泡は、
略スチームのみで、しかも、大気圧より大きい圧
力下で行なわれる。
The heating and foaming of the expandable styrenic resin particles is as follows:
It is carried out using almost only steam and at a pressure higher than atmospheric pressure.

ここで、略スチームのみとは、発泡性スチレン
系樹脂粒子の加熱媒体として、スチームが2/3以
上を占めることを意味する。加熱媒体としてはス
チームが100%またはほぼ100%であることが好ま
しい。スチーム以外の加熱媒体としては、加熱さ
れた空気、窒素等があるが、このような加熱媒体
が多くなると発泡性スチレン系樹脂の発泡が阻害
されるため高発泡の予備発泡スチレン系樹脂粒子
が得にくくなり好ましくない。
Here, "substantially only steam" means that steam accounts for 2/3 or more of the heating medium for the expandable styrene resin particles. Preferably, the heating medium is 100% or nearly 100% steam. Heating media other than steam include heated air, nitrogen, etc. However, if the amount of such heating media increases, foaming of the expandable styrenic resin is inhibited, so highly expanded pre-expanded styrenic resin particles cannot be obtained. It becomes difficult and undesirable.

上記加熱発泡は大気圧より大きい圧力で行なわ
れるが、大気圧より1Kgf/cm2以下で高い圧力で
あれば充分である。すなわち、ゲージ圧で1Kg
f/cm2以下で充分である。また、本発明の効果を
得るためにゲージ圧で0.05Kgf/cm2が好ましい。
圧力が高すぎると高い発泡度が得易くまた所定発
泡度への到達時間も短縮できるが、発泡槽内部の
器壁等への発泡粒子の付着が多くなり、また、発
泡度の調整が難しくなる。圧力の設定の目安は基
材樹脂の軟化点及び内部に含有されている発泡剤
とスチレン系樹脂との親和性により決る、発泡剤
の粒子外部への逸散性の大小である。ただしこの
発泡槽内圧の設定の正確さは決定的な要件ではな
い。略スチームのみの雰囲気下で大気圧より高い
状態に維持されていることが、従来の発泡系では
得られなかつた驚くべき効果を生み出すのであ
る。最適な圧力の設定は二、三回の試行錯誤によ
り容易に求められる。
The heating and foaming is carried out at a pressure higher than atmospheric pressure, but a pressure higher than atmospheric pressure by 1 Kgf/cm 2 or less is sufficient. In other words, 1Kg in gauge pressure
f/cm 2 or less is sufficient. Further, in order to obtain the effects of the present invention, the gauge pressure is preferably 0.05 Kgf/cm 2 .
If the pressure is too high, it will be easier to obtain a high degree of foaming, and the time required to reach the desired degree of foaming will be shortened, but more foam particles will adhere to the walls of the foaming tank, and it will be difficult to adjust the degree of foaming. . The standard for setting the pressure is the degree of dissipation of the blowing agent to the outside of the particle, which is determined by the softening point of the base resin and the affinity between the blowing agent contained inside and the styrene resin. However, the accuracy of setting the internal pressure of the foaming tank is not a decisive requirement. The fact that it is maintained at a pressure higher than atmospheric pressure in an atmosphere consisting essentially of only steam produces surprising effects that could not be obtained with conventional foaming systems. The optimum pressure setting can be easily determined by trial and error a few times.

このような略スチームのみの加圧状態を作り出
すには、まず、スチームを発泡槽中に吹き込み、
空気を追い出し、ついで加圧状態(大気圧より高
い圧力)になるように、スチームを吹き込む。略
スチームのみの加圧状態を作り出すために、さら
に効率的には、発泡槽へのスチーム吹込口を下部
に排気口を上部に設け、スチームが発泡槽内部で
混合され、滞溜部分を最小限に押さえること及び
スチームの吹込量、発泡槽内部の混合気体の排出
量を調節制御することにより達成できる。
To create this pressurized state of almost steam only, first blow steam into the foaming tank,
The air is expelled, and then steam is blown in to create a pressurized state (pressure higher than atmospheric pressure). In order to create a pressurized state of almost only steam, a more efficient method is to install a steam inlet to the foaming tank at the bottom and an exhaust port at the top, so that the steam is mixed inside the foaming tank and the stagnation area is minimized. This can be achieved by controlling the amount of steam blown into the foaming tank and the amount of mixed gas discharged from inside the foaming tank.

加熱発泡の停止は、所定値の発泡度に達した
時、スチームの吹き込みを停止し、予備発泡され
たスチレン系樹脂粒子をできるだけ速やかに大気
中に排出することにより行なうことができる。
The heating and foaming can be stopped by stopping the blowing of steam when a predetermined foaming degree is reached, and discharging the pre-foamed styrenic resin particles into the atmosphere as quickly as possible.

本発明に実施するにあたつて発泡槽は、加圧状
態に耐えられる程度に耐圧性および密閉系にさ
れ、一部分が開放状態になつていてもよい。
In carrying out the present invention, the foaming tank may be made pressure resistant and closed to the extent that it can withstand pressurized conditions, and may be partially open.

本発明を実施に使用し得る発泡装置の一例を図
面を用いて説明する。
An example of a foaming device that can be used to implement the present invention will be described with reference to the drawings.

第1図は、本発明のために使用できる発泡装置
の一例を示す模式図である。
FIG. 1 is a schematic diagram showing an example of a foaming device that can be used for the present invention.

発泡槽1に撹拌翼2、該撹拌翼2が取りつけら
れる軸3、該軸3を回転させる動力4、さらに、
邪魔棒5が備えつけられる。加圧発泡する場合、
発泡槽1は密閉できる耐圧構造であることが好ま
しい。予め計量された発泡性スチレン系樹脂粒子
がホツパー6から発泡槽内に導入される。ホツパ
ー6の下部に投入器弁7が設けられ、粒子の投入
後に閉じられる。ついで、スチーム弁8が開か
れ、スチーム吹込器9から発泡槽1内にスチーム
が吹き込まれる。スチーム吹込みの初期は排気弁
10は開かれたままで操作し、発泡槽1内の空気
を排出する。一定時間(通常10〜60秒程度)後、
排気弁10は閉じられる。この排気弁10はこの
時完全に閉じないで、誤操作による減圧によつて
発泡槽1が変形するのを防ぎ、発泡槽内の残余空
気および粒子から逸散するガス(発泡剤)を完全
に排出できるように、わずか開いた状態にしてお
くことができる。
A stirring blade 2 in the foaming tank 1, a shaft 3 to which the stirring blade 2 is attached, a power 4 for rotating the shaft 3, and further,
A baffle bar 5 is provided. When foaming under pressure,
It is preferable that the foaming tank 1 has a pressure-resistant structure that can be sealed. Expandable styrene resin particles weighed in advance are introduced into the foaming tank from the hopper 6. An injector valve 7 is provided at the bottom of the hopper 6 and is closed after the particles are injected. Then, the steam valve 8 is opened and steam is blown into the foaming tank 1 from the steam blower 9. At the beginning of steam blowing, the exhaust valve 10 is operated while being opened to exhaust the air in the foaming tank 1. After a certain period of time (usually about 10 to 60 seconds),
Exhaust valve 10 is closed. At this time, the exhaust valve 10 is not completely closed to prevent the foaming tank 1 from being deformed due to depressurization due to erroneous operation, and to completely exhaust the remaining air in the foaming tank and the gas (foaming agent) escaping from the particles. It can be left slightly open so that it can be opened.

スチーム吹込みにより、発泡槽1内の粒子は発
泡膨張し、粒子層の上面が上昇する。この間に加
圧発泡する場合は、発泡槽1内の圧力を圧力計1
1で検出し、必要に応じて手動でまたは制御器1
2を経て、スチーム弁8の開閉度を調整する。発
泡度が所定値まで達したことは、レベル検出器1
3が発泡粒子層の上面を検知して行なうようにな
つている。この信号を制御器12に送り、排気弁
10が全開し、スチーム弁8が閉鎖され、さら
に、発泡粒子排出弁14が開いて、発泡粒子が受
器15に落下、収容されるように制御される。発
泡粒子が排出されたのち、発泡粒子排出弁14が
閉じられ、以下、上記の操作がくり返される。
By blowing the steam, the particles in the foaming tank 1 are expanded and the upper surface of the particle layer rises. During this time, if pressurized foaming is performed, check the pressure inside the foaming tank 1 with a pressure gauge.
1 and manually or by controller 1 if necessary.
2, the degree of opening and closing of the steam valve 8 is adjusted. Level detector 1 indicates that the degree of foaming has reached a predetermined value.
3 is designed to detect the upper surface of the foamed particle layer. This signal is sent to the controller 12, and the exhaust valve 10 is fully opened, the steam valve 8 is closed, and the foamed particle discharge valve 14 is further opened to cause the foamed particles to fall into the receiver 15 and be stored therein. Ru. After the foamed particles are discharged, the foamed particle discharge valve 14 is closed, and the above operation is repeated.

発泡度が所定値までに達したことの確認は、タ
イマーの使用、のぞき窓からの肉眼による観察等
によつても行なうことができ、排出弁の全開、ス
チーム弁の閉鎖、発泡粒子排出弁の開放は手動に
よつて行なうことができる。
Confirmation that the degree of foaming has reached a predetermined value can also be carried out by using a timer or by observing with the naked eye through a peephole. Opening can be done manually.

次に、本発明の実施例を示す。 Next, examples of the present invention will be shown.

実施例 1 平均粒子径1.05mmの発泡性ポリスチレン粒子
〔ハイビーズSB−TK(日立化成工業(株)商品
名);発泡剤組成、n−ブタン60重量%、i−ブ
タン40重量%;発泡剤含有量5.3重量%;シクロ
ヘキサン含有量1.5重量%〕を第1図に示す発泡
装置(ただ、検知器のかわりにのぞき窓を使用)
を用いて発泡を行なつた。
Example 1 Expandable polystyrene particles with an average particle diameter of 1.05 mm [Hibeads SB-TK (trade name, Hitachi Chemical Co., Ltd.); blowing agent composition: 60% by weight of n-butane, 40% by weight of i-butane; contains blowing agent 5.3% by weight; cyclohexane content 1.5% by weight] using the foaming device shown in Figure 1 (however, a peephole was used instead of a detector).
Foaming was carried out using

発泡槽1(有効内容積1200)に撹拌翼3を回
転させながら7Kgf/cm2のスチームを減圧して2
Kgf/cm2でスチーム弁8を介して吹き込み、予熱
すると共に槽内空気をスチームで置換した。つい
で、上記発泡性ポリスチレン粒子17Kgをホツパー
6から発泡槽1内に入れ、排出弁10を開放にし
たまま、スチーム弁8を開放して、スチームを発
泡槽1内に吹き込んだ。スチームの吹込み後20秒
経過後、排出弁10の弁開度を約1/2にした。発
泡槽1内の圧力は上昇を始め約20秒0.2Kgf/cm2
となり、圧力計11が作動し、制御器12が、作
動−停止を繰り返し始め発泡槽1内の圧力は0.2
Kgf/cm2で一定となつた。さらに約40秒後、投入
した上記粒子が膨張して、その発泡粒子層の上面
は予め設定した覗き窓内の高さ(設定位置下の容
積1000)に到達したので、スチーム弁8を閉
じ、続いて排気弁10を全開し、発泡を停止し
た。次いで、発泡粒子の排出弁14を開いて、発
泡粒子をとり出した。このもののカサ発泡度を測
定したところ71ml/gであつた。これを乾燥して
約20時間25℃の雰囲気下に放置してから、再び発
泡度を測定したが71ml/gであつた。これを用い
て、肉厚20mmで内容積20の箱状物のスチーム発
泡成形を行なつたが、形状および寸法共に正確で
外観も平滑で美麗なものが得られた。
Steam of 7 kgf/cm 2 is depressurized into the foaming tank 1 (effective internal volume 1200) while rotating the stirring blade 3.
Kgf/cm 2 was blown through the steam valve 8 to preheat and replace the air in the tank with steam. Next, 17 kg of the expandable polystyrene particles were put into the foaming tank 1 from the hopper 6, and steam was blown into the foaming tank 1 by opening the steam valve 8 while leaving the discharge valve 10 open. After 20 seconds had elapsed after the steam was blown, the opening degree of the discharge valve 10 was reduced to approximately 1/2. The pressure inside the foaming tank 1 begins to rise and rises to 0.2Kgf/cm 2 for about 20 seconds.
As a result, the pressure gauge 11 operates, and the controller 12 starts repeating activation and deactivation until the pressure inside the foaming tank 1 reaches 0.2.
It became constant at Kgf/ cm2 . After approximately 40 seconds, the introduced particles expanded and the top surface of the foamed particle layer reached the preset height inside the viewing window (volume 1000 below the set position), so the steam valve 8 was closed. Subsequently, the exhaust valve 10 was fully opened to stop foaming. Next, the foamed particle discharge valve 14 was opened and the foamed particles were taken out. The degree of foaming of this product was measured and found to be 71 ml/g. After drying this and leaving it in an atmosphere at 25° C. for about 20 hours, the degree of foaming was measured again and it was 71 ml/g. Using this, we performed steam foam molding of a box-like object with a wall thickness of 20 mm and an internal volume of 20 mm, and the shape and dimensions were accurate, and the appearance was smooth and beautiful.

比較例 1 実施例1で用いたハイビーズSB−TKの発泡剤
(n−ブタン、i−ブタン)が1.8%まで減少した
ものにペンタン(n−ペンタン、i−ペンタンの
混合物)を含浸して実施例1で用いた発泡性ポリ
スチレンとは発泡剤のみ異なる試料を準備した。
このものはポリスチレン以外i−ブタン0.7重量
%、n−ブタン1.0重量%、i−ペンタン0.7重量
%、n−ペンタン3.3重量%、シクロヘキサン1.5
重量%を含有していた。これを実施例1を同じ操
作、条件で発泡したが発泡1時間後のカサ発泡度
は63ml/gであり、発泡粒子は明らかに収縮して
いた。これを25℃の雰気下で20時間放置したとこ
ろ、発泡粒子の収縮状態は消えていた。発泡粒子
のカサ発泡度は71ml/gであつた。次いで、この
発泡粒子を実施例1と同じ方法で成形実験を行な
つたところ、製品は変形が大きく実用には供し得
なかつた。
Comparative Example 1 Hibeads SB-TK used in Example 1 with the blowing agent (n-butane, i-butane) reduced to 1.8% was impregnated with pentane (a mixture of n-pentane and i-pentane). A sample was prepared that differed only in the foaming agent from the expandable polystyrene used in Example 1.
Other than polystyrene, this product contains 0.7% by weight of i-butane, 1.0% by weight of n-butane, 0.7% by weight of i-pentane, 3.3% by weight of n-pentane, and 1.5% by weight of cyclohexane.
% by weight. This was foamed under the same operation and conditions as in Example 1, but the degree of foaming after 1 hour of foaming was 63 ml/g, and the foamed particles had clearly shrunk. When this was left in an atmosphere at 25° C. for 20 hours, the shrinkage state of the expanded particles disappeared. The foamed particles had a degree of foaming of 71 ml/g. Next, when a molding experiment was carried out using the expanded particles in the same manner as in Example 1, the product was so deformed that it could not be put to practical use.

本発明により、実用的な高発泡(低密度)の予
備発泡スチレン系樹脂粒子を得ることができる。
According to the present invention, practical highly expanded (low density) pre-expanded styrenic resin particles can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用できる発泡装置の一例を
示す模式図である。 符号の説明、1……発泡槽、2……撹拌翼、3
……軸、4……動力、5……邪魔棒、6……ホツ
パー、7……投入器弁、8……スチーム弁、9…
…スチーム吹込器、10……排気弁、11……圧
力計、12……制御器、13……レベル検知器、
14……排出弁、15……受器。
FIG. 1 is a schematic diagram showing an example of a foaming device that can be used in the present invention. Explanation of symbols, 1... Foaming tank, 2... Stirring blade, 3
... shaft, 4 ... power, 5 ... baffle bar, 6 ... hopper, 7 ... feeder valve, 8 ... steam valve, 9 ...
...Steam blower, 10...Exhaust valve, 11...Pressure gauge, 12...Controller, 13...Level detector,
14...Discharge valve, 15...Receiver.

Claims (1)

【特許請求の範囲】[Claims] 1 常温、常圧で気体状の有機化合物を50重量%
以上含有する有機発泡剤を含有してなる発泡性ス
チレン系樹脂粒子を大気圧以上の圧力下で略スチ
ームのみと接触させて加熱発泡させることを特徴
とする予備発泡スチレン系樹脂粒子の製造法。
1 50% by weight of organic compounds that are gaseous at room temperature and pressure
A method for producing pre-expanded styrenic resin particles, which comprises heating and foaming expandable styrenic resin particles containing the above-mentioned organic blowing agent by bringing them into contact with substantially only steam under pressure equal to or higher than atmospheric pressure.
JP56164758A 1981-10-14 1981-10-14 Manufacture of prefoamed styrene resin particle Granted JPS5865635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56164758A JPS5865635A (en) 1981-10-14 1981-10-14 Manufacture of prefoamed styrene resin particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56164758A JPS5865635A (en) 1981-10-14 1981-10-14 Manufacture of prefoamed styrene resin particle

Publications (2)

Publication Number Publication Date
JPS5865635A JPS5865635A (en) 1983-04-19
JPS6220221B2 true JPS6220221B2 (en) 1987-05-06

Family

ID=15799358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56164758A Granted JPS5865635A (en) 1981-10-14 1981-10-14 Manufacture of prefoamed styrene resin particle

Country Status (1)

Country Link
JP (1) JPS5865635A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053487A (en) * 1973-09-12 1975-05-12
JPS52155675A (en) * 1976-06-21 1977-12-24 Asahi Dow Ltd Process for expanding crosslinked polyolefin powder
JPS55123631A (en) * 1979-03-14 1980-09-24 Kanegafuchi Chem Ind Co Ltd Production of foaming thermoplastic resin particle
JPS57199634A (en) * 1981-06-01 1982-12-07 Sekisui Plastics Co Ltd Method of pre-foaming foamable thermoplastic resin particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053487A (en) * 1973-09-12 1975-05-12
JPS52155675A (en) * 1976-06-21 1977-12-24 Asahi Dow Ltd Process for expanding crosslinked polyolefin powder
JPS55123631A (en) * 1979-03-14 1980-09-24 Kanegafuchi Chem Ind Co Ltd Production of foaming thermoplastic resin particle
JPS57199634A (en) * 1981-06-01 1982-12-07 Sekisui Plastics Co Ltd Method of pre-foaming foamable thermoplastic resin particle

Also Published As

Publication number Publication date
JPS5865635A (en) 1983-04-19

Similar Documents

Publication Publication Date Title
EP0095109B1 (en) Process for producing expanded particles of a polyolefin resin
US3577360A (en) Process for pre-expanding polymer beads
JPS6234335B2 (en)
EP0987293A1 (en) Porous polymer particles
CA1162000A (en) Particulate styrene polymers containing blowing agent
NO313639B1 (en) Expandable polystyrene particles, method of manufacture and use thereof
JPH0660258B2 (en) Method for pre-expanding thermoplastic resin particles
JPS6220221B2 (en)
EP1114089B1 (en) Process for the preparation of expanded polyvinylarene particles
JP2004155870A (en) Expandable styrenic resin particle for building material and its expanded molded product
US4226942A (en) Foamable resins process
US6297292B1 (en) Water expanded polystyrene particles
JPS6146009B2 (en)
US3369927A (en) Expandable styrene polymers by treatment with ozone
JPS58122934A (en) Preparation of thermoplastic resin prefoamed particle
JP4065795B2 (en) Heat-resistant styrenic resin foam molding
JPS62177038A (en) Production of pre-expanded particle of thermoplastic resin
JPS644489Y2 (en)
JPH05255531A (en) Production of molded polymer foam
EP1114088A1 (en) Process for the preparation of expandable polyvinylarene particles
JPS5933123A (en) Method for preforming thermoplastic resin particle and apparatus therefor
JPS6210165B2 (en)
JP3010315B2 (en) Method for producing pre-expanded styrene resin particles
JPH0464334B2 (en)
JPH0314845A (en) Preparation of pre-expanded bead of polyolefin resin